
Citation: Kakani, V.; Li, X.; Cui, X.;

Kim, H.; Kim, B.-S.; Kim, H.

Implementation of

Field-Programmable Gate Array

Platform for Object Classification

Tasks Using Spike-Based

Backpropagated Deep Convolutional

Spiking Neural Networks.

Micromachines 2023, 14, 1353.

https://doi.org/10.3390/

mi14071353

Academic Editor: José de Jesús

Rangel Magdaleno

Received: 12 June 2023

Revised: 26 June 2023

Accepted: 28 June 2023

Published: 30 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Implementation of Field-Programmable Gate Array Platform
for Object Classification Tasks Using Spike-Based
Backpropagated Deep Convolutional Spiking Neural Networks
Vijay Kakani 1 , Xingyou Li 2, Xuenan Cui 3, Heetak Kim 4, Byung-Soo Kim 4 and Hakil Kim 2,*

1 Integrated System Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, Republic of Korea;
vjkakani@inha.ac.kr

2 Electrical and Computer Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, Republic of Korea;
22202326@inha.edu

3 Information and Communication Engineering, Inha University, 100 Inharo, Nam-gu,
Incheon 22212, Republic of Korea; xncui@inha.ac.kr

4 Research and Development, Korea Electronics Technology Institute, 25 KETI, Saenari-ro,
Seongnam-si 13509, Republic of Korea; htkim@keti.re.kr (H.K.); bskim4k@keti.re.kr (B.-S.K.)

* Correspondence: hikim@inha.ac.kr; Tel.: +82-32-860-7385

Abstract: This paper investigates the performance of deep convolutional spiking neural networks
(DCSNNs) trained using spike-based backpropagation techniques. Specifically, the study examined
temporal spike sequence learning via backpropagation (TSSL-BP) and surrogate gradient descent via
backpropagation (SGD-BP) as effective techniques for training DCSNNs on the field programmable
gate array (FPGA) platform for object classification tasks. The primary objective of this experimental
study was twofold: (i) to determine the most effective backpropagation technique, TSSL-BP or
SGD-BP, for deeper spiking neural networks (SNNs) with convolution filters across various datasets;
and (ii) to assess the feasibility of deploying DCSNNs trained using backpropagation techniques
on low-power FPGA for inference, considering potential configuration adjustments and power
requirements. The aforementioned objectives will assist in informing researchers and companies in
this field regarding the limitations and unique perspectives of deploying DCSNNs on low-power
FPGA devices. The study contributions have three main aspects: (i) the design of a low-power FPGA
board featuring a deployable DCSNN chip suitable for object classification tasks; (ii) the inference
of TSSL-BP and SGD-BP models with novel network architectures on the FPGA board for object
classification tasks; and (iii) a comparative evaluation of the selected spike-based backpropagation
techniques and the object classification performance of DCSNNs across multiple metrics using both
public (MNIST, CIFAR10, KITTI) and private (INHA_ADAS, INHA_KLP) datasets.

Keywords: field-programmable gate arrays; neuromorphic image processing; object classification
performance; spiking neural networks

1. Introduction

Innovations in artificial neural networks [1,2] and vision-based technologies [3–5]
have spawned intelligent applications in a variety of fields [6–11], despite some limitations
in low-cost computing [12]. Due to developments in spiking neural networks (SNNs),
neuromorphic processing units inspired by the brain have gained popularity [13]. In
SNNs, neurons communicate with one another by means of spike patterns, transmitting spike
information from the input neuron to other interconnected neurons, and ultimately to the
output neuron [14]. SNNs have been utilized as the neuromorphic processing units for artificial
intelligence tasks requiring efficient energy consumption [15]. SNNs are considered the third
iteration of artificial neural networks (ANNs) and possess nearly the same computational
capability as ANNs [16]. SNNs are distinguished from ANNs predominantly by their discrete

Micromachines 2023, 14, 1353. https://doi.org/10.3390/mi14071353 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14071353
https://doi.org/10.3390/mi14071353
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-4165-0021
https://orcid.org/0000-0003-4232-3804
https://doi.org/10.3390/mi14071353
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14071353?type=check_update&version=2


Micromachines 2023, 14, 1353 2 of 24

output spikes. In contrast to ANNs, which have continuous values as neuron responses, SNNs
have discrete pulses that are typically repetitive due to membrane potential [17–20]. The
operation of SNNs is defined by the leaky integrate fire neuron (LIF), which is dependent on
the membrane potential dynamics of the neuron. Presently, neuromorphic processors such as
IBM’s TrueNorth and Intel’s Loihi enable researchers to deploy spiking neural networks with
a performance that is comparable to that of PC-based convolutional neural networks [21,22].
The aforementioned neuromorphic hardware devices are costly in terms of initial price and
maintenance [23]. This has encouraged numerous researchers to implement spiking neural
networks on inexpensive field-programmable gate array (FPGA) boards [24–28].

1.1. Motivation

To operate object classification and detection algorithms, a number of mid-sized
businesses favor low-power chips, particularly in the autonomous vehicle industry. Based
on previous interactions with these companies in the current demographics, their primary
need is to acquire a low-cost, low-power computing bench with considerable accuracy
and processing speed for their autonomous systems. Typically, the final autonomous
system design for these institutions includes redundant benchmarking protocols to evaluate
the precision and processing speed provided by a low-power computing bench. In the
future, these mid-sized companies might use neural networks for power analysis [29] and
electrical load prediction [30,31] to compare low-power FPGAs to other computer platforms.
Therefore, there is a need for reporting the shortcomings and borderline advantages of
deploying powerful DCSNNs to attain higher accuracy on low-power FPGAs at the expense
of processing latency.

1.2. Purpose of Study

The unique objective of this study was to report and assist mid-level autonomous vehicle
manufacturers with the potential deployment of low-power networks such as DCSNNs for
deep learning tasks on low-power FPGA boards. In addition, hybrid networks such as DCSNNs
could match the accuracy of their ANN counterparts with regard to object classification tasks
on a variety of public and private datasets. The research conducted in this study regarding
the deployment of DCSNNs on low-cost FPGA boards and the accuracy and processing time
latency with respect to MNIST, CIFAR10, KITTI, INHA_ADAS, and INHA_KLP could inform
researchers and businesses in this field about the limitations and distinctive perspectives of
this approach. The overall study analysis is depicted in Figure 1 below.

Figure 1. Implementation schematic of DCSNN using spike-based backpropagation on FPGA platform.

2. Literature Review

Multiple studies have been conducted to attain a comparable level of efficiency for SNNs
using backpropagation techniques [32–40]. Some have utilized the neuron action potential timing



Micromachines 2023, 14, 1353 3 of 24

information to infer and distinguish the timing information for potential backpropagation [34,41].
The limitation of these methodologies is that a reduction in the neuronal firing rates eventually
leads to a decline in the network’s capacity. To circumvent this issue, unsupervised learning
techniques such as spike-time-dependent plasticity (STDP) have been utilized to train SNNs.
The STDP mechanism was utilized to design reward-modulated STDP for supervised learning,
enabling networks to perform object recognition and autonomous tasks, in [42,43]. In a manner
of speaking, these mechanisms have a high energy requirement and will degrade the overall
efficacy of the system when implemented on deeper SNNs [44,45]. Several of these studies
employed spiking non-linearity to approximate the discontinuous spiking activation function,
thereby flattening the activation function and rendering the SNN continuously differentiable [46].
Recent studies employing techniques such as surrogate gradient descent (SGD) [46–48] and
temporal spike sequence learning (TSSL) [49] have substantially improved the consistency of the
training process for deeper SNNs while maintaining the accuracy of the SNNs at the same level
as that of ANNs on standard PC hardware.

These authors conducted a few exploratory analyses on SGD-BP SNNs executed on
PCs in conjunction with NVIDIA TX2 embedded platforms [47]. Similarly, the authors
developed a number of deeper SNN architectures trained with SGD-BP and implemented
on an embedded board [48,50]. In addition, a literature review of a few potential hybrid
networks (involving SNNs with convolutions) on the FPGA platform was conducted to
assess the scope of this study; the pertinent information is presented in Table 1. The
networks compared in the literature review table alongside the proposed study are all
either SNNs or hybrid networks (convolutional SNNs). However, no known study except
for [49] has utilized deeper convolutional layers coupled with either integrated fire (IF) or
leaky integrate fire (LIF) SNN layers. This combination is very powerful, as it harnesses
the power of a convolutional filter alongside the spiking mechanism of IF or LIF neurons.
When using low-power FPGA boards, as in several studies [49,51–56], it is challenging to
balance both the deeper convolutions and spiking mechanisms. The current study was able
to overcome several of the challenges faced by other works because of the following:

• We hosted deeper convolutions alongside SNNs with very few parameters compared
to [49] and were still able to achieve similar accuracy over the MNIST and CIFAR10
datasets.

• We employed both real-valued and Poisson distribution spikes as input encoding
schemes to capture most of the information before processing them through DCSNNs,
which were not used in [49,51–56].

• We tested the DCSNNs on automotive relevant datasets such as KITTI, INHA_ADAS,
and INHA_KLP as opposed to just MNIST and CIFAR10, as was the case in [49,52,54–56].

• We customized the proposed SGD-BP to fit the low-power needs of several target
medium-sized intelligent vehicle industries in the form of FPGA implementation
while preserving accuracy.

Table 1. Literature review of works deploying SNNs and hybrid networks on FPGA platforms
alongside this study.

Network
Type Hybrid [51] Hybrid [52] Hybrid [53] Hybrid [54] SNN [57] SNN [55] Hybrid [56] Hybrid [49] Hybrid (This Work)

FPGA
Model

Xilinx
Artix-7 XCVU440

Xilinx
Virtex-6
ML605

Xilinx
Zynq UltraScale

+XCZU7EV

Xilinx
ZCU104

Xilinx VC707
Xilinx ZCU102
Xilinx VCU118

Xilinx
Zynq

Ultrascale+

Xilinx Kintex
UltraScale

FPGA

Xilinx Kintex
UltraScale FPGA

xcku115-flvf1924-2-i

Datasets Synthetic
MNIST
SVHN

CIFAR10

DARPA
CIFAR10

MNIST
CIFAR10
ImageNet

MNIST
CIFAR10

MNIST
SVHN

CIFAR10
MNIST MNIST

CIFAR10

MNIST
CIFAR10

KITTI
INHA_ADAS
INHA_KLP

Encoding
Scheme

Real-value
spike

Real-value
spike

Real-value
spike m-TTFS Real-value

spike
Real-value

spike
Rate

encoding
Real-value

spike
Real-value and
Poisson spike



Micromachines 2023, 14, 1353 4 of 24

Table 1. Cont.

Network
Type Hybrid [51] Hybrid [52] Hybrid [53] Hybrid [54] SNN [57] SNN [55] Hybrid [56] Hybrid [49] Hybrid (This Work)

Neuron
Model IF IF IF LIF IF Izhikevich LIF LIF LIF

Convolution
Filter

Optimization

Time division
multiplexing

(TDM)
None None None None None Unrolling None None

3. Spiking Schematic Design Framework
3.1. Spiking Neuron Model

The spiking neural network employed in this study was constructed by the adaptation
of the LIF neuron model [13]. According to the LIF neuron model, the input spike train
flows from the presynaptic neuron v to the postsynaptic neuron u. The input spike train
can be denoted by Xv(t) = ∑ f (t)v

δ
(

f − f (t)v

)
, where f (t)v represents the firing time of the

presynaptic neuron v. The postsynaptic current Jv(t) is produced from the incoming spikes
through the synaptic connection between neuron v and neuron u. The membrane potential
voltage Pu(t) for the postsynaptic neuron u at a given time t is represented by

τp
dPu(t)

dt
= −Pu(t) + R0 ∑

v
Quv Jv(t) + ru(t), (1)

where Ro is the leaky resistance of the LIF neuron, τp is the membrane potential time
constant, Quv is the weight of the synaptic connection between the presynaptic and post-
synaptic neurons, Jv(t) is the postsynaptic current inculcated by the presynaptic neuron
spike, and ru(t) is the reset mechanism in the spiking activity. The postsynaptic current
and the reset mechanism can be denoted as

Jv(t) = (α ∗ Xv)(t), ru(t) = (β ∗ Xu)(t), (2)

where α(·) and β(·) are the response mechanism kernel and reset mechanism kernel,
respectively. Accordingly, the first-order spike response is denoted in conjunction with a
synaptic time constant τs as

τs
Jv(t)

dt
= −Jv(t) + Xv(t). (3)

The membrane potential is reduced by the reset mechanism for each neuron firing
period by a specific firing equilibrium value. By applying the Euler method to 1, the
membrane potential is simplified as

Pu[t] =
(

1− 1
τp

)
Pu[t− 1] + ∑

v
Quv Jv[t] + ru[t]. (4)

The overall firing mechanism is then followed by the reset scheme to obtain the output
of the firing neuron as

Xv[t] = H(Pu(t)−VEq), (5)

where VEq is the firing equilibrium or threshold, and H(·) is the step function.

3.2. Deep Convolutional Spiking Neural Networks (DCSNNs)

The combination of convolutional kernels and pooling layers with spiking neural
network components results in DCSNNs. This study employed such architectures with
additional layers to perform classification tasks. As input spikes pass through various
layers, the training process occurs. When the input spike train is processed by the filters in
the convolutional layers, the input current is estimated. At each time step, the input current



Micromachines 2023, 14, 1353 5 of 24

determines the membrane potential Pu(t) of the neuron. When the neuron’s Pu(t) exceeds
the threshold value VEq, both the neuron’s spikes and the membrane potential revert to their
initial values of zero. In contrast, the value of Pu(t) is regarded as residual leakage over the
course of the subsequent time steps. The pooling layers in the DCSNN function are similar
to those in ANNs; however, the spike representation of the input image corresponding
to spatial information is governed by either average [53,58] or maximum [59] pooling. A
schematic of DCSNNs is depicted in Figure 2. These factors contribute to the stability of
the training of deep convolutional spiking neural networks.

Figure 2. Schematic of deep convolutional spiking neural networks.

4. Training DCSNNs with Backpropagation
4.1. TSSL-BP for DCSNNs

The temporal spike loss function proposed in [49] was formulated as the sum of the
squared error with respect to each time step for all neurons. This enabled the calculation
of the difference between the desired spikes Dsp = [Dsp|t=t0 , Dsp|t=t1 , . . . , Dsp|t=tNt

] and
produced (actual) spikes Ssp = [Ssp|t=t0 , Ssp|t=t1 , . . . , Ssp|t=tNt

], where Dsp|t and Ssp|t are
the desired and produced (actual) firing events, respectively, at time t for the output
neurons, with the number of total time steps being Nt. The temporal spike loss function
was calculated as

Ltemp.sp =
Nt

∑
n=0

ξTSSL[tn];

ξTSSL[tn] =
Nt

∑
n=0

1
2
(
(∆ ∗ Dsp)[tn]− (∆ ∗ Ssp)[tn]

)2,

(6)

where ξTSSL[t] represents the error at time t, and4(·) represents a function that yields the
Van Rossum difference between Dsp|t and Ssp|t.

4.2. SGD-BP for DCSNNs

The loss in the surrogate gradient descent is defined with respect to the integral over
the time steps, where the difference in desired spikes Dsp = [Dsp|t=t0 , Dsp|t=t1 , . . . , Dsp|t=tNt

]

and actual spikes Ssp = [Ssp|t=t0 , Ssp|t=t1 , . . . , Ssp|t=tNt
] are coupled by the amount of mem-

brane potential P(tn) [46,60]:

ξSGD[t] =
∫ Nt

0
[Ssp(tn)− Dsp(tn)] ∗ P(tn) ∗ dtn, (7)

where ξSGD[t] represents the SGD error at time t between Dsp|t and Ssp|t. The mem-
brane potential P(tn) influences the loss function in the case of SGD, as the growth in
membrane potential corresponds to the reduction in loss when the output spike is absent
[Ssp(tn) − Dsp(tn)] < 0, and vice versa when [Ssp(tn) − Dsp(tn)] > 0. Thus, the Van



Micromachines 2023, 14, 1353 6 of 24

Rossum distance is used to achieve the stable control of the loss function. Additionally,
the DCSNN uses convolutional kernels, which was taken into consideration according to
previous studies [38] to further optimize the loss function. The entire loss function with
respect to the total time period Nt was calculated in the presence of convolutional kernel
a(t) = 1 as

ξSGD[t] =
∫ Nt

0
[(a ∗ Ssp)(tn)− (a ∗ Dsp)(tn)](a ∗ P)(tn)dtn. (8)

Considering the Heaviside step function H, and with Zgt → [0, 1] being the ground-
truth labels for classification and Z =

∫ Nt
0 Ssp(tn)dtn being the actual output of the network,

the loss function could be modified to

ξSGD[t] = H[Z(tn)− Zgt(tn)]
∫ Nt

0
P(tn)dtn (9)

The membrane potential and errors associated with the different loss expressions
presented in (7)–(9) could be combined using the background presented in [46] as follows:

ξSGD[t] =
1
2

∫ Nt

0
[Ssp(tn)− Dsp(tn)]

2dtn;

ξSGD[t] =
1
2
(H[Z(tn)− Zgt(tn)])

2
(10)

The effect of surrogate gradient with respect to membrane potential on the loss function
was derived in [46,60] such that the differentiable output of the actual spikes was directly
associated with the function of the membrane potential coupled with a change in the
membrane potential as follows:

d[Ssp(tn)]

dtn
→ f (P(tn)) ∗

d[P(tn)]

dtn
. (11)

The function of the membrane potential was the combination of the hyperparameter
χ, gradient thickness c, and difference between the membrane potential and equilibrium
threshold f (P(tn)) =

χ
[1+c(P(tn)−VEq)]2

; thus, (11) could be written as

d[Ssp(tn)]

dtn
→ χ

[1 + c(P(tn)−VEq)]2
∗ d[P(tn)]

dtn
. (12)

5. FPGA Schematic and Network Architecture
5.1. FPGA Design and Data Processing

The external view of the SNN processor on-chip FPGA board used in this investigation,
which was intended to host spiking neural networks, is depicted in Figure 3. External
components such as JTAG, an SD card, flash memory, USB, UART, and SDRAM made up
the FPGA board. Consequently, the internal components consisted of a JTAG controller;
OpenRISC core; SDcard controller; DNN accelerator; 512 KB of SRAM; and flash (SPI),
SDRAM, USB, and UART controllers. The advanced microcontroller bus architecture
(AMBA) was used to implement the master–slave AHB protocols. The FPGA design’s
overall block diagram is depicted in Figure 4. The FPGA design elements such as the
maximum frequency; quantization; details regarding the CLB LUTs; CLB registers utilized;
and DSPs, BRAM, etc., are shown in Table 2.



Micromachines 2023, 14, 1353 7 of 24

Figure 3. The external view of the on-chip FPGA spiking neural network processor.

Figure 4. The overall block schematic of the FPGA board design.

Table 2. FPGA design elements.

Design Aspect Value

Device model Xilinx Kintex UltraScale FPGA (xcku115-flvf1924-2-i)
Maximum frequency 80 Mhz

Quantization 16-bit fixed point
Synchronization Clock-based synchronization

CLB LUTs 196,043
CLB Registers 172,011

CLB 32,102
DSP 415

BRAM 112 KB
SDRAM 256 MB

Spike timing per fixed window 12.5 ms
Input encoding scheme Real-value spike encoding

Average latency to first spike 303 ms



Micromachines 2023, 14, 1353 8 of 24

5.2. Flow of Data in FPGA Board

The training of the DCSNN was carried out on a PC with an NVIDIA GPU leveraging
the processing power utilized for the backpropagation. The data flow in the FPGA board
is depicted in Figure 5. Both the training and testing datasets were deployed for learning
and inference purposes, respectively, on the PC to obtain initial estimates. In the next
step, the trained model weight file (.bin) was transferred to the SD card and inserted into
the FPGA board. The SD card created an environment inside the FPGA with arguments
such as header, APB set, layer parameters, and inputs, which allowed us to run the SNN
model. The data prediction process based on the underlying spiking mechanism on the
FPGA is shown in Figure 6. The highest spike count in a specific category provided the
prediction over the corresponding class. Additionally, a GUI demo video visualizing
the inference data transfer from the FPGA to the PC via the UART can be found using
the following link: https://github.com/INHACVLAB/DCSNN-on-FPGA/blob/main/
SNN%20Object%20Classification%20(KITTI%20Dataset)%20on%20FPGA.mp4, accessed
on 29 September 2022. The spiking activity that has the highest numerical value corresponds
to the predicted class, and the resultant membrane potential values relate to the firing
neuron activity during the prediction of the class.

Figure 5. The data flow in the FPGA board. (a) Data pipeline for training and testing scenarios where
* represent the name of the .yaml file and numbers represent the order of the tasks in a sequence;
(b) FPGA SNN environment with header and deployment arguments.

Figure 6. Spike-based data prediction on FPGA board. (a) Spike prediction on FPGA board (MNIST);
(b) spike prediction on FPGA board (CIFAR10).

https://github.com/INHACVLAB/DCSNN-on-FPGA/blob/main/SNN%20Object%20Classification%20(KITTI%20Dataset)%20on%20FPGA.mp4
https://github.com/INHACVLAB/DCSNN-on-FPGA/blob/main/SNN%20Object%20Classification%20(KITTI%20Dataset)%20on%20FPGA.mp4


Micromachines 2023, 14, 1353 9 of 24

5.3. DCSNN Architecture and Network Parameters

A significant number of papers have been published using the spike-timing-dependent
plasticity (STDP) technique to deploy SNNs on an FPGA. However, the STDP does not con-
form to DCSNNs’ use of backpropagation. TSSL-BP is a well-designed backpropagation
algorithm that supports significant open-source datasets. Therefore, TSSL-BP was evaluated
and modified to match the FPGA deployment routines. On the other hand, the SGD-BP was
chosen because we had conducted a substantial quantity of research utilizing this backpropa-
gation technique, thus targeting better FPGA optimization. The TSSL-BP PC implementation
and SGD-BP implementation codes can be found at https://github.com/INHACVLAB, ac-
cessed on 29 September 2022. The TSSL-BP-designed DCSNN architecture consisted of ten
layers, which are depicted in Table 3 along with pertinent network characteristics. For the
processing of a TSSL-BP coupled network, a total of 21,150,496 parameters are required.

Table 3. DCSNN architecture coupled with TSSL-BP and network parameters.

Input Output Layer [Kernel, Stride] Parameters

(32, 32, 3) (32, 32, 96) conv3-96 [3 × 3, 1] 2592
(32, 32, 96) (16, 16, 256) conv3-256 [3 × 3, 1] 221,440

(32, 32, 256) (32, 32, 256) pooling [2 × 2, 3] 0
(16, 16, 256) (8, 8, 384) conv3-384 [3 × 3, 1] 885,120
(16, 16, 384) (16, 16, 384) pooling [2 × 2, 3] 0

(8, 8, 384) (8, 8, 384) conv3-384 [3 × 3, 1] 1,327,488
(8, 8, 384) (8, 8, 16,384) conv3-256 [3 × 3, 1] 884,992

(1, 1, 16,384) (1, 1, 1024) fc [1 × 1, 0] 16,777,216
(1, 1, 1024) (1, 1, 1024) fc [1 × 1, 0] 1,048,576
(1, 1, 1024) (1, 1, 3) fc [1 × 1, 0] 3072

The ten layers of the SGD-BP-designed DCSNN architecture are displayed in Table 4
along with pertinent network characteristics. A total of 5,322,592 parameters are required
for the processing of an SGD-BP-coupled network. In TSSL-BP, the input image is directly
fed into the convolution filters, where real-valued spikes are processed during future
training, as described in [49]. In contrast, SGD-BP encodes the input image using Pois-
son distribution for the LIF neurons and simultaneously feeds the input image into the
convolution and pooling layers. As stated in [47], the spike currents were calculated via a
cumulative process incorporating LIF and convolutions, and the threshold was applied to
the membrane potential.

Table 4. DCSNN architecture coupled with SGD-BP and network parameters.

Input Output Layer [Kernel, Stride] Parameters

(32, 32, 3) (32, 32, 32) conv3-32 [3 × 3, 1] 864
(32, 32, 32) (32, 32, 32) LIF-neuron none 0
(32, 32, 32) (32, 32, 64) conv3-64 [3 × 3, 1] 18,432
(32, 32, 64) (32, 32, 64) LIF-neuron none 0
(32, 32, 64) (16, 16, 64) Avg.pooling [2 × 2, 2] 0
(16, 16, 64) (16, 16, 128) conv3-128 [3 × 3, 1] 73,728

(16, 16, 128) (16, 16, 128) LIF-neuron none 0
(16, 16, 128) (16, 16, 128) conv3-128 [3 × 3, 1] 147,456
(16, 16, 128) (16, 16, 128) LIF-neuron none 0
(16, 16, 128) (8, 8, 128) Avg.pooling [2 × 2, 2] 0

(8, 8, 128) (8, 8, 256) conv3-256 [3 × 3, 1] 294,912
(8, 8, 256) (8, 8, 256) LIF-neuron none 0
(8, 8, 256) (8, 8, 256) conv3-256 [3 × 3, 1] 589,824
(8, 8, 256) (8, 8, 256) LIF-neuron none 0
(8, 8, 256) (4, 4, 256) Avg.pooling [2 × 2, 2] 0
(4, 4, 256) (1, 1, 4096) flatten none 0
(1, 1, 4096) (1, 1, 1024) fc [1 × 1, 0] 4,194,304
(1, 1, 1024) (1, 1, 1024) LIF-neuron none 0
(1, 1, 1024) (1, 1, 1024) dropout none 0
(1, 1, 1024) (1, 1, 3) fc [1 × 1, 0] 3072

https://github.com/INHACVLAB


Micromachines 2023, 14, 1353 10 of 24

6. Experiments and Results
6.1. Public and Private Datasets

The publicly available datasets included MNIST [61], CIFAR10 [62], and KITTI [63].
The MNIST dataset was considered to offer the classification scope of 10 classes from 0 to 9,
and CIFAR10 contains classes such as airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck. Similarly, the KITTI dataset consists of classes such as vehicle, cyclist, and
pedestrian. Internally, cars, buses, and trucks were combined as vehicles for a generalized
classification scenario with the privately-acquired INHA_ADAS dataset containing the
same three classes of vehicle, cyclist, and pedestrian. The private datasets used in these
experiments were designed for the sole purpose of classification tasks in the context of
autonomous vehicle scenarios. The datasets such as INHA_ADAS and INHA_KLP were
customized to assist the experiments related to assessing the classification performance of
the DCSNNs. The INHA_ADAS dataset consisted of three classes, namely vehicle, cyclist,
and pedestrian, which were maintained in correlation to the classes defined in the KITTI
public dataset. Additionally, the INHA_KLP dataset was chosen and customized to test the
inference capabilities of the DCSNNs for Korean license plates. A total of 50 classes were
considered with the combination of numbers 0 to 9, just as in the case of the public MNIST
set, and 40 Korean alphabet classes, which acted as the perfect scope to test the inference of
the DCSNNs. The overall dataset specifications are stated in Table 5.

Table 5. Datasets used in the current work.

Dataset Category Classes No. of Samples

MNIST Public 10 70,000
CIFAR10 Public 10 60,000

KITTI Public 3 48,100
INHA_ADAS Private 3 30,722
INHA_KLP Private 50 48,100

6.2. Performance Evaluations

The evaluations were carried out using mainly accuracy and processing time as
fundamental performance criteria. The algorithms and networks were deployed on the
FPGA for inference, and corresponding metrics related to the accuracy and processing
time were collected for evaluation. The experiments were carried out on diverse datasets,
and comparisons between the PC and FPGA with respect to TSSL-BL and SGD-BP were
drawn. Usually, the mAP in traditional machine learning applications is calculated using
a ground-truth bounding box. However, the mAP metric considered in this work was
calculated according to the true-positive (TP) and false-positive (FP) precision values with
respect to classes based on spike predictions. The mAP calculation is clearly illustrated with
a use case in Figure 7, where the spike count led to the predicted class and thereby the mAP
was calculated from the average precision. Moreover, the average power consumption (in
Watts) was calculated on a CPU (Intel i7-12700) alongside FPGA Xilinx Kintex UltraScale
(xcku115-flvf1924-2-i).



Micromachines 2023, 14, 1353 11 of 24

Figure 7. Spike-based mAP metric calculation. (a) Spike count and relevant mAP calculations;
(b) true-positive and false-positive predictions.

Regarding the public dataset evaluations, Figure 8 shows the classification perfor-
mance of the TSSL-BP- and SGD-BP-coupled DCSNNs on the MNIST dataset with 10
classes. Also, Table 6 presents the metrics corresponding to the samples inferred on the
PC alongside the FPGA in terms of accuracy and processing time. Similarly, the confusion
matrices in Figure 9 provide a glimpse of the classification performance of the TSSL-BP-
and SGD-BP-coupled DCSNNs on the CIFAR10 dataset with 10 classes. Also, Table 7
presents the metrics corresponding to the samples inferred on the PC alongside the FPGA
in terms of accuracy and processing time. Additionally, Figure 10 provides an overview
of the classification performance of the TSSL-BP- and SGD-BP-coupled DCSNNs on the
KITTI dataset with three classes. Also, Table 8 presents the metrics corresponding to the
samples inferred on the PC alongside the FPGA in terms of accuracy and processing time.
The latency of the DCSNN on the FPGA was calculated with respect to various datasets
alongside the PC inference and was defined as the spiking FPGA inference latency with
respect to the spiking PC inference. For instance, in Table 6, the FPGA latency with respect
to MNIST for TSSL-BP is 49 times that of the PC.

Regarding the private dataset evaluations, the confusion matrices in Figure 11 show
the classification performance of the TSSL-BP- and SGD-BP-coupled DCSNNs on the
INHA_ADAS dataset with three classes. Also, Table 9 presents the metrics corresponding
to the samples inferred on the PC alongside the FPGA in terms of accuracy and processing
time. Figure 12 shows the classification performance of the TSSL-BP- and SGD-BP-coupled
DCSNNs on the INHA_KLP dataset with 50 classes. Also, Table 10 presents the metrics
corresponding to the samples inferred on the PC alongside the FPGA in terms of accuracy
and processing time.

Table 6. Performance of TSSL-BP (rows 1 and 2) and SGD-BP (rows 3 and 4) on the MNIST dataset.

Platform Mean (%) Best (%) mAP (%) Processing Time (ms) Power Consumption (W)

CPU (Intel i7-12700) 99.10 99.30 99.07 6.1 13.6
FPGA (xcku115-flvf1924-2-i) 98.50 98.80 98.79 300 0.74

CPU (Intel i7-12700) 99.1 99.15 98.89 4.1 12.91
FPGA (xcku115-flvf1924-2-i) 98.5 98.80 98.55 201.6 0.74

Latency of TSSL-BP on FPGA with respect to MNIST dataset 49×
Latency of SGD-BP on FPGA with respect to MNIST dataset 50×

Average power efficiency of TSSL-BP on FPGA with respect to MNIST dataset 18×
Average power efficiency of SGD-BP on FPGA with respect to MNIST dataset 18×



Micromachines 2023, 14, 1353 12 of 24

Figure 8. Confusion matrices. (a) TSSL-BP inference on the MNIST dataset (PC); (b) TSSL-BP inference
on the MNIST dataset (FPGA); (c) SGD-BP inference on the MNIST dataset (PC); (d) SGD-BP inference
on the MNIST dataset (FPGA).

Figure 9. Confusion matrices. (a) TSSL-BP inference on the CIFAR10 dataset (PC); (b) TSSL-BP infer-
ence on the CIFAR10 dataset (FPGA); (c) SGD-BP inference on the CIFAR10 dataset (PC); (d) SGD-BP
inference on the CIFAR10 dataset (FPGA).



Micromachines 2023, 14, 1353 13 of 24

Table 7. Performance of TSSL-BP (rows 1 and 2) and SGD-BP (rows 3 and 4) on the CIFAR10 dataset.

Platform Mean (%) Best (%) mAP (%) Processing Time (ms) Power Consumption (W)

CPU (Intel i7-12700) 86.90 87.00 86.94 90.8 13.6
FPGA (xcku115-flvf1924-2-i) 87.00 87.80 87.78 7612 0.74

CPU (Intel i7-12700) 73.72 74.82 73.55 3.3 12.91
FPGA (xcku115-flvf1924-2-i) 74.51 75.02 74.50 5766 0.74

Latency of TSSL-BP on FPGA with respect to CIFAR10 dataset 83×
Latency of SGD-BP on FPGA with respect to CIFAR10 dataset 1747×

Average power efficiency of TSSL-BP on FPGA with respect to CIFAR10 dataset 18×
Average power efficiency of SGD-BP on FPGA with respect to CIFAR10 dataset 18×

Figure 10. Confusion matrices. (a) TSSL-BP inference on the KITTI dataset (PC); (b) TSSL-BP inference
on the KITTI dataset (FPGA); (c) SGD-BP inference on the KITTI dataset (PC); (d) SGD-BP inference
on the KITTI dataset (FPGA).

Table 8. Performance of TSSL-BP (rows 1 and 2) and SGD-BP (rows 3 and 4) on the KITTI dataset.

Platform Mean (%) Best (%) mAP (%) Processing Time (ms) Power Consumption (W)

CPU (Intel i7-12700) 86.17 86.52 79.2 65.5 13.6
FPGA (xcku115-flvf1924-2-i) 85.72 86.80 78.89 5491 0.74

CPU (Intel i7-12700) 97.31 97.45 80.58 4.3 12.91
FPGA (xcku115-flvf1924-2-i) 79.4 79.82 79.53 4997 0.74

Latency of TSSL-BP on FPGA with respect to KITTI dataset 83×
Latency of SGD-BP on FPGA with respect to KITTI dataset 1162×

Average power efficiency of TSSL-BP on FPGA with respect to KITTI dataset 18×
Average power efficiency of SGD-BP on FPGA with respect to KITTI dataset 18×



Micromachines 2023, 14, 1353 14 of 24

Figure 11. Confusion matrices. (a) TSSL-BP inference on the INHA_ADAS dataset (PC); (b) TSSL-BP
inference on the INHA_ADAS dataset (FPGA); (c) SGD-BP inference on the INHA_ADAS dataset
(PC); (d) SGD-BP inference on the INHA_ADAS dataset (FPGA).

Table 9. Performance of TSSL-BP (rows 1 and 2) and SGD-BP (rows 3 and 4) on the
INHA_ADAS dataset.

Platform Mean (%) Best (%) mAP (%) Processing Time (ms) Power Consumption (W)

CPU (Intel i7-12700) 97.44 97.89 96.5 94.1 13.6
FPGA (xcku115-flvf1924-2-i) 97.8 98.3 98.95 10,935 0.74

CPU (Intel i7-12700) 99.18 99.15 95.02 2.9 12.91
FPGA (xcku115-flvf1924-2-i) 95.4 96.01 90.8 3771 0.74

Latency of TSSL-BP on FPGA with respect to INHA_ADAS dataset 115×
Latency of SGD-BP on FPGA with respect to INHA_ADAS dataset 1300×

Average power efficiency of TSSL-BP on FPGA with respect to INHA_ADAS dataset 18×
Average power efficiency of SGD-BP on FPGA with respect to INHA_ADAS dataset 18×

Table 10. Performance of TSSL-BP (rows 1 and 2) and SGD-BP (rows 3 and 4) on the
INHA_KLP dataset.

Platform Mean (%) Best (%) mAP (%) Processing Time (ms) Power Consumption (W)

CPU (Intel i7-12700) 88.21 88.27 74.06 111.3 13.6
FPGA (xcku115-flvf1924-2-i) 87.00 88.27 73.51 547.4 0.74

CPU (Intel i7-12700) 98.24 98.46 80.58 20.2 12.91
FPGA (xcku115-flvf1924-2-i) 80.51 81.33 80.21 299.3 0.74

Latency of TSSL-BP on FPGA with respect to INHA_KLP dataset 5×
Latency of SGD-BP on FPGA with respect to INHA_KLP dataset 14×

Average power efficiency of TSSL-BP on FPGA with respect to INHA_KLP dataset 18×
Average power efficiency of SGD-BP on FPGA with respect to INHA_KLP dataset 18×



Micromachines 2023, 14, 1353 15 of 24

Figure 12. Confusion matrices. (a) TSSL-BP inference on the INHA_KLP dataset (PC); (b) TSSL-BP
inference on the INHA_KLP dataset (FPGA); (c) SGD-BP inference on the INHA_KLP dataset (PC);
(d) SGD-BP inference on the INHA_KLP dataset (FPGA).

7. Comparative Study of BP Techniques (TSSL-BP vs. SGD-BP)
7.1. Classification Accuracy

The classification accuracy of both backpropagation techniques is shown in Figure 13,
where the green and purple column bar charts correspond to the performance of TSSL-BP
and SGD-BP on the FPGA hardware, respectively. The classification accuracies of TSSL-BP
on the datasets CIFAR10 and INHA_ADAS were higher than the classification accuracies
of SGD-BP on the FPGA platform. However, the mAP metrics on the dataset INHA_KLP
favored SGD-BP over TSSL-BP on the FPGA platform. Nevertheless, under the FPGA
inference environment, the classification accuracies of both backpropagation techniques
were similar on the datasets MNIST and KITTI.

Figure 13. Comparison between classification accuracies (mAP%) of TSSL-BP and SGD-BP on FPGA
alongside PC.



Micromachines 2023, 14, 1353 16 of 24

7.1.1. Processing Time

Additionally, the inference processing time of both backpropagation techniques were
estimated in the FPGA environment. The green and purple line plots in Figure 14 corre-
spond to the inference processing times of TSSL-BP and SGD-BP on the FPGA hardware,
respectively. The processing times of TSSL-BP on almost all the datasets were higher than
the inference processing times of SGD-BP on the FPGA hardware. This suggested that
the inference time taken for SGD-BP to classify a sample from all the diverse datasets was
shorter than the inference time taken for TSSL-BP on the FPGA platform.

Figure 14. Comparison between processing times (msec) of TSSL-BP and SGD-BP on FPGA
alongside PC.

7.1.2. Trade-Off between Accuracy and Processing Time

The trade-off between the accuracy and processing time must be investigated thor-
oughly because of the ambiguity that might alter the choice of a proper backpropagation
technique for coupling with DCSNNs to be deployed in classification tasks. For certain
datasets with simple backgrounds and binary images as samples, the classification task
can be considered less complex than in the case of complex backgrounds with clutter in
color image samples. Also, the design elements such as the choice of hyperparameters
and design options such as dropout rate and batch normalization can also influence the
overall classification accuracy. However, the employment of low-cost FPGA platforms for
the classification task converts the network design aspect into a complex set of restrictions.
The hardware restrictions, such as the inability of the FPGA board to handle batch norms,
dropout, and several other factors, are responsible for better accuracy. Therefore, instead
of considering classification performance or processing time alone, it is appropriate to
consider the trade-off between classification accuracy and processing time for a better
choice of backpropagation technique. The trade-off metric can be estimated by the fraction
term, with the numerator being the classification accuracy and the denominator being the
processing time. To attain a better accuracy, the mAP is required to be as high as possible,
and the processing time as low as possible. Accordingly, the trade-off is estimated by

ψ =
Acc(mAP%)

PT(msec)
, (13)

where ψ is the trade-off metric, Acc(mAP%) refers to the classification accuracy (mAP%),
and PT is the processing time in msec. This metric must be as high as possible, with the
classification accuracy (mAP%) as the numerator and the processing time (msec) as the
denominator. The comparisons between the trade-off metrics corresponding to TSSL-BP



Micromachines 2023, 14, 1353 17 of 24

and SGD-BP on the FPGA and PC are shown in Figure 15. The blue and red column
bar charts represent the trade-of metrics of TSSL-BP and SGD-BP in the PC environment,
respectively. Similarly, the green and purple line plots represent the trade-off metrics of
TSSL-BP and SGD-BP on the FPGA board, respectively.

Figure 15. Comparison between trade-off metrics of TSSL-BP and SGD-BP on FPGA alongside PC.

7.2. Performance Analysis with Respect to Datasets on the FPGA Platform

The classification performance of both techniques varied with the datasets and other
design aspects when deployed on the FPGA. A clear analysis of which technique should
be preferred according to the classification accuracy on the FPGA is shown in Table 11.
The table indicates the suitability of certain techniques when employed on the FPGA
board in conjunction with specific datasets for better classification performance. Similarly,
SGD-BP could be considered as a suitable candidate for coupling with DCSNNs deployed
on FPGA platforms for classifying samples from KITTI, INHA_KLP, and MNIST. Both
backpropagation techniques required considerable inference times to classify the samples
on the FPGA board with respect to diverse datasets. These inference values are presented
in Table 12, which clearly states that the processing time taken by SGD-BP to classify
the samples from all five datasets on the FPGA board was far lower than that of TSSL-
BP. Analogous to the processing time metric, the trade-off metric of SGD-BP seemed to
contain better quantitative values compared to the TSSL-BP trade-off metric. These trade-
off values are shown in Table 13, which clearly states that SGD-BP could be a suitable
candidate for coupling with DCSNNs to achieve better performance on classification tasks
in the context of FPGA environments for datasets such as MNIST, KITTI, INHA_ADAS,
and INHA_KLP. In the tables below, the symbols + and − correspond to suitable and
unsuitable BP candidates for the respective dataset.

Table 11. Suitability of BP techniques according to their classification performance on the FPGA
platform with respect to various datasets.

Technique MNIST CIFAR10 KITTI INHA_ADAS INHA_KLP

TSSL-BP + + − + −
SGD-BP + − + − +

Table 12. Suitability of BP techniques according to their inference time on the FPGA platform with
respect to various datasets.

Technique MNIST CIFAR10 KITTI INHA_ADAS INHA_KLP

TSSL-BP − − + − −
SGD-BP + + + + +



Micromachines 2023, 14, 1353 18 of 24

Table 13. Suitability of BP techniques according to their trade-off metric on the FPGA platform with
respect to various datasets.

Technique MNIST CIFAR10 KITTI INHA_ADAS INHA_KLP

TSSL-BP − + − − −
SGD-BP + + + + +

7.3. Performance Analysis of the Current Study Alongside Other Works

Due to the current lack of open-source code for FPGA inference on certain datasets, two
works [54,55] were chosen to evaluate the performance with respect to MNIST and a single
work [55] with respect to CIFAR10. The relevant hardware specifications of these works
are reported in Table 1. The evaluations were conducted in terms of quantization (bits), the
number of parameters, accuracy (%), and throughput (frames per second). Tables 14 and 15
show the corresponding results. However, with proper open-source algorithms, perfor-
mance evaluations compared to other SNN works on FPGAs could be carried out with
better precision in the future.

In addition to the performance evaluations of contemporary studies, the power con-
sumption aspect of the FPGA board was tested during this investigative study. The images
in the public and private datasets were standard 32 × 32 pixel images. This size was
maintained in all the experiments conducted in this study. The precision of 16-bit and
the aforementioned image size was maintained while measuring the power consumption
on the major computation devices used in this study. An Intel i7-12700 CPU and Xilinx
Kintex UltraScale FPGA (xcku115-flvf1924-2-i) were used to run the DCSNNs with input
images taken from all the datasets. As the input size was standardized on all the datasets,
the power consumption was the same for all the datasets with respect to the computation
device. In the comparative study, it was evident that the Xilinx Kintex UltraScale FPGA
(xcku115-flvf1924-2-i) consumed much less power compared to the Intel i7-12700 CPU,
and this could be quantified as being 18 times the power efficient, as shown in Table 16.
To examine the on-chip power utilization percentage on the overall FPGA, the utilization
metrics were acquired from the chip, and it appeared to be using 0.74 watts of dynamic
power while deploying the DCSNN on the FPGA board, as shown in Figure 16.

Table 14. Performance analysis of the current study alongside other works with respect to MNIST
dataset.

Category Sommer et al. [54] Aung et al. [55] TSSL-BP [49] SGD-BP [47]

Model
Xilinx Zynq
UltraScale

+XCZU7EV
Xilinx
VC707

Xilinx
Kintex

UltraScale

Xilinx
Kintex

UltraScale
Quantization 16 bits 8 bits 16 bits 16 bits

Weight None 1.17M 21.1M 1.38M
Accuracy 98.2% 98.1% 98.7% 97.8%

Throughput 21 FPS 33 FPS 3.3 FPS 3.5 FPS

Table 15. Performance analysis of the current study alongside other works with respect to CIFAR10
dataset.

Category Aung et al. [55] TSSL-BP [49] SGD-BP [47]

Model Xilinx VCU118 Xilinx Kintex
UltraScale

Xilinx Kintex
UltraScale

Quantization 8 bits 16 bits 16 bits
Weight 12M 21.1M 1.38M

Accuracy 81.8% 87.7% 78.8%
Throughput 4.04 FPS 0.13 FPS 0.17 FPS



Micromachines 2023, 14, 1353 19 of 24

Figure 16. FPGA (xcku115-flvf1924-2-i) power utilization in dynamic mode (deploying DCSNNs).

Table 16. Power efficiency of FPGA (xcku115-flvf1924-2-i) compared to CPU (Intel i7-12700).

Computation Device
(Type and Model)

Precision
(Bits)

Input Image
Size (Pixel)

Average
Power Consumption (W)

TSSL-BP SGD-BP

CPU
(Intel i7-12700) 16

(same for
all datasets

32 × 32
(same for

all datasets)

13.6 12.91

FPGA
(xcku115-

flvf1924-2-i)
0.74 0.74

The average power efficiency of FPGA was 18× that of CPU across all the datasets

8. Discussions, Limitations, and Future Work

This study focused on the deployment of DCSNNs on a low-cost FPGA board and
reported the accuracy and processing time latency with respect to the hardware. The
MNIST, CIFAR10, KITTI, INHA_ADAS, and INHA_KLP datasets were used to inform
researchers and enterprises about the limitations and unique perspectives of this method-
ology. This experimental study had two primary objectives: (i) to determine the most
effective backpropagation technique, TSSL-BP or SGD-BP, for deeper SNNs with con-
volution filters across multiple datasets; and (ii) to evaluate the feasibility of deploy-
ing DCSNNs trained using backpropagation techniques on low-power FPGAs for in-
ference, taking into account potential configuration adjustments and power consump-
tion. The inference performed on the FPGA necessitated the customization of networks
with respect to constraints such as batch normalization. The network porting (.yaml)
file required to operate the DCSNN on an FPGA can be accessed via the following link:
https://github.com/INHACVLAB/DCSNN-on-FPGA/tree/main/networks, accessed
on 29 September 2022. When using low-cost FPGA devices to implement DCSNNs for
classification tasks, the trade-off between accuracy and the processing time is crucial. The
processing time attribute varied depending on the dataset and has been depicted as a
latency parameter in various tables , such as Tables 6–10. The processing duration of the
model deployed on an FPGA was at least 50 times shorter than the model deployed on a PC.
Due to the dearth of open-source FPGA-related working codes, the performance analysis
was limited to a small number of recent works. The outcomes depicted in Tables 14 and 15
served as the performance analysis of the current study compared to other works with
respect to the MNIST and CIFAR10 datasets on an FPGA board. As shown in Table 16, the
power efficiency of the Xilinx Kintex UltraScale FPGA (xcku115-flvf1924-2-i) was 18 times
that of the Intel CPU (i7-12700) for all datasets with an input image size of 32 × 32 and
16-bit precision. This is an essential observation for the investigation of the performance of
custom FPGAs using DCSNN models.

https://github.com/INHACVLAB/DCSNN-on-FPGA/tree/main/networks


Micromachines 2023, 14, 1353 20 of 24

The private datasets, such as INHA_ADAS and INHA_KLP, aided in the exploration
of BP techniques in general on the PC and later on the FPGA, which provided insights into
the feasibility of employing BP techniques in future experiments. In addition to the topics
discussed, there were a few limitations associated with the current study, including:

1. The current work was limited to testing DCSNNs on a single FPGA model, Xilinx
Kintex UltraScale. Due to the lack of open-source code, the performance analysis
conducted in the study was unable to fully address the pros and cons of the model
in comparison to contemporary works carried out on other FPGA models. In the
future, this issue could be effectively resolved by contemplating multiple models of
FPGA boards with similar on-chip SNN deployment design elements and evaluating
various DCSNNs with respect to various datasets.

2. Experiments must be conducted to ensure that the surrogate gradient descent back-
propagation technique is well-tuned to enhance classification accuracy on several
ADAS-based private datasets while preserving the shallower network design layers.

3. Deeper networks (DCSNNs) are currently considered for massive datasets using TSSL-BP
and SGD-BP. However, the network design could be expanded to shallow layered net-
works using the customized parametric surrogate gradient descent backpropagation tech-
nique (CPSGD-BP) for greater data size flexibility without compromising performance.

9. Conclusions

Deep convolutional neural networks utilizing spike-based backpropagation techniques
such as TSSL-BP and SGD-BP were successfully implemented and deployed on the Xilinx
Kintex UltraScale FPGA platform. The efficacy of the DCSNN in terms of classification
accuracy and processing time was evaluated using a variety of metrics on public and private
datasets. Using both a PC and FPGA, comparative deployment studies of spike-based
backpropagation-coupled DCSNNs on various datasets were conducted, and the results
were documented in terms of classification accuracy, processing time, and the trade-off
metric. Similarly, a performance analysis of the current study was conducted alongside
other works on the MNIST and CIFAR10 datasets. For the purpose of evaluating BP-trained
DCSNNs deployed on FPGAs in relation to public and private datasets, all conceivable
evaluation methods were investigated. Finally, the potential future directions that could
aid researchers attempting to develop DSCNNs for FPGAs, with or without BP techniques,
were discussed. Also, the current work validated performance using metrics focusing on
accuracy, processing time, and the trade-off between them; however, future work will need
to employ multiple hardware metrics on diverse datasets. This investigation into deploying
DCSNNs on a low-cost FPGA board and determining the accuracy and processing time
latency with respect to the MNIST, CIFAR10, KITTI, INHA_ADAS, and INHA_KLP datasets
can inform researchers and businesses about the limitations and unique perspectives of
this approach. In the future, there is a need for diverse optimization methods to reduce
latency by sustaining the accuracy and low-power characteristics of FPGAs to benefit the
medium-scale intelligent vehicle industry.

Author Contributions: Conceptualization, V.K. and X.C.; methodology, V.K., X.L. and X.C.; valida-
tion, V.K., X.C. and H.K. (Hakil Kim); formal analysis, V.K., X.C., H.K. (Heetak Kim. and H.K. (Hakil
Kim); writing—original draft preparation, V.K.; writing—review and editing, V.K., X.C. and H.K.
(Hakil Kim); visualization, V.K., X.C. and H.K. (Heetak Kim); supervision, X.C. and H.K. (Hakil Kim);
project administration, X.C., B.-S.K. and H.K. (Hakil Kim) All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by both the INHA University Research Grant and Korea Evalua-
tion Institute of Industrial Technology (KEIT) grant funded by Korea government (No. 20009972).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to ongoing validations and continuous
improvements.

Conflicts of Interest: The authors declare no conflict of interest.



Micromachines 2023, 14, 1353 21 of 24

Abbreviations
The following abbreviations are used in this manuscript:

DCSNN Deep convolutional spiking neural network
TSSL-BP Temporal spike sequence learning backpropagation
SGD-BP Surrogate gradient descent via backpropagation
FPGA Field-programmable gate array
MNIST MNIST digit classification dataset
CIFAR10 CIFAR object classification dataset with 10 object categories

INHA_ADAS
Advanced driver assistance systems vehicle classification dataset collected by
INHA University

INHA_KLP Korean license plate alphabet classification dataset collected by INHA University
LIF neuron Leaky integrate firing neuron
IF neuron Integrate firing neuron
STDP Spike-time-dependent plasticity
UART Universal asynchronous receiver–transmitter
AMBA Advanced microcontroller bus architecture
CLB Configurable logic block
v Presynaptic neuron
u Postsynaptic neuron
Xv(t) Input spike train

f (t)v Firing time of presynaptic neuron
Jv(t) Postsynaptic current
Pu(t) Membrane potential voltage
Ro Leaky resistance of the LIF neuron
τp Membrane potential time constant
τs Synaptic time constant
Quv Weight of the synaptic connection
ru(t) Reset mechanism in the spiking activity
α(·) Response mechanism kernel
β(·) Reset mechanism kernel
VEq Firing equilibrium
H(·) Step function
Dsp Distance between desired spikes
Ssp Distance between produced (actual) spikes
Dsp|t Firing events for desired spikes
Ssp|t Firing events for produced (actual) spikes
Nt Total time steps
Ltemp.sp Temporal spike loss function
ξTSSL[t] TSSL error at time t
4(·) Van Rossum distance function
ξSGD[t] SGD error at time t
Zgt Ground-truth classification labels
Z Actual output of the network
χ Hyperparameter
c Gradient thickness

References
1. Tsai, H.F.; Podder, S.; Chen, P.Y. Microsystem Advances through Integration with Artificial Intelligence. Micromachines 2023,

14, 826. [CrossRef]
2. Rahman, M.A.; Saleh, T.; Jahan, M.P.; McGarry, C.; Chaudhari, A.; Huang, R.; Tauhiduzzaman, M.; Ahmed, A.; Mahmud, A.A.;

Bhuiyan, M.S.; et al. Review of Intelligence for Additive and Subtractive Manufacturing: Current Status and Future Prospects.
Micromachines 2023, 14, 508. [CrossRef] [PubMed]

3. Kakani, V.; Kim, H.; Lee, J.; Ryu, C.; Kumbham, M. Automatic Distortion Rectification of Wide-Angle Images Using Outlier
Refinement for Streamlining Vision Tasks. Sensors 2020, 20, 894. [CrossRef] [PubMed]

4. Kakani, V.; Kim, H.; Kumbham, M.; Park, D.; Jin, C.B.; Nguyen, V.H. Feasible Self-Calibration of Larger Field-of-View (FOV)
Camera Sensors for the Advanced Driver-Assistance System (ADAS). Sensors 2019, 19, 3369. [CrossRef] [PubMed]

http://doi.org/10.3390/mi14040826
http://dx.doi.org/10.3390/mi14030508
http://www.ncbi.nlm.nih.gov/pubmed/36984915
http://dx.doi.org/10.3390/s20030894
http://www.ncbi.nlm.nih.gov/pubmed/32046169
http://dx.doi.org/10.3390/s19153369
http://www.ncbi.nlm.nih.gov/pubmed/31370372


Micromachines 2023, 14, 1353 22 of 24

5. Miraliev, S.; Abdigapporov, S.; Kakani, V.; Kim, H. Real-Time Memory Efficient Multitask Learning Model for Autonomous
Driving. IEEE Trans. Intell. Veh. 2023, early access. [CrossRef]

6. Kakani, V.; Cui, X.; Ma, M.; Kim, H. Vision-based tactile sensor mechanism for the estimation of contact position and force
distribution using deep learning. Sensors 2021, 21, 1920. [CrossRef]

7. Kakani, V.; Nguyen, V.H.; Kumar, B.P.; Kim, H.; Pasupuleti, V.R. A critical review on computer vision and artificial intelligence in
food industry. J. Agric. Food Res. 2020, 2, 100033. [CrossRef]

8. Abdigapporov, S.; Miraliev, S.; Alikhanov, J.; Kakani, V.; Kim, H. Performance Comparison of Backbone Networks for Multi-
Tasking in Self-Driving Operations. In Proceedings of the 2022 22nd International Conference on Control, Automation and
Systems (ICCAS), Jeju, Republic of Korea, 27 November–1 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 819–824.

9. Abdigapporov, S.; Miraliev, S.; Kakani, V.; Kim, H. Joint Multiclass Object Detection and Semantic Segmentation for Autonomous
Driving. IEEE Access 2023, 11, 37637–37649

10. Ghimire, A.; Kakani, V.; Kim, H. SSRT: A Sequential Skeleton RGB Transformer to Recognize Fine-grained Human-Object
Interactions and Action Recognition. IEEE Access 2023, 11, 51930–51948. [CrossRef]

11. Juraev, S.; Ghimire, A.; Alikhanov, J.; Kakani, V.; Kim, H. Exploring Human Pose Estimation and the Usage of Synthetic Data for
Elderly Fall Detection in Real-World Surveillance. IEEE Access 2022, 10, 94249–94261. [CrossRef]

12. Pagoli, A.; Chapelle, F.; Corrales-Ramon, J.A.; Mezouar, Y.; Lapusta, Y. Large-Area and Low-Cost Force/Tactile Capacitive Sensor
for Soft Robotic Applications. Sensors 2022, 22, 4083. [CrossRef]

13. Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge University Press: Cambridge,
UK, 2002.

14. Ponulak, F.; Kasinski, A. Introduction to spiking neural networks: Information processing, learning and applications. Acta
Neurobiol. Exp. 2011, 71, 409–433.

15. Indiveri, G.; Horiuchi, T.K. Frontiers in neuromorphic engineering. Front. Neurosci. 2011, 5, 118. [CrossRef] [PubMed]
16. Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671.

[CrossRef]
17. Abbott, L.F. Theoretical neuroscience rising. Neuron 2008, 60, 489–495. [CrossRef]
18. Hodgkin, A.L.; Huxley, A.F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J.

Physiol. 1952, 116, 449. [CrossRef]
19. Brette, R.; Gerstner, W. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J.

Neurophysiol. 2005, 94, 3637–3642. [CrossRef]
20. Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [CrossRef]
21. Akopyan, F.; Sawada, J.; Cassidy, A.; Alvarez-Icaza, R.; Arthur, J.; Merolla, P.; Imam, N.; Nakamura, Y.; Datta, P.; Nam, G.J.; et al.

Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 2015, 34, 1537–1557. [CrossRef]

22. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A
neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38, 82–99. [CrossRef]

23. Fang, H.; Mei, Z.; Shrestha, A.; Zhao, Z.; Li, Y.; Qiu, Q. Encoding, model, and architecture: Systematic optimization for spiking
neural network in FPGAs. In Proceedings of the 2020 IEEE/ACM International Conference on Computer Aided Design (ICCAD),
San Diego, CA, USA, 2–5 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–9.

24. Lent, R. Evaluating the cognitive network controller with an SNN on FPGA. In Proceedings of the 2020 IEEE International
Conference on Wireless for Space and Extreme Environments (WiSEE), Vicenza, Italy, 12–14 October 2020; IEEE: Piscataway, NJ,
USA, 2020; pp. 106–111.

25. Pham, Q.T.; Nguyen, T.Q.; Hoang, P.C.; Dang, Q.H.; Nguyen, D.M.; Nguyen, H.H. A review of SNN implementation on FPGA.
In Proceedings of the 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), Hanoi, Vietnam,
15–16 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6.

26. Abdelsalam, A.M.; Boulet, F.; Demers, G.; Langlois, J.P.; Cheriet, F. An efficient FPGA-based overlay inference architecture
for fully connected DNNs. In Proceedings of the 2018 International Conference on ReConFigurable Computing and FPGAs
(ReConFig), Cancun, Mexico, 3–5 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

27. Khodamoradi, A.; Denolf, K.; Kastner, R. S2n2: A fpga accelerator for streaming spiking neural networks. In Proceedings
of the 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Virtual, 28 February–2 March 2021;
pp. 194–205.

28. Li, S.; Zhang, Z.; Mao, R.; Xiao, J.; Chang, L.; Zhou, J. A fast and energy-efficient snn processor with adaptive clock/event-driven
computation scheme and online learning. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1543–1552. [CrossRef]

29. Cardenas, A.; Guzman, C.; Agbossou, K. Development of a FPGA based real-time power analysis and control for distributed
generation interface. IEEE Trans. Power Syst. 2012, 27, 1343–1353. [CrossRef]

30. Fotis, G.; Vita, V.; Ekonomou, L. Machine learning techniques for the prediction of the magnetic and electric field of electrostatic
discharges. Electronics 2022, 11, 1858. [CrossRef]

31. Pavlatos, C.; Makris, E.; Fotis, G.; Vita, V.; Mladenov, V. Utilization of Artificial Neural Networks for Precise Electrical Load
Prediction. Technologies 2023, 11, 70. [CrossRef]

http://dx.doi.org/10.1109/TIV.2023.3270878
http://dx.doi.org/10.3390/s21051920
http://dx.doi.org/10.1016/j.jafr.2020.100033
http://dx.doi.org/10.1109/ACCESS.2023.3278974
http://dx.doi.org/10.1109/ACCESS.2022.3203174
http://dx.doi.org/10.3390/s22114083
http://dx.doi.org/10.3389/fnins.2011.00118
http://www.ncbi.nlm.nih.gov/pubmed/22013408
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1016/j.neuron.2008.10.019
http://dx.doi.org/10.1113/jphysiol.1952.sp004717
http://dx.doi.org/10.1152/jn.00686.2005
http://dx.doi.org/10.1109/TNN.2003.820440
http://dx.doi.org/10.1109/TCAD.2015.2474396
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/TCSI.2021.3052885
http://dx.doi.org/10.1109/TPWRS.2012.2186468
http://dx.doi.org/10.3390/electronics11121858
http://dx.doi.org/10.3390/technologies11030070


Micromachines 2023, 14, 1353 23 of 24

32. Zhang, W.; Li, P. Spike-train level backpropagation for training deep recurrent spiking neural networks. Adv. Neural Inf. Process.
Syst. 2019, 32, 7800–7811.

33. Jin, Y.; Zhang, W.; Li, P. Hybrid macro/micro level backpropagation for training deep spiking neural networks. Adv. Neural Inf.
Process. Syst. 2018, 31, 7005–7015.

34. Bohte, S.M.; Kok, J.N.; La Poutre, H. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing
2002, 48, 17–37. [CrossRef]

35. Shrestha, S.B.; Orchard, G. Slayer: Spike layer error reassignment in time. Adv. Neural Inf. Process. Syst. 2018, 31, 1419–1428.
36. Bellec, G.; Salaj, D.; Subramoney, A.; Legenstein, R.; Maass, W. Long short-term memory and learning-to-learn in networks of

spiking neurons. Adv. Neural Inf. Process. Syst. 2018, 31, 795–805.
37. Huh, D.; Sejnowski, T.J. Gradient descent for spiking neural networks. Adv. Neural Inf. Process. Syst. 2018, 31.
38. Zenke, F.; Ganguli, S. Superspike: Supervised learning in multilayer spiking neural networks. Neural Comput. 2018, 30, 1514–1541.

[CrossRef]
39. Lee, J.H.; Delbruck, T.; Pfeiffer, M. Training deep spiking neural networks using backpropagation. Front. Neurosci. 2016, 10, 508.

[CrossRef]
40. Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Shi, L. Spatio-temporal backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 2018, 12, 331. [CrossRef]
41. Mostafa, H. Supervised learning based on temporal coding in spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst.

2017, 29, 3227–3235. [CrossRef]
42. Mozafari, M.; Ganjtabesh, M.; Nowzari-Dalini, A.; Thorpe, S.J.; Masquelier, T. Bio-inspired digit recognition using reward-

modulated spike-timing-dependent plasticity in deep convolutional networks. Pattern Recognit. 2019, 94, 87–95. [CrossRef]
43. Lu, H.; Liu, J.; Luo, Y.; Hua, Y.; Qiu, S.; Huang, Y. An autonomous learning mobile robot using biological reward modulate STDP.

Neurocomputing 2021, 458, 308–318. [CrossRef]
44. Kheradpisheh, S.R.; Ganjtabesh, M.; Thorpe, S.J.; Masquelier, T. STDP-based spiking deep convolutional neural networks for

object recognition. Neural Netw. 2018, 99, 56–67. [CrossRef]
45. Bing, Z.; Baumann, I.; Jiang, Z.; Huang, K.; Cai, C.; Knoll, A. Supervised learning in SNN via reward-modulated spike-timing-

dependent plasticity for a target reaching vehicle. Front. Neurorobotics 2019, 13, 18. [CrossRef]
46. Neftci, E.O.; Mostafa, H.; Zenke, F. Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based

optimization to spiking neural networks. IEEE Signal Process. Mag. 2019, 36, 51–63. [CrossRef]
47. Syed, T.; Kakani, V.; Cui, X.; Kim, H. Exploring optimized spiking neural network architectures for classification tasks on

embedded platforms. Sensors 2021, 21, 3240. [CrossRef] [PubMed]
48. Tehreem, S.; Kakani, V.; Cui, X.; Kim, H. Spiking Neural Networks Using Backpropagation. In Proceedings of the 2021 IEEE

Region 10 Symposium (TENSYMP), Jeju, Republic of Korea, 23–25 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5.
49. Zhang, W.; Li, P. Temporal spike sequence learning via backpropagation for deep spiking neural networks. Adv. Neural Inf.

Process. Syst. 2020, 33, 12022–12033.
50. Kakani, V.; Lee, S.; Cui, X.; Kim, H. Performance Analysis of Spiking Neural Network using Temporal Spike-based Backpropaga-

tion on Field Programmable Gate Array (FPGA) platform. In Proceedings of the 2022 IEEE Region 10 Symposium (TENSYMP),
Mumbai, India, 1–3 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6.

51. Huang, X.; Jones, E.; Zhang, S.; Xie, S.; Furber, S.; Goulermas, Y.; Marsden, E.; Baistow, I.; Mitra, S.; Hamilton, A. An FPGA
implementation of convolutional spiking neural networks for radioisotope identification. In Proceedings of the 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; IEEE: Piscataway, NJ,
USA, 2021; pp. 1–5.

52. Wang, S.Q.; Wang, L.; Deng, Y.; Yang, Z.J.; Guo, S.S.; Kang, Z.Y.; Guo, Y.F.; Xu, W.X. Sies: A novel implementation of spiking
convolutional neural network inference engine on field-programmable gate array. J. Comput. Sci. Technol. 2020, 35, 475–489.
[CrossRef]

53. Cao, Y.; Chen, Y.; Khosla, D. Spiking deep convolutional neural networks for energy-efficient object recognition. Int. J. Comput.
Vis. 2015, 113, 54–66. [CrossRef]

54. Sommer, J.; Özkan, M.A.; Keszocze, O.; Teich, J. Efficient Hardware Acceleration of Sparsely Active Convolutional Spiking
Neural Networks. arXiv 2022, arXiv:2203.12437.

55. Aung, M.T.L.; Qu, C.; Yang, L.; Luo, T.; Goh, R.S.M.; Wong, W.F. DeepFire: Acceleration of convolutional spiking neural network
on modern field programmable gate arrays. In Proceedings of the 2021 31st International Conference on Field-Programmable
Logic and Applications (FPL), Dresden, Germany, 30 August–3 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 28–32.

56. Irmak, H.; Corradi, F.; Detterer, P.; Alachiotis, N.; Ziener, D. A dynamic reconfigurable architecture for hybrid spiking and
convolutional fpga-based neural network designs. J. Low Power Electron. Appl. 2021, 11, 32. [CrossRef]

57. Panchapakesan, S.; Fang, Z.; Chandrachoodan, N. EASpiNN: Effective Automated Spiking Neural Network Evaluation on FPGA.
In Proceedings of the 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), Fayetteville, AR, USA, 3–6 May 2020; IEEE: Piscataway, NJ, USA, 2020; p. 242.

58. Diehl, P.U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.C.; Pfeiffer, M. Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN),
Killarney, Ireland, 12–17 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–8.

http://dx.doi.org/10.1016/S0925-2312(01)00658-0
http://dx.doi.org/10.1162/neco_a_01086
http://dx.doi.org/10.3389/fnins.2016.00508
http://dx.doi.org/10.3389/fnins.2018.00331
http://dx.doi.org/10.1109/TNNLS.2017.2726060
http://dx.doi.org/10.1016/j.patcog.2019.05.015
http://dx.doi.org/10.1016/j.neucom.2021.06.027
http://dx.doi.org/10.1016/j.neunet.2017.12.005
http://dx.doi.org/10.3389/fnbot.2019.00018
http://dx.doi.org/10.1109/MSP.2019.2931595
http://dx.doi.org/10.3390/s21093240
http://www.ncbi.nlm.nih.gov/pubmed/34067080
http://dx.doi.org/10.1007/s11390-020-9686-z
http://dx.doi.org/10.1007/s11263-014-0788-3
http://dx.doi.org/10.3390/jlpea11030032


Micromachines 2023, 14, 1353 24 of 24

59. Rueckauer, B.; Lungu, I.A.; Hu, Y.; Pfeiffer, M.; Liu, S.C. Conversion of continuous-valued deep networks to efficient event-driven
networks for image classification. Front. Neurosci. 2017, 11, 682. [CrossRef]

60. Ma, C.; Xu, J.; Yu, Q. Temporal dependent local learning for deep spiking neural networks. In Proceedings of the 2021 International
Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18 June–2 July 2022; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7.

61. LeCun, Y.; Haffner, P.; Bottou, L.; Bengio, Y. Object recognition with gradient-based learning. In Shape, Contour and Grouping in
Computer Vision; Springer: Berlin/Heidelberg, Germany, 1999; pp. 319–345.

62. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 84–90. [CrossRef]

63. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; IEEE: Piscataway, NJ,
USA, 2012; pp. 3354–3361.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3389/fnins.2017.00682
http://dx.doi.org/10.1145/3065386

	Introduction
	Motivation
	Purpose of Study

	Literature Review
	Spiking Schematic Design Framework
	Spiking Neuron Model
	Deep Convolutional Spiking Neural Networks (DCSNNs)

	Training DCSNNs with Backpropagation
	TSSL-BP for DCSNNs
	SGD-BP for DCSNNs

	FPGA Schematic and Network Architecture
	FPGA Design and Data Processing
	Flow of Data in FPGA Board
	DCSNN Architecture and Network Parameters

	Experiments and Results
	Public and Private Datasets
	Performance Evaluations

	Comparative Study of BP Techniques (TSSL-BP vs. SGD-BP)
	Classification Accuracy
	Processing Time
	Trade-Off between Accuracy and Processing Time

	Performance Analysis with Respect to Datasets on the FPGA Platform
	Performance Analysis of the Current Study Alongside Other Works

	Discussions, Limitations, and Future Work
	Conclusions
	References

