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Abstract: Selective serotonin re-uptake inhibitors (SSRIs) are one of the most commonly prescribed
classes of antidepressants used for the treatment of moderate to severe depressive disorder, per-
sonality disorders and various phobias. This class of antidepressants was created with improved
margins of safety. However, genetic polymorphism may be responsible for the high variability in
patients’ responses to treatment, ranging from failure to delayed therapeutic responses to severe
adverse effects of treatment. It is crucial that the appropriate amount of SSRI drugs is administered
to ensure the optimum therapeutic efficacy and intervention to minimise severe and toxic effects
in patients, which may be the result of accidental and deliberate cases of poisoning. Determining
SSRI concentration in human fluids and the environment with high sensitivity, specificity and re-
producibility, and at a low cost and real-time monitoring, is imperative. Electrochemical sensors
with advanced functional materials have drawn the attention of researchers as a result of these
advantages over conventional techniques. This review article aims to present functional materials
such as polymers, carbon nanomaterials, metal nanomaterials as well as composites for surface
modification of electrodes for sensitive detection and quantification of SSRIs, including fluoxetine,
citalopram, paroxetine, fluvoxamine and sertraline. Sensor fabrication, sensor/analyte interactions,
design rationale and properties of functional material and the electrocatalytic effect of the modified
electrode on SSRI detection are discussed.

Keywords: SSRIs; sensors; electrochemical detection; electrode surface modification; functional
material; voltammetry

1. Introduction

Depression is among one of the most prevalent psychiatric disorders and social is-
sues [1] affecting men and women of all ages [2,3]. It is one of the major causes of morbidity
and is associated with increased mortality [3]. The World Health Organisation (WHO) esti-
mated that 280 million people globally are affected by the disease. Owing to the COVID-19
pandemic, the rate of depression and anxiety disorders has increased by 25% worldwide [4],
thereby increasing the prescription of antidepressants [5]. Antidepressants such as tricyclic
antidepressants (TCA), monoamine oxidase inhibitors (MAOIs), serotonin-noradrenaline
reuptake inhibitors (SNRIs) and selective serotonin reuptake inhibitors (SSRIs) are avail-
able [6]. Antidepressant drugs vary significantly in their effect on individuals [7,8].

Selective serotonin reuptake inhibitors (SSRIs) have become the first choice and among
the most prescribed treatments [9] of moderate to severe depressive illness, various pho-
bias, personality disorders and illnesses related to serotonin deficiencies nationally and
worldwide [10]. SSRIs act by selectively inhibiting the presynaptic recovery of serotonin
or 5-hydroxytryptamine (5-HT) at the serotonin transporter (SERT), causing the increase
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in serotonin at the postsynaptic membrane in the serotonergic synapse [11,12], thus im-
proving depressive symptoms and the cognitive function of patients [13]. The highly
prescribed classes in this category are: fluoxetine (FLX), citalopram (CIT), escitalopram
(ESC), paroxetine (PRX), fluvoxamine (FLV) and sertraline (STR) [14]. These SSRIs share
a similar mechanism of action. However, they are structurally different with no common
motifs which subsequently results in their unique pharmacological differences [12].

These agents can safely and successfully treat depression [15]. However, there is a
high variability in response to the drugs where a substantial number of individuals may
experience no therapeutic response at all or only a delayed one [16]; those who do respond,
may experience severe side effects [16]. Side effects include: nausea dizziness, sweating,
tremors [17], agitation, blurred consciousness, gastrointestinal symptoms, insomnia, sexual
dysfunction [6], risk of arrhythmias, leukopenia, manic behaviour [18] and suicidal ten-
dencies [13]. Although there are many antidepressants available, the effectiveness of the
therapy is still a serious issue [19]. Genetic polymorphisms may have an impact on the
response to SSRI treatment where the rate at which drugs are metabolised is associated with
variants in the gene [20]. Thus, individuals can be classified as poor, intermediate, extensive,
and ultra-rapid metabolisers on the basis of their inherited genetic profiles [16]. The intake
of the appropriate dosage of antidepressant is important to ensure that the patient gets the
optimum therapeutic effects and that the severe side effects and toxicity are minimised [21].
Therefore, the monitoring of SSRIs is crucial for its clinical applications [22].

A variety of advanced analytical techniques for the detection of SSRIs have been
found in the literature which include high performance liquid chromatography (HPLC)
with ultra-violet detection, liquid chromatography–mass spectrometry (LC–MS) [23], gas
chromatography–mass spectrometry (GC–MS) [24], solid-phase extraction, capillary elec-
trophoresis spectrophotometry, tandem mass spectrometry and nuclear magnetic resonance
(NMR) spectrometry [10]. However, these conventional methods are expensive, tedious
and often involve cumbersome procedures and pre-treatment steps with limited portability
which does not make them reliable for rapid detection and makes them inconvenient for
everyday use [25].

As a result of the electroactive properties of SSRIs, electrochemical methods have been
used for the detection of these drugs providing adequate insight into the redox properties
and metabolism of these compounds [26]. Electrochemical sensors for the detection of SSRIs
provide simplicity, high sensitivity and selectivity [27], a broad window of potential [28],
stability and reproducibility [29]. These sensors are also low cost and provide a rapid
response time with easy miniaturization and construction for portable applications for
on-site detection of SSRIs [30].

However, with a conventional bare or unmodified working electrode, the electrochemi-
cal detection of SSRIs may incur common problems which include, a low detection of SSRIs
in real samples, as a result of low concentration of the analytes, the high over potential
at the working electrodes as well as the interference of other biomolecules present in the
sample with similar oxidation potential. Considering that SSRIs are absorbed onto the
surface of the electrode during the oxidation/reduction reactions, the reproducibility and
reuse of the bare electrode is limited.

To overcome these challenges, functional material and/or nanomaterials known for
their unique physicochemical and electrical properties have been incorporated into the
surfaces of the bare working electrodes providing the modified electrode with new and
fascinating properties. These impact strongly on the application of electrochemical sensors
and biosensors through better selective and sensitive detection, limited interference of other
biomolecules, improved reproducibility and increased usage, and the reduced effects of
fouling [31]. Studies in material and nanomaterial sciences have progressed significantly,
where materials with controlled dimensions and morphologies as well as surface charges
and other physicochemical properties have been fabricated which can then be customised
to specific analytes for electrochemical sensing. This review summarises the literature data
from 2016 to 2023 that have demonstrated the modification of carbon-based electrodes
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(glassy carbon electrodes, carbon paste electrodes, screen-printed electrodes, graphite
electrodes and carbon fiber electrodes) and metal-based electrodes (pencil lead electrodes,
gold electrodes and platinum electrodes) with polymers, carbon nanomaterials, metal
materials and nano/composites as functional materials and/or nanomaterials. Very few
studies were conducted where only the bare or unmodified working electrode was used for
the quantification and detection of SSRIs. These include, boron-doped diamond electrodes,
edge-plane graphite electrodes [32], hanging mercury drop electrodes [33] and paper-based
electrodes [34].

It is important to fully understand the physicochemical and electronic interactions
occurring at the analyte-functional material-based electrode interface in order to explore
the overall capabilities of advanced electrochemical sensors [35]. Thus, this review aims to
evaluate the use of the functionalised material for the surface modification of the working
electrode in electrochemical detection and the quantification of SSRIs in various sample
types, as the appropriate functionalised material type has a direct effect on the performance
and success of the electroanalysis [26].

2. Polymer-Based Modification of Electrode Surface

Polymers are molecules composed of monomers. Conducting polymers are organic
substances that possess unique chemical, electrical and physical properties. Their low
cost, small dimensions and large surface area with simple preparation steps have enabled
researchers to apply them in sensors. The conductivity of conducting polymers was initially
observed in polyacetylene, where its instability led to the discovery of polyaniline (PANI),
poly(o-toluidine) (PoT), poly(o-anisidine) (PoAN), polypyrrole (PPy), polythiophene (PTh)
and polyfluorene (PF). Conducting polymers possess elevated redox properties and electron
affinity [36]

2.1. Fluoxetine

Molecular-imprinted polymers (MIPs) are considered stable polymers [37] that have
been used in electrode surface modification as a promising functional material [38]. As
synthetic biomimetic analogues with binding cavities for templates [39], MIPs offer chem-
ical and steric specificity with good sensitivity towards the targeted analyte. They are
also economical and easy to produce and are durable. MIP suspensions are commonly
synthesised from Nafion and chitosan that allow for binding onto the electrode surface.
Chitosan is known for its biocompatible and good adsorption traits [40].

Feroz and team [40] produced a novel photoinitiated MIP for the modification of
a glassy carbon electrode (GCE) for the sensitive and selective detection of fluoxetine.
Through precipitation polymerisation, reproducible layers of MIP were drop coated onto a
GCE and the sensor was applied to blood serum samples. Results confirmed the irreversible
nature of fluoxetine with greater current responses and sharper oxidations than a non-
imprinted polymer layer. MIP modified GCE showed a selectivity towards fluoxetine in
the presence of interfering molecules of similar sizes owing to the affinity of the structural
cavities for fluoxetine [40]. The modification of the electrode surface may not only provide
a platform for the electrode reaction but can also assist in binding the target analyte.

A PVC membrane with the appropriate sensing element placed on the appropriate
transducer is necessary when fabricating an electrochemical potentiometric sensor. How-
ever, the PVC membrane requires an intermediate material to improve the effectivity of
the ion-to-electron transfer. In this case, conducting polymers with efficient ionic and
electrical conductivity have proven to be the best option [41]. Conducting polymers have
specific functional groups found on their surfaces that can be oxidised and reduced and,
in turn, they can electrocatalyse the oxidation and reduction of the analyte of interest.
Through hydrogen bonding, these functional groups have been found to possess a high
affinity for the target analyte, ion exchange and electrostatic interaction capabilities as
well as reducing fouling by forming a protective layer on the electrode. Because of these
properties, they have been widely used in electrochemical sensors [29]. Poly(pyrrole) (PPy)
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is a quasi-unidimensional polymer where the crosslinking and chains occur during its
polymerisation. PPy is an insulator but its oxidized derivatives can be good electrical
conductors, where its conductivity ranges from 2 to 10 S/m. Higher conductivities are
achievable with larger anions during polymerisation [41].

To quantify fluoxetine in pharmaceutical formulations, Madani [41] introduced a solid
state potentiometric sensor coated with conducting polymers. Instead of using a traditional
membrane electrode, Madani used a graphite rod as a better ion-to-electron transducer and
a sensing layer that can be used separately or as a composite. Pyrrole was electrochemically
polymerised onto the graphite rod, forming a layer of poly(pyrrole) (PPy). A thin layer
of another polymeric composite composed of poly(vinyl chloride), dibutyl phthalate and
ion-pair compound of FLX and phenyl borate was then covered on the treated surface. PPy
was incorporated to improve the ion-to-electron transduction capabilities of the electrode.
The modified sensor showed superior performance compared to traditional symmetric
PVC membrane electrodes or even asymmetric coated wire sensors. An LOD of 0.63 µM, a
rapid response time, and a lifetime of two months were the characteristics of the modified
sensor. Real sample analyses confirmed the applicability of the sensor in quantification
of fluoxetine active ingredients of pharmaceutical formulation with great accuracy and
precision. The electrochemical deposition of the conducting layer followed by the physical
application of the sensing layer lead to better adherence to the solid contact and improved
sensor performance [41].

2.2. Citalopram

Izadyar and colleagues [42] demonstrated an inexpensive, novel disposable double-
polymer pencil lead electrode (PLE) for the detection of SSRIs (fluoxetine, citalopram and
sertraline). As an ion-to-electron transducer, PEDOT-C14 was electrodeposited onto the
electrode and coated with a PVC membrane (Figure 1). PEDOT-C14 is capable of being
reduced for the transfer of cations at the membrane/water interface. To detect the SSRIs in
their cationic forms, Izadyar and colleagues [42] applied ITSV and showed the accumulation
of these SSRIs in the PVC membrane from water samples which were exhaustively stripped
from the membrane for a highly sensitive detection. The modified electrode exhibited high
lipophilicity and an LOD of 35, 45 and 25 nM for fluoxetine, sertraline and citalopram,
respectively, in tap and river water [42]. In comparison to previous studies, Izadyar and
colleagues showed that the use of ITSV eliminated the need for toxic mercury electrodes
and instead used a low cost, modified pencil lead-based sensor with adequate detection
limit of SSRIs in tap and river water [42].

For the detection of citalopram, Rebelo et al. [43] demonstrated a sustainable and low
cost method for fabricating a voltammetric MIP screen-printed carbon electrode. Through
computational studies using molecular dynamics, optimal MIP formulations were pre-
dicted with a greener and rational approach, avoiding the use of organic solvents that are
accompanied by analytical procedures. The modified sensor revealed a good sensitivity
towards citalopram detection as revealed by an LOD of 0.162 µM. The sensor is merited by
its imprinting factor of 22 and its excellent specificity towards citalopram [43].

2.3. Fluvoxamine

For the detection of fluvoxamine, Soleymanpour and Rezvani [18] fabricated a GCE
modified with a PVC membrane and polyaniline (PAN). PAN is a conducting polymer and
was used as an electron promoter, transferring the electric charge between the membrane
and the conducting substrate, and transduced an ionic signal into an electrical signal
causing the phase boundary to be thermodynamically well-defined with a low detection
limit of 0.078 µM and without an intermediate internal solution. PAN was easily deposited
onto the electrode substrate with a strong adherence to the support, exhibiting good
environmental stability. The sensor was also successfully employed in urine, blood and
pharmaceutical samples with high precision and accuracy [18].
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Figure 1. (A) (a) Fabrication of an unmodified pencil lead electrode, and (b) the cross section of the 
PVC/PEDOT−C14−modified pencil lead electrode for the preconcentration (blue arrows) and strip-
ping (red arrows) of SSRI ions; (B) ITSVs of (a) citalopram, (b) fluoxetine and (c) sertraline ions. 
Reproduced from [42], Copyright 2016, with permission from Elsevier. 
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Figure 1. (A) (a) Fabrication of an unmodified pencil lead electrode, and (b) the cross section of
the PVC/PEDOT−C14−modified pencil lead electrode for the preconcentration (blue arrows) and
stripping (red arrows) of SSRI ions; (B) ITSVs of (a) citalopram, (b) fluoxetine and (c) sertraline ions.
Reproduced from [42], Copyright 2016, with permission from Elsevier.

2.4. Sertraline

Cyclodextrin inclusion complexes were employed on gold electrodes to enhance the
detection of sertraline. Cyclodextrins were able to enhance the bioavailability of sertraline,
by increasing its solubility. Regression equations concluded a sensitivity five times higher
in the presence of inclusion complexes of cyclodextrin [44]. Table 1 summarises polymer-
based, surface modified electrodes and the analytical techniques used for the detection
of various SSRIs, their linear range, and limits of detection, potential interference and
application samples.
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Table 1. Polymer-based modification of electrode surface.

Analyte Coating Technique Range (µM) LOD (µM) Interference Sample Ref

FLX
MIP-GCE CV, SWV, DPV 0.499–33.8 0.33 Biological species Blood serum [40]

Poly(pyrrole) Potentiometry 1–1000 0.63 Inorganic species and
amino acids FLX.HC:L capsules [41]

FLX
CIT
STR

PVC/PEDOT-
C14-PLE ITSV 0.1–1

0.035
0.025
0.045

None Tap and river water [42]

FLV PM-PAN-GCE Potentiomettry 0.18–1300 0.078
Inorganic species,
organic molecules,
and amino acids

Human serum
and urine [18]

STR
HPβCD,
βCD-Au
electrode

CV, SWV 0.1–0.9 0.026 None Human serum and
Sidata tablet [44]

To summarise, when polymers were used individually or as a single functional ma-
terial for electrode modification, the polymers did not show great enhancements in the
detection of SSRIs when compared to polymer composites, whose synergetic effect resulted
in increased detection. The literature has shown that various carbon-based electrodes
and metal electrodes have been modified with polymer-based functional material. Most
studies have focused on using PVC membrane with conducting polymers. In one study,
a graphite rod was used instead of the traditional PVC membrane, due to the detection
of drift, potentially as a result of high charge-transfer resistance. However, the electrodes
that employed the PVC membrane, showed a greater sensitivity for SSRI detection. The
incorporation of cyclodextrins onto gold electrodes also revealed higher sensitivity for SSRI
detection. Despite the type of electrode, the functional material plays a vital role in the
performance of the sensor. The data shows a variety of conducting polymers and how these
polymers influence the performance of the electrode.

3. Carbon Nanomaterial-Based Modification of Electrode Surface

Carbon nanomaterials have attracted attention in the field of electrocatalysis for the
modification of the surface of bare electrodes, because of their unique physicochemical and
biological properties [29]. These nanomaterials come from a variety of sources and possess
many morphological shapes [45]. They possess high surface-to-volume ratios and high
electrical conductivity [46] with enhanced adsorption, fast electron transfer kinetics, robust
mechanical strength [47], extensive chemical stability, biodegradability, biocompatibility
and ease of functionalisation in comparison to other nanomaterials [37]. These proper-
ties have also enabled carbon nanomaterials as a catalysis probe to exhibit low limits of
detection, high sensitivities, a wide linear detection range and sensors capable of being
reused [48]. Numerous electroanalytical studies have featured the extraordinary properties
of carbon nanomaterials, such as carbon nanotubes, carbon nanoparticles and graphene,
that have been used to modify the surfaces of bare electrodes for the electroanalysis of
SSRIs [29].

3.1. Escitalopram

Well-established methods have been used in the literature for the preparation of
carbon-based electrodes and each type comes with advantages and disadvantages [49,50].
The development of solid composite electrodes emerged, consisting of one insulating phase
coupled with one conductive phase. These electrodes offer stability, mechanical strength,
easy surface renewal and low manufacturing cost [51]. The solid composite electrode,
polyurethane–graphene, was first introduced in 2002 [52] and has been used in strategies
for biological [53], pharmaceutical [54] and environmental detection [55].

For the detection of escitalopram, Baccarin and team [51] introduced three solid com-
posite electrodes (Figure 2A), a graphite–polyurethane bare electrode (EGPU), the graphene
modified electrode (EGPU-GR) and the multi-walled carbon nanotubes (MWCNTs) modi-
fied electrode (EGPU-CNTs) [51]. Chronocoulometry studies revealed electroactive areas
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of 0.065, 0.08 and 0.092 cm2 for EGPU, EGPU-GR and EGPU-CNTs, respectively. An irre-
versible electrochemical behaviour of escitalopram was indicated by CV and, based on the
analytical responses between the three electrodes (Figure 2B,C), EGPU-GR was selected for
the quantification of escitalopram in subsequent experiments in cerebrospinal fluid and
urine due to its greater sensitivity. An LOD of 0.25 µM was achieved by the EGPU-GR
sensor including a rapid, selective and reproducible performance [51].
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3.2. Paroxetine

Gomes and his group [56] introduced a dual electrochemical-sensing device for the
multiplexed detection of paroxetine and nonylphenol. The platform comprised two screen-
printed electrodes (SPE), either functionalised with green synthesised carbon spherical
shells (CSS) or pre-treated with sulfuric acid solution for paroxetine and nonylphenol,
respectively. Even though the LOD was not the lowest of reported values, the sensor
achieved the multiplexed detection of analytes with high selectivity, as a result of the
hydrophilic carbonyl and hydroxyl groups on the CSS surfaces. The high performance
of the sensor was also attributed to the combination of sensing layers prepared with the
screen-printed technology and the potential range in DPV and SWV techniques. Rapid
detection, antifouling properties and interference effects were also achieved by the sen-
sor [56]. Table 2 summarises the carbon nanomaterial surface modified electrode and the
analytical techniques used for the detection of SSRIs, its linear range, limit of detection,
potential interference and application samples.
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Table 2. Carbon nanomaterial-based modification of electrode surface.

Analyte Coating Technique Range (µM) LOD (µM) Interference Sample Ref

ESC EGPU-GR DPV, SWV 1.5–12 0.25 Organic molecules and
amino acids Urine and CSF [51]

PRX CSS-SPE SWV 1–100 0.67 Biological species Tap water [56]

4. Metal/Metal Oxide Nanomaterial-Based Modification of Electrode Surface

Metal and metal oxide nanoparticles have become a study of great interest due to
their catalytic, magnetic, optical and electronic properties. In the fabrication of electro-
chemical sensors and biosensors, metal nanoparticles have assisted in promoting redox
processes [57]. Metals and metal oxides such as nickel, manganese, zirconium, titanium,
tungsten, iridium, iron, zinc and copper are suitable matrixes for electrode modification
because they have high electrical conductivity, wide electrochemical working window, high
biocompatibility, large surface area, low toxicity, chemical and photochemical stability, elec-
trochemical activity, are easier to operate and are capable of online analysis and real-time
identification [58,59].

Bimetallic nanoparticles are composed of a primary metal that exhibits high catalytic
activity and a secondary metal that further promotes the catalytic activity. Often, bimetallic
nanoparticles are capable of producing synergetic catalytic enhancements as a result of
their activity, selectivity and stability compared to pristine metal nanoparticles [60].

4.1. Escitalopram

An array of nanoparticles has been implemented in the construction of sensors as
modifiers. Attia and colleagues [61] constructed a sensor, modifying a carbon paste elec-
trode (CPE) with nickel nanoparticles (Ni) and chloranil (CA). Chloranil is an electron
acceptor reagent and was used as an electrocatalytic mediator and an electrode modifier.
The incorporation of Ni was reported to increase the active sites, thereby increasing the
sensitivity towards escitalopram [61].

4.2. Sertraline

Zinc ferrite nanoparticles have gained popularity in the field of nanomedicine due to
the lower Zn2+ toxicity and the large surface area, fast response and superparamagnetic
and high coercivity of iron oxide nanoparticles. Tajik and team [28] reported on the
electrocatalytic competency exhibited by zinc ferrite nanoparticles (ZnFe2O4) and modified
screen-printed electrode (SPE) for the enhanced detection of sertraline (Figure 3). For the
modified electrode, sertraline oxidation occurred at a potential of about 350 mV less positive
than that of an unmodified SPE. An LOD of 0.02 µM was exhibited as well anti-fouling
effects. The modified electrode highlighted the improved properties as a result of the
incorporation of ZnFe2O4 nanoparticles with detection of sertraline in real samples [28].

With the extraordinary catalytic properties of metal oxide nanoparticles and low tox-
icity of lanthanum ions, Mohammadi and group [31] reported a simple, yet economical,
electrochemical sensor for the detection of sertraline. The La2O3/Co3O4 nanocomposite
was prepared by the impregnation of La2O3 nanoparticles onto the surface of Co3O4 hexag-
onal nanosheets and was deposited on an SPE. CV and DPV investigations of sertraline
with La2O3/Co3O4/SPE indicated significant differences in the electrochemical perfor-
mance and anodic peak current as that achieved by the unmodified SPE electrode. An
LOD of 1 µM was yielded with a linear range of 5.0–400 µM with increasing sertraline con-
centration. Results showed antifouling properties of the modified electrode towards STR
and a decrease in the oxidation product. The prepared La2O3/Co3O4/SPE has been suc-
cessfully used for detecting sertraline in sertraline tablet and urine samples with excellent
recoveries [31].
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Figure 3. (A) Electro-oxidation mechanism of sertraline at ZnFe2O4/SPE. (B) CVs of (a) ZnFe2O4/SPE
and (b) unmodified SPE in the presence of sertraline and (c) unmodified SPE in the PBS pH 7.0.
(C) DPVs of ZnFe2O4/SPE in different concentrations of sertraline. Numbers 1−8 correspond to
0.07, 5.0, 25.0, 50.0, 75.0, 100.0, 200.0 and 300.0 µM of sertraline. The inset shows the plot of the
peak current as a function of the sertraline concentration in the range of 0.07−300.0 µM. Reproduced
from [28], Copyright 2019, with permission from Elsevier.

In a similar study, Tajik and Beitollahi [62] combined the properties of lanthanum ions
and zinc oxide nano-flowers to modify SPE for the detection of sertraline. The modified elec-
trode exhibited satisfactory catalytic activity in comparison to the unmodified electrode [62].
In comparison to the previous study and the La2O3/Co3O4/SPE fabricated by the Mo-
hammadi group [31], the synergetic effect of La3+/ZnO nanoflowers exhibited a greater
sensitivity towards the oxidation of sertraline. The ZnFe2O4 modified electrode fabricated
by the Tajik group [28] displayed the greatest sensitivity and electrocatalytic performance.

Zaimbashi et al. [63] showed that a graphite-SPE modified with ZnO nanoflowers is
capable of producing a sensor with great electrocatalytic activity toward the simultaneous
detection of imipramine with sertraline. The incorporation of ZnO nanoflowers led to a
significant decrease in the oxidation overpotentials of imipramine and sertraline with large
peak separations equivalent to 200 mV as compared to the overpotentials experienced at
the bare electrode [63].

In summary, SPE was commonly used and modified with metal-based nanoparticles
and nanocomposites for the detection of sertraline. Zinc (Zn) and zinc oxide (ZnO) nanopar-
ticles were the most commonly used nanomaterial used on its own or in a composite for
the modification of the SPE. Table 3 summarises metallic nanomaterial surface modified
electrodes and the analytical techniques for the detection of various SSRIs, their linear
range, limit of detection, potential interferences and application samples.
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Table 3. Metallic nanomaterial-based modification of electrode surface.

Analyte Coating Technique Range (µM) LOD (µM) Interference Sample Ref

ESC NiCACP CV, DPV, EIS 1–70 0.2 Amino acids, inorganic cations
and sugars Tablet and urine [61]

STR

ZnFe2O4-SPE DPV 0.07–300 0.02
Amino acids, sugars, inorganic-,

organic molecules and
biological species

Urine and tablet [28]

La2O3/CO3O4-SPE DPV 5–400 1 None Urine and tablet [31]
La3+/ZnO-SPE CV, DPV 0.5–150 0.15 None Urine and tablet [62]

ZnO-NFs/GSPE DPV N/A N/A Organic and inorganic molecules Urine and tablet [63]

5. Carbon–Metal/Metal Oxide Nanocomposite-Based Modification of Electrode Surface

Nanocomposites are solid materials composed of a combination of nanomaterials
which have been extensively applied in medical applications as well as for the detection
of drugs [42]. When carbon and metal/metal oxides nanomaterials are combined, the
performance of their composite is enhanced owing to the individual properties of each
constituent as well as synergistic effects that could be effective in modified electrodes [64].
Their fascinating optical, electrical, physical and chemical properties have led to their emer-
gence. Carbon–metal/metal oxide nanocomposites are designed providing metal/metal
oxides with the largest active surface area. Carbon acts as the bone structure, conducting
electricity between the electrode and the loaded materials. The metal/metal oxide nanoma-
terials will then exchange electrons with the analytes. Despite the metal oxide nanomaterial
not possessing high electrical conductivity like metal nanomaterials, both nanomaterials
possess excellent electrocatalytic ability, resulting in higher sensitivity [45].

5.1. Citalopram

Graphene is a two-dimensional carbon nanostructure that has been applied in elec-
trochemical sensor development for its low cost, large surface area, electrical conductivity,
high electron mobility and strong mechanical strength and plays an important role in
biological sensors. The gold–palladium system is known for its high activity towards
electrochemical reactions. The literature has shown the enhanced catalytic oxidation of
analytes [65] specifically in drug determination [57].

A gold electrode was modified with graphene and gold–palladium bimetallic nanopar-
ticles (Au–PdNPs) through a simple electrodeposition method for the detection of citalo-
pram. The hybridisation of Au–PdNPs with the graphene platform on the gold electrode
surface exhibited excellent electrocatalytic activity towards citalopram oxidation with an
oxidation peak current in the linear range of 0.5–50 µM and an LOD of 0.049 µM, with high
selectivity and reproducibility. The modified electrode was successfully applied to human
plasma for citalopram detection [60].

Multi-walled carbon nanotubes (MWCNTs) have been applied as a functional mate-
rial on electrodes due to its low-detection limits and show good discrimination against
background currents with high sensitivities. When used in combination with metal nano-
materials, the properties and functions of MWCNTs are enhanced as a result of the unique
physicochemical properties of metal nanomaterials, where these metal nanomaterials may
act as electron catalysts at the surface of the electrode influencing the sensitivity and
selectivity [66].

The carbon paste electrode is a blend of graphite powder and a pasting liquid binder
that has been used over the past five decades for various sensors and detectors [67]. It
has become most popular due to its easy preparation, renewable surface, low cost, easy
correction and high sensitivity detection [68]. To improve its features, modifier materials
have been used.

To demonstrate this, Ghaedi et al. [67] described the voltammetric determination of
trace amounts of citalopram with ZnO nanoparticles and MWCNTs modified carbon-paste
electrode (CPE) (ZnO–MWCNT/CPE) using ionic liquid as the binder. ZnO–MWCNT/CPE
showed exceptional analytical performance for citalopram detection with an LOD and
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linear range of 0.005 µM and 0.012 to 1.54 µM, respectively (Figure 4). Compared to
reported methods in the literature, the proposed sensor revealed high selectivity with good
repeatability and reproducibility [67].
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Figure 4. (A) SEM image of modified ZnO−MWCNT/CPE electrode, (B) CV of CIT obtained in
different electrodes (a) CPEIL, (b) MWCNT/CPEIL and (c) ZnO–MWCNT/CPEIL surface. (C) Net
SWV of ZnO−MWCNT/CPEIL solutions with different concentrations of CIT. Reproduced from [67],
Copyright 2016, with permission from Elsevier.

In another study, Keypour et al. [69] functionalised a GCE with Fe3O4@[(EtO)3Si–L]
and MWCNTs. Fe3O4 nanoparticles were used as an ionophore and in combination with
[(EtO)3Si–L]/MWCNTs, the electroactive surface area was enhanced with electron-transfer
between citalopram and the electrode, resulting in better sensitivity. A good LOD of
0.0532 µM was noted for citalopram [69].

Metal–organic frameworks (MOFs) are a class of porous polymeric material composed
of unique two- or three-dimensional inorganic metal centers with organic linkers. MOFs
have been used as suitable electrical substrates for their high surface area, flexibility, high
porosity and good thermal stability for electrode modification [70]. Zeolitic imidazolate
frameworks (ZIFs) are a subclass of metal–organic frameworks (MOFs) with close similari-
ties to aluminosilicate zeolites. ZIF-8, made up of 2-methyl imidazolate and zinc ions, has
become an attractive modifier in the fabrication of electrochemical sensors. To improve its
low electrical conductivity, ZIF-8 has been coupled with polymers [71], metal and metal
oxide nanoparticles [72] and carbon materials [73]. Reduced graphite oxide (RGO) is a
derivative of graphene [74] and has been used In the fabrication of extremely sensitive
electrochemical sensors due to its high electronic conductivity, mechanical strength and
electron transfer rate [75]. With its layered structural similarities to graphite, graphite
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carbon nitride (g-C3N4) is the most resistant carbon nitride substance. It exhibits water
resistance, biocompatibility as well as low density due to the van der Waal interaction
that occurs between the C-N layers. Its electronic structure and medium band gap give
g-C3N4 a greater chemical and thermal stability than graphite, allowing it to be applied as
a photocatalyst and in optical sensors [71].

For the detection of citalopram (CIT) and selegiline (SEL), Karimi-Harandi and col-
leagues [68] modified a CPE with ZIF-8 dispersed on the surfaces of g-C3N4 and RGO
carbon plates. The individual properties of each nanomaterial and its synergistic effects
enhanced the catalytic activity and the surface area at the modified electrode, thereby
increasing the electron transfer and, in turn, the sensitivity for CIT and SEL detection. ZIF-8
provided a high surface porosity with RGO and C3N4 exhibiting good conductivity and
water resistance, respectively. The modified sensor exhibited a low LOD of 8 µM and 14 µM
for citalopram and selegiline, respectively, with acceptable performance in human samples
with the need for pretreatment [68].

5.2. Escitalopram

Renewable carbon sources are obtained as by-products from various agricultural
materials that have undergone thermochemical conversion [76]. Due to its high surface
area, highly functionalised structure and intrinsic electrical conductivity, these materials
have been used for electroanalytical applications [77]. Generally, renewable carbons sources
undergo pre-treatment steps to ameliorate the adsorption properties and increase the
surface area or allow the renewable carbon to act as an appropriate immobilisation platform
for biomolecules. These modifications may occur through π–π electron interaction [78],
Coulomb interaction [79], hydrophobic interaction, hydrogen bonding [80] and covalent
bonding [81]. For improved electronic transport and sensitivity, renewable carbons have
been modified with metal nanoparticles [82,83].

To show this, Trindade and team [84] presented a GCE modified with copper nanopar-
ticles (CuNPs) and renewable carbon (RC) from bamboo biomass for the detection of
escitalopram, fluoxetine and dopamine. Voltammetric responses for fluoxetine displayed a
1–2-fold increase in the peak current for the RC-CuNP-modified electrode in comparison
to the bare GCE and the RC-modified GCE, with escitalopram presenting a 2.5–9-fold
increase in peak current. The study achieved a sensor using low cost materials for an
environmentally affable and versatile approach in electrochemical analysis [84].

5.3. Sertraline

MCM (Mobil composition of matter) is a series of mesoporous materials. From the
two porous adsorbents, MCM-48 with its cubic structure has shown to be a more suitable
material than MCM-41 in the construction of electrochemical sensors, due to its higher pore
volume, surface area, thermal stability, catalytic carrier and better adsorbent in divisions
methods [85].

Babaei et al. [85] functionalised a GCE with a composite made of iron oxide nanoparti-
cles, MCM-48 and MWCNTs. The large surface areas of the nanocomposite and negatively
charged modified electrode were capable of achieving a very high sensitivity and selectivity
for the simultaneous detection of serotonin and sertraline in the presence of interfering uric
acid. The sensor also presented a lower electrochemical resistance and bigger redox peak
currents than those for the unmodified GCE [85].

Ionic liquids (ILs) comprised of organic and inorganic anions and organic cations have
not only been used as a solvent but also as a modifier for electrodes as it displays high ionic
conductivity, thermal and chemical stability and negligible vapor pressure [58].

Ehzari and team [58] casted MWCNTs and ionic liquid onto the surface of a GCE,
followed by the electrodeposition of p-type semi-conductor, nickel oxide nanoparticles
(NiONPs). Two weak anodic peaks were observed for sertraline and clozapine by the
GCE, whereas enhanced anodic peaks with an additional two new cathodic peaks were
observed by the modified electrode [58]. This study confirmed previous studies that have
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reported on coupling nickel oxide with carbon materials to improve its electrochemical
performance [86,87].

For improved performance, surfactants such as sodium dodecyl sulfate (SDS) have
been applied for enhanced electron charge transfer and the accumulation of analytes at the
electrode surface [88].

Atty and team [88] combined the catalytic properties of MWCNTs and caesium as well
as SDS for the fabrication of a modified CPE for sertraline and paracetamol detection in
real samples. The proposed modified electrode displayed a higher anodic peak current of
the analytes than the unmodified electrodes [88]. Table 4 summarises carbon–metal/metal
oxide nanocomposite surface modified electrodes and the analytical techniques for the
detection of various SSRIs, their linear range, limit of detection, potential interferences and
application samples.

Table 4. Carbon–metal/metal oxide nanocomposite-based modification of electrode surface.

Analyte Coating Technique Range (µM) LOD (µM) Interference Sample Ref

CIT

Au-PdNPs-GR-AuE CV, SWV, EIS 0.5–50 0.049
Inorganic and organic

molecules, amino
acids, and sugars

Human plasma and tablets [60]
ZnO-MWCNT-CPE CV, ASWV 0.012–1.54 0.005 Serum, urine and tablets [67]

Fe3O4@[(EtO)3Si-
L]/MWCNTs-GCE CV, DPV 0.3–10,000 0.0532 Blood and tablets [69]

ZIF-8/g-C3N4/RGO-CPE CV, DPV, EIS 0.009–900 0.008 Blood, urine and tablets [68]

ESC
GC-RC-CuNP CV, DPV

0.02–5 0.25 Organic and
inorganic molecules,

and amino acids
Tap water and urine [84]FLX 0.1–10 0.05

STR

Fe3O4@MCM-48-
SO3H/MWCNTs-GCE CV, DPV 0.05–100 0.015

Inorganic and organic
molecules, amino
acids, and sugars

Blood and urine
plasma [85]

MWCNT-
IL/NiONPs-GCE CV, DPAdSV 0.21–85 0.047 Serum and tablets [58]

CNT/CsM/SDS-CPE CV, SWV 0.06–15 0.0092 Plasma and tablets [88]

6. Carbon–Polymer Composite-Based Modification of Electrode Surface

To promote the performance of polymers, unique composites coupled with carbon
have been prepared. Below are examples of the use of these composites for the detection of
various SSRIs.

6.1. Fluoxetine

The excellent specificity and sensitivity with high thermal and mechanical stability
makes MIP a great prospect for high quality sensing applications for target analytes.
However, MIPs do have drawbacks that limit their sensitivity due to a low or the lack of an
electrocatalytic effect. To counter these limitations and improve the analytical performance
of MIPs, various nanostructured material have been coupled with MIP [37].

Alizadeh and Azizi [89] synthesised MIP nanoparticles for fluoxetine binding through
precipitation polymerisation and incorporated these nanoparticles with CPE. A higher re-
sponse for fluoxetine was obtained from the MIP-CP electrode than from the NIP-modified
electrode, indicating that the MIP sites are efficient in recognising the target molecule. For
improved sensitivity of the electrode, graphene was incorporated revealing an LOD of
2.8 nM [89].

Furthermore, Ardelean and team [90] showed that an electrode composed of carbon
nanofiber-epoxy can be used to detect analytes in water samples simultaneously [90].

Hassan and his team [91] devised a method to integrate MIP beads with the PVC mem-
brane onto SPE with MWCNTs. The sensor revealed enhanced reproducibility, repeatability
and stability with application in pharmaceutical formulations of fluoxetine [91].

The Abd-Rabboh group [92] showed that screen-printed potentiometric platforms
modified with polymers and MWCNTs are capable of detecting trace amounts of fluoxetine,
where MWCNTs provide a high potential stability in the sensors compared to the low
potential stability in unmodified sensors. They deemed the electrode polarizable, avoiding
the ability to buffer any random tiny charge noise [92].
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6.2. Citalopram

Voltammetric results revealed that GCE functionalised with cyclodextrin and MWC-
NTs enhances the oxidation peak current of citalopram, producing an LOD of 44 nM with
good recovery and reproducibility [93].

6.3. Paroxetine

Reduced graphene oxide and phosphor-tungstate were used to modify a PGE for the
trace detection of paroxetine. Oghli and Soleymanpour [94] showed, through differential
pulse voltammetry (DPV), that the proposed sensor was highly conductive when compared
to the bare PGE, presenting improved electrochemical properties. Owing to the residual
oxygen and structural defects of reduced graphene, a higher electrical capacity is promoted,
which is brought about by the graphene structure which restores electrical conductivity.
Phosphotungstic acid (PWA) facilitates the proton transfer. Paroxetine could be precisely
measured up to 0.9 nM by the modified sensor and was permitted to be viable for the
determination of paroxetine without pretreatment steps [94].

In a similar study, Oghli and Soleymanpour [95] incorporated MIP to improve the
selectivity of the graphene oxide-phosphotungstic modified PGE sensor for the simultane-
ous detection of paroxetine and sumatriptan (Figure 5). The sol-gel technique was used
to immobilize MIP on the electrode surface by forming an inorganic mould. The porous
and homogeneous surface created by the sol-gel enhanced the active sites on the electrode.
The AdDPV results revealed a better performance with an LOD of 0.7 nM [95] than in their
previous study [94]. The proposed sensor was fabricated at a low cost and displayed a
reduced analysis time with high efficiency and accuracy of the drugs in real tablet, blood
serum and urine samples [95].

6.4. Fluvoxamine

For the detection of fluvoxamine in biological and pharmaceutical samples, an SPE
was modified with an MIP-integrated fluvoxamine template and PVC. The MIP-modified
sensor displayed a greater affinity towards fluvoxamine than the NIP sensor. When
compared to the HPLC method, the results were satisfactory, revealing recovery values of
97.4–101.9% [96].

6.5. Sertraline

Graphene nanoparticles and MIP were used to modify a Pt electrode for the detection
of sertraline in human serum. Through precipitation polymerization, sertraline hydrochlo-
ride was used as a template molecule to synthesise MIP with methacrylic acid (MAA)
and ethylene glycol dimethyl acrylate (EGDMA), having a high selectivity and sensitivity
towards sertraline. A higher adsorption ability was exhibited by the MIP modified sensor
than that of the non-imprinted polymer (NIP) sensor. The large surface area and high con-
ductivity brought about by graphene provided improved electrode response and platform
of the polymer that makes the graphene-MIP an excellent electrical transducer for direct
electrical sensing. An LOD of 7 nM was achieved by the sensor [30].

Khosrokhavar and team [97] fabricated a similar MIP sensor by putting a layer of
the MIP/graphene suspension on screen-printed carbon electrodes (SPCEs). They com-
bined the electrical conductivity and high surface area of the graphene nanosheets with
the high selectivity of the MIP in conjunction with the properties of the SPEs to detect
sertraline. MIP/graphene modified SPCEs displayed a higher adsorption ability than the
NIP/graphene modified SPCEs. Under optimal conditions, good sensitivity for sertraline
was exhibited with a linear range of 0.005 to 0.075 µM and an LOD of 1.99 nM [97]. Table 5
summarises carbon–polymer composite surface modified electrodes and the analytical
techniques for the detection of various SSRIs, their linear range, limit of detection, potential
interference and application samples.



Micromachines 2023, 14, 1334 15 of 27
Micromachines 2023, 14, 1334 16 of 30 
 

 

 

 

(I) (II) 

 
(III) 

Figure 5. (I) SEM image of (a) bare PGE, (b) PWA/rGO/PGE, (c) Sol-Gel/PWA/rGO/PGE and (d) 
MIPP,S/Sol-Gel/PWA/rGO/PGE, (II) AdDPV of SUM and PRX in the concentration range of 0.005‒
3.0 µM at MIPP,S/Sol-Gel/PWA/rGO/PGE. Insets: corresponding calibration curves for (A) SUM and 
(B) PRX at (a) MIPP,S/Sol-Gel/PWA/rGO/PGE and (b) NIP/Sol-Gel/PWA/rGO/PGE. (III) DPVs of 

Figure 5. (I) SEM image of (a) bare PGE, (b) PWA/rGO/PGE, (c) Sol-Gel/PWA/rGO/PGE and
(d) MIPP,S/Sol-Gel/PWA/rGO/PGE, (II) AdDPV of SUM and PRX in the concentration range
of 0.005–3.0 µM at MIPP,S/Sol-Gel/PWA/rGO/PGE. Insets: corresponding calibration curves for
(A) SUM and (B) PRX at (a) MIPP,S/Sol-Gel/PWA/rGO/PGE and (b) NIP/Sol-Gel/PWA/rGO/PGE.
(III) DPVs of SUM and PRX with various concentrations in (A) urine (100 nM of SUM and 80 nM of
PRX) and (B) blood serum (500 nM of SUM and 400 nM of PRX) samples. Insets: relevant standard
addition graphs for (a) SUM and (b) PRX. Reproduced from [95], Copyright 2016, with permission
from Elsevier.
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Table 5. Carbon–polymer composite-based modification of electrode surface.

Analytes Coating Technique Range (µM) LOD (µM) Interference Sample Ref

FLX

Nano-MIP/G2-CP DPV 0.006–0.1 0.0015 Inorganic species, amino acids
and sugars Tablet and plasma [89]

CNF CV, DPV 0–10 0.385 None Water [90]

MIP-MWCNTs-SPE EIS 0.1–10,000 2.1 Organic and inorganic species,
amino acids and sugars tablet [91]

Ionophore I, Ionophore II
and Ionophore

III-MWCNTs-SPE
Potentiometry 0.2–6.5 5.2, 4.7, 0.2 Ionic and biological species Blood [92]

CIT P(pABSA)/β-CD/MWCNT-GCE CV, EIS 0.09–100 0.044 Sugars and organic species Tablet and serum [93]

PRX
rGo/PWA/PGE DPV 0.008–6 0.9 nM

Ionic and biological species
Serum, urine and tablet [94]

MIPP,S/Sol-
Gel/PWA/rGO/PGE adDPV 0.005–2.2 0.7 nM Blood, urine and tablet [95]

FLV MWCNTs/MIP-SPE CP, EIS 0.1–10,000 4.8 Inorganic and organic species,
amino acids and sugars Tablet [96]

STR
Graphene-MIPPtE CV, DPV 0.01–1 0.007 Inorganic and organic species,

amino acids and sugars Serum [30]

MIP/graphene-SPCE CV, DPV 0.005–0.075 0.002
Dapoxetine, fluoxetine,

citalopram, uric acid and
ascorbic acid

Serum and tablet [97]
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7. Metal–Polymer Composite-Based Modification of Electrode Surface

Metal and metal oxide nanoparticles dispersed on electrically conducting polymers
have gained momentum towards their use in the development of sensors and biosensors.
Below are various illustrations of their use for the detection of various SSRIs.

Fluoxetine

Çorman and team [98] presented a GCE modified with a facile interface imprinting
method. Through the copolymerisation of HEMA, MAPA and EGDMA, MIP with fluoxe-
tine templates were developed on the GCE in the presence of zinc oxide (ZnO) immobilized
nanoparticles. The etching of ZnO in an acid solution produced a porous structure with
recognition sites for fluoxetine on the electrode surface (Figure 6). The incorporation of ZnO
was to create the porous structure for an improved electron transfer mechanism and avoid
the use of a desorbing agent for the harsh removal of the template. ZnO also provided more
active sites, improving the sensitivity of the electrode (Figure 6C). An LOD of 0.00267 nM
was achieved [98]. Based on the literature from 2016 to 2023 for SSRI electrochemical detec-
tion, this was the only study that used a metal–polymer composite for the modification of
the electrode surface. The sensor displayed the best performance in terms of sensitivity,
with an LOD in the pico-range. A range which other studies have not achieved based on
their functional materials.Micromachines 2023, 14, 1334 19 of 30 
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Figure 6. (I) SEM images of an FLX imprinted electrochemical sensor (A) before and (B) after 
ZnONPs are removed, and (C) AFM image with results, (II) DPVs of the various concentrations of 
the FLX: 10 pM (black line), 25 pM (red line), 50 pM (blue line), 75 pM (green line) and 100 pM 
(orange line) on the FLX@ZnO−MAPA@MIP/GCE in (A) standard solution, and (C) spiked serum 
solution. The calibration curve with respect to FLX concentration for MIP (black dots) and NIP (red 
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Table 6 summarises metal–polymer composite surface modified electrodes and the
analytical techniques for the detection of various SSRIs, their linear range, limit of detection,
potential interference and application samples.

Table 6. Metal–polymer composite-based modification of electrode surface.

Analyte Coating Technique Range (µM) LOD (µM) Interference Sample Ref

FLX FLX@ZnO-
MAPA@MIP/GCE DPV 0.01–0.1 nM 0.00267 nM Antibiotics Tap water

and serum [98]

8. Carbon–Metal–Polymer Composite-Based Modification Electrode Surface
8.1. Fluoxetine

To measure fluoxetine, Ardelean and team [99] constructed a carbon nanofiber-epoxy
electrode (CNFE), functionalised with silver (Ag). Ag and CNFE exhibited a synergic effect
improving the sensitivity for FXT detection in comparison to commercial Ag electrodes
and CNFE electrodes. Without the detection of possible interfering molecules, the modified
electrode exhibited great potential for the detection of fluoxetine in real applications [99].

8.2. Citalopram

To achieve the maximum electrocatalytic current of a modified electrode, MOFs have
been fabricated. However, most of these materials are electrically insulating, and are
unable to provide efficient electron transfer pathways due to their hard metal centers and
redox-inactive organic linkers with hard donor atoms. To counter these issues, MOF-based
sensors have been coupled and doped with various redox-active compounds (such as
metallic species) as well as the hybridisation with highly electron conductive materials such
as polymers and carbon nanomaterials and nanocomposites [100]. MOFs have also been
developed as proton-conducting materials. Mixed ionic-electronic conductors (MIECs) may
also serve in electrochemical sensors as they are materials that are capable of conducting
both ions and electrons [101]. MIECs are typically composed of two types of conductors
such as PEDOT/PSS and have been used for the sensitive detection of biomolecules.

To show this, Madej et al. [102] fabricated a GCE modified with a nanocomposite
composed of a manganese-based metal–organic framework (JUK-2), MWCNTs and gold
nanoparticles (AuNPs). JUK-2 MOF showed excellent proton-conductive properties, great
stability in aquatic media and was capable of forming a highly homogenous layer on GCE.
Because JUK-2 displayed no electrocatalytic properties or possessed electron conductivity,
MWCNTs and AuNPs were implemented, providing an enlarged active surface area and
the formation of the hybrid nanocomposite which acts as an MIEC. EIS and CV results
indicated that the hybrid nanocomposite exhibited MIEC properties. An LOD of 0.011 µM
was achieved and the sensor was successfully applied to biological and water samples with
recovery rates of 98.6–104.8%. The performance and success of the sensor toward citalopram
are attributed to JUK-2 MOF that excellently bound MWCNTs and AuNPs, ensuring their
synergistic effects as well as the high reproducibility and accuracy of results. The hybrid
nanocomposite possessing both electron and proton conductivity was responsible for the
outstanding electrocatalytic activity toward the oxidation of citalopram [102]

For the enhanced detection of citalopram, Aminikhah and team [103] fabricated a GCE
modified through in situ electopolymerisation of MIP PPy onto hollow nickel nanosperes
(hNiNS) activated with MWCNTs-coupled graphene oxide nanoribbons (AMWCNTs@GONRs).
Hollow nanopores or spheres are known to exhibit high surface-to-volume ratios, excellent
biocompatibility and electrical conductivity properties due to their morphology. Combining
hNiNS with AMWCNTs greatly enhanced the current response to citalopram through an
increased rate of electron transfer and enhanced catalytic activity. MIP PPy provided
specific binding sites for citalopram, improving the selectivity of the sensor. The sensor
achieved an LOD of 0.043 µM [103].
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8.3. Paroxetine

According to the literature, various amino acids have been used for the production
of a layer of conductive polymer with electrocatalytic activity, as well as the formation
of additional active sites available for target interaction with analytes, enhancing the
sensors’ sensitivity and selectivity.
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For the detection of paroxetine, Al-Mhyawi and team [104] modified GCE with gold
nanoparticles (AuNPs) onto which DL-methionine conducting polymeric film was elec-
tropolymerised. The high surface area, fast electron transfer ability and high conductivity
of AuNPs as well as the high potential of DL-methionine to interact with AuNPs, provided
the modified electrode with improved performance, greater sensitivity, and conductivity to
detect paroxetine in comparison to the bare electrodes. The sensor was also highly selective
towards paroxetine. An LOD of 0.01 nM was exhibited by the modified sensor [104].

8.4. Sertraline

The exploration of metallopolymers containing Ni(II)–Ni(III) redox couples have
gained great attention owing to their high electrocatalytic activity towards electro-oxidation
of various substrates including, amino acids, amines and carbohydrates. Nickel oxyhydride
species are formed during the reaction which act as a mediator between the analyte and
the electrode surface in electro-oxidation processes. Amino acids such as levodopa (L-
3, 4-dihydroxypheny- lalanine, LD) have been used as ligands for the electrochemical
deposition of metallopolymers on the electrode surface, specifically in the biomedical
fields [64].

For the detection of sertraline, Shoja and team [64] modified a GCE through elec-
tropolymerisation of nanostructured Ni(II)–LD (LD: levodopa) complex onto AuNP-bound
MWCNTs in alkaline solution. The synergistic effect of the AuNPs and MWCNTs pro-
vided an effective large surface area for the immobilisation of Ni(II)-LD nanostructures,
which in turn promoted the electrocatalytic oxidation of sertraline as a result of the active
Ni(II)/Ni(III) sites. The proposed electrode provided an inexpensive fabrication method
with excellent selectivity and sensitivity for sertraline oxidation, a low detection limit
with good linear response in wide concentration range and good reproducibility and
stability [64].

Habibi et al. [100] fabricated a novel copper-based MOF with S, N co-doped graphene
to modify a pencil graphite electrode (PGE). The modified electrode displayed excellent
electrocatalytic activity for sertraline oxidation in comparison to the bare electrode as a
result of the synergistic effects amongst the copper-based MOF and the graphene, which
provide a large specific surface area and enhanced the electron transfer process (Figure 7).
The proposed sensor presented an LOD of 0.038 µM, good selectivity and a sensitivity of
0.4557 µA/µM cm2 [100]. Table 7 summarises carbon–metal–polymer composite-based
surface modified electrodes and the analytical techniques for the detection of various SSRIs,
their linear range and limit of detection, potential interference and application samples.
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0.05−12.67 µM STR and (B) the calibration curve of Ip and STR concentrations in the range of
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Table 7. Carbon–metal–polymer composite-based modification of electrode surface.

Analytes Coating Technique Range (µM) LOD (µM) Interference Sample Ref

FLX AgCFE CV, CA 0–10 0.079 None None [99]

CIT

JUK-2-MWCNTs-
AuNPsGCE CV, EIS 0.05–115 0.011 Organic and

inorganic compounds

Tablets, water, urine
and serum [102]

MIP-hNiNS-
AMWCNT@GONRs-GCE CV, DPV, EIS 0.5–190 0.043 Tablets, urine and serum [103]

PRX Poly(
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9. Bio-Functionalised Polymer-Based Modification of Electrode Surface
Paroxetine

Ajayi and colleagues [105] fabricated a nanobiosensor composed of nanotubular
poly(8-anilino-1-napthalene sulphonic acid) encapsulated with the enzyme, cytochrome
P450-2D6, on a gold electrode for the detection of paroxetine. The polymer acted as a
solid phase electron mediator due to its π-conjugated backbone. Its ease of synthesis
together with its compatibility with enzymes allows polymers to facilitate electron transfer
between the redox center of the enzyme and the electrode surface thus producing electronic
signals. The biosensor displayed an LOD of 0.002 µM for paroxetine. Paroxetine, in
turn, inhibited the activity of P450-2D6, causing a decrease in the signal response for
fluvoxamine. This showed that the sensor was capable of creating an immediate response
when the analyte comes into contact with the enzyme. The use of fluvoxamine showed a
reversible competitive inhibition where the enzyme was only inactivated by paroxetine,
as the sensor response would increase in the presence of fluvoxamine. The nanobiosensor
displayed excellent catalytic activity for CYP2D6 with long-term use, high sensitivity and
stability [105]. Table 8 summarises bio-functionalised polymer-based surface-modified
electrodes and the analytical techniques for the detection of various SSRIs, their linear
range and limit of detection, potential interference and application samples.

Table 8. Bio-functionalised polymer-based modification of electrode surface.

Analyte Coating Technique Range (µM) LOD (µM) Interference Sample Ref

PAR Poly-2D6 CV 0.005–0.05 0.002 N/A N/A [105]

10. Concluding Remarks and Future Perspectives

Currently, selective serotonin reuptake inhibitors (SSRIs) are the primary and the most
prescribed drugs to treat major depression and depression-related disorders. With the
demand for cost-effective, sensitive, accurate and rapid detection of SSRIs, there has been
great focus on, and research undertaken towards, developing electrochemical sensors with
surface-modified electrodes. This review features a brief overview of recent advances in the
electrochemical sensor development for SSRI detection. It has attempted to elucidate the
properties and interactions of surface-modified electrodes on target analytes with the sig-
nificance of the functional material and the potential use of the developed electrochemical
sensor. Over the past seven years, significant progress has been made in the development
of novel materials and nanomaterials for the modification of electrodes for an efficient,
sensitive and selective quantification and detection of SSRIs. According to the published
literature, modified electrodes using composites and nanocomposites were more common
among sensor development for SSRI detection than individual material because of the
synergistic effect of materials for enhanced detection. Research has demonstrated that
carbon–metal-based composites as well as carbon–polymer-based composites were the
most extensively used functional material for electrode surface modification. In the carbon–
metal nanocomposites, MWCNTs were most commonly used in conjunction with the metal
and/or metal oxide nanoparticles. MIP was most commonly used in carbon–polymer
composites with either graphene or MWCNT material. These materials were shown to
provide exceptional detection limits with great selectivity as a result of the synergistic ef-
fects that facilitate enhanced catalytic reactions on the target analyte. Metal–polymer-based
composites provided the greatest sensitivity for SSRI quantification and detection with the
LOD as low as pM. Sertraline was the most detected SSRI using the modified electrodes,
which makes sense as sertraline is the most commonly prescribed antidepressant. Most of
the studies performed analyses of SSRIs in real samples. The general trend in recent years
for detection of SSRIs uses GCE modified mostly with carbon-based functional material
and polymers. Metal electrodes have rarely been used as this permits high sensitivity and
selectivity with reduced interference, which may be suitable in clinical studies. This also
provides high efficiency and a rapid analysis time. The development of new materials and
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nanomaterials are necessary to enhance surface performance of the electrode in order to
achieve ultra-trace analysis of SSRIs in various sample types and, in turn, improve the
practicability. In general, the modification of electrode surfaces with functional materials,
have great advantages and development prospects in SSRI sensing.
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