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Abstract: This study aims to establish an accurate prediction model using artificial neural networks
(ANNs) to effectively and efficiently predict the process-induced warpage of a flip-chip chip-scale
package (FCCSP). To enhance model performance, a novel subdomain-based sampling strategy
and Taguchi hyperparameter optimization are proposed in the ANN algorithm. To simulate the
warpage behavior the FCCSP during fabrication, a process modeling approach is proposed, where the
viscoelastic behavior of the epoxy molding compound is included, in which the viscoelastic properties
are determined using dynamic mechanical measurement. In addition, the temperature-dependent
thermal-mechanical properties of the materials in the FCCSP are assessed through thermal-mechanical
analysis and dynamic mechanical analysis. The modeled warpage results are verified by the warpage
measurement. Next, warpage parametric analysis is performed to identify the key factors most
affecting warpage behavior for use in the construction of the warpage prediction model. Moreover,
the advantages of the proposed sampling and hyperparameter tuning approaches are proved by
comparing with other existing models, and the validity of the developed ANN-based deep learning
warpage prediction model is demonstrated through a validation dataset.

Keywords: flip-chip chip-scale package; warpage prediction model; artificial neural network; process
modeling; hyperparameter optimization; sampling strategy; viscoelasticity

1. Introduction

Nowadays, semiconductor manufacturing technologies have advanced rapidly, driven
by the demand for smaller, faster, and more reliable electronic devices. However, this ad-
vancement has also brought up a significant technical challenge, in which the physical limit
of transistor scaling creates enormous difficulties in continuing on the path of Moore’s
Law [1]. In the post-Moore era, the concept of “More than Moore” based on heterogeneous
integration using new packaging technologies [2–8] is becoming more critical and demand-
ing. Flip-chip chip-scale packaging (FCCSP) possesses the capacity of a high I/O count,
miniaturization, and great electrical performance, and thus becomes one of the promising
packaging solutions for realizing heterogeneous system integration.

Despite the fact that FCCSP has been one of the mainstream packaging technologies
today (see, e.g., [6–8]), there are still several technical issues that need to be addressed,
such as yield, reliability, thermal performance, and warpage. Among them, the warpage
induced during the manufacturing process is particularly important as it can cause various
process problems in subsequent process steps, such as handling, registration, and alignment,
eventually resulting in yield and throughput losses [9,10]. It is, thus, essential to have a
thorough understanding of its warpage behavior in the initial design stage. In the literature,
few studies have been reported on the characterization and management of the warpage
behavior of FCCSP during fabrication through theoretical analysis, such as finite element
analysis (FEA), and experiments [8]. As compared to experimental approaches, theoretical
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analysis can be not only more efficient and cost-effective, but also capable of giving better
insight into the physical mechanisms.

To solve the aforementioned challenges and even lessen the prediction uncertainty and
modeling error made by less experienced engineers, researchers start seeking the integration
of simulation and machine learning (see, e.g., [11–16]). To date, due to the rapid advance
of computer technologies and machine learning algorithms, it has evolved into a critical
tool for addressing a wide range of real-world issues, with applications covering medical
diagnosis, transportation, space exploration, defense systems and various engineering
fields. Deep learning is a branch of machine learning which incorporates artificial deep
learning neural networks (NNs). These NNs are composed of a number of neurons, each of
which performs a simple mathematical function of the inputs. By assembling these layers,
deep learning models have the ability to learn complex information and features from raw
data, such as images, audio, text, and sensor readings. This has allowed the development
of a deep learning-based prediction model for timely and effective predictive analysis
of very complex systems. The simulation-based deep learning prediction models have
been extensively applied in advanced microelectronic packaging for a quick and accurate
assessment of their thermal-mechanical performance, such as thermal performance [12,13]
and reliability [14–16]. For example, Law et al. [12] developed a deep learning model
for the prediction of the thermal performance of quad flat no-lead (QFN) packages using
an ANN. Subbarayan et al. [14] applied an artificial NN (ANN) algorithm to build up a
reliability prediction model for a ball grid array (BGA) package. Yuan et al. [15] applied an
ANN-based simulation framework to investigate the solder joint reliability of a wafer-level
chip-scale package, where the initial parameters of the ANN model, namely, the weights
and bias, were obtained using a genetic algorithm (GA). Hsiao and Chiang [16] combined
FEA together with random forest (RF) to explore the solder joint reliability of wafer-level
packaging subjected to thermal cycling.

In addition to conventional gradient-based back-propagation (BP) approaches, evo-
lutionary algorithms (EAs), such as GA, evolutionary strategy (ES), and particle swarm
optimization (PSO), have been extensively applied to network topology design and connec-
tion weight adaption [17–20], mainly because of their advantages over the conventional
approaches’, such as conceptual simplicity and flexibility, capability to solve problems
without any human expertise, and higher probability to reach a global optimum. White
and Ligomenides [17] proposed a two-stage approach to explore the network topology
and connection weights of an NN model by combining a GA and a BP approach. The
underlying idea behind this approach is that if the GA was unable to obtain an appropriate
network solution, the BP approach with an MP algorithm was further performed to locally
explore the optimal weights using the calculated connection weights from the GA as initial
values. A similar approach can also be found in Ding et al. [18]. Juang [19] introduced
an evolutionary recurrent network for a temporal sequence production problem using an
evolutionary learning algorithm based on a hybrid of GA and particle swarm optimization
(PSO). Ahmadizar et al. [20] developed an ANN model using an evolutionary-based algo-
rithm that integrates grammatical evolution (GE) for the network topology design and GA
for better weight adaptation.

The NN prediction model performance can be alternatively improved through hyper-
parameter tuning [21–25]. Hyperparameters are crucial for the performance of a machine
learning model because they control the architecture of a neural network. Well-tuned
hyperparameters can also prevent the model from overfitting or underfitting (see, e.g., [26]).
In the literature, the hyperparameters were mostly tuned using trial-and-error parametric
analysis (one factor at a time) [21], grid search [22], and random search [23]. The former
two approaches are either unable to account for the interaction effect of hyperparameters,
or computationally expensive, especially for models with a large number of hyperparame-
ters and a huge search space. Random search could be a more efficient and cost-effective
approach; however, theoretically, it is less probable to find the optimal hyperparameter
setting. EAs, such as GAs [24,25], are a feasible alternative to determine the best set of
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hyperparameters. Even though Erpolat Taşabat and Aydin [25] found that for hyperparam-
eter optimization, GAs can be more efficient in computation than grid search, the heuristic
algorithms may fail to converge to an optimal or even good result due to their premature
convergence in nature, and, in addition, they are computationally cost-ineffective due to
their poor convergence. Consequently, a more effective and cost-effective hyperparameter
optimization approach is preferred and needed.

According to the above literature survey, there are still very limited studies on the de-
velopment of the warpage prediction model for electronic packaging, not to mention FCCSP.
Thus, this work attempts to develop a prediction model using a proposed FEA-based ANN
approach to facilitate an effective and quick estimate of the process-induced warpage
behavior of FCCSP for use in subsequent fabrication process design. In order to upgrade
model prediction accuracy and training performance, an ANN algorithm integrating a
novel subdomain-based sampling strategy and Taguchi hyperparameter optimization is
proposed for prediction model design and training. To simulate the fabrication process, an
FEA-based process modeling approach is proposed, which takes into account the viscoelas-
tic behavior of the epoxy molding compound (EMC) and the temperature-dependence
of the thermal-mechanical properties of the materials in FCCSP. For the validation of the
proposed process modeling approach, the warpage simulated results are compared against
the warpage measurement data. Moreover, warpage parametric analysis is performed to
characterize the crucial factors that mainly influence the warpage behavior. These char-
acterized crucial factors are utilized for the ANN prediction model’s construction. The
benefits of the proposed sampling and hyperparameter tuning techniques are shown by
comparison to other existing approaches. Furthermore, the feasibility of the developed
warpage prediction model is evaluated using the validation dataset.

2. Structure and Fabrication Process of FCCSP

The FCCSP assembly under investigation is depicted in Figure 1, which mainly consists
of a silicon die, an EMC, copper pillar bumps (CPBs), and a coreless substrate. The coreless
substrate used in this study is a three-layer 168 µm thick embedded trace substrate (ETS),
which comprises two solder mask (SM) protective layers, two prepreg (PP) dielectric layers,
and three metal (Cu) layers. The schematic diagram of the cross section of the coreless
substrate is shown in Figure 2. In this investigation, three FCCSP test vehicles (TV) with
different geometric dimensions are discussed. Taking TV1 as an example, the die is 8.6 mm
in length, 8.2 mm in width, and 200 µm thick. The die is connected on the coreless substrate
using copper pillar bumps, and then the electronic assembly is fully covered by an EMC
material with a size of 15 mm (length) 15 mm (width) 430 µm (thickness). Compared to
TV1, the EMC thickness of TV2 and of TV3 is 450 µm. The die thicknesses for TV1, TV2 and
TV3 are 200 µm, 200 µm and 175 µm, respectively. The detailed dimensions of TV1, TV2,
and TV3 are shown in Table 1. Figure 3 illustrates the fabrication process of the FCCSPs,
which includes two major process steps, namely die bonding process (steps 0–3) and mold
cure process (steps 3–6). The die bonding process starts by mounting the silicon die on
the coreless substrate using copper pillar bumps. The silicon die is aligned with the bond
pads on the substrate and then heated to 260 ◦C to activate the solder bumps and form
an electrical and mechanical connection. Once the die-bonding process is completed, a
liquid-type EMC is used to encapsulate the silicon die through the mold cure process with a
mold cure temperature of 175 ◦C. The mold cure process helps provide additional electrical
insulation and environmental protection.
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3. Theoretical Model of ANN

ANNs, data processing models, are designed to mimic the human nervous system [12].
The architecture and behavior of ANNs are inspired by the biological NNs in human brains,
which process information in a parallel and distributed manner. A typical ANN model
mainly comprises three layers, namely, the input layer, hidden layer, and output layer,
as shown in Figure 4. The input layer, i.e., the first layer of an ANN model, is primarily
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responsible for receiving the external inputs. The hidden layers, the intermediate layers
or the neural layers between the input layer and the output layer, manage the ANN’s
data processing and computation. Increasing the hidden layers enhances the capability
of mimicking a more complex and nonlinear features and behaviors, meanwhile raising
the computational complexity and effort, and potentially causing overfitting and poor
prediction performance. The output layer, the last layer of an ANN model, is in charge
of providing predictions based on the computations performed in the hidden layers. The
links connecting neurons in an ANN model are termed connection weights, which are to
be solved through optimization. Figure 4 illustrates the process of passing information
through an NN having two inputs (x1, x2) and outputs (o1, o2), one hidden layer with
three neurons (z1, z2, z3) inside, where w is the weight, b the bias of the layer, and σ the
activation function of the layer. The goal of an ANN model is to modify the weights through
optimization or learning process to minimize the discrepancy of the ANN outputs and
the target data. Additionally, the setting of hyperparameters of an ANN model, including
optimizer, number of hidden layers and neurons, activation function, learning rate, and
batch size, is critical to the prediction model’s performance. The most commonly used
hyperparameter optimization methods include trial-and-error parametric analysis [21], grid
search [22], random search [23] and EAs such as GA [24,25]. However, these methods hold
various drawbacks (see Introduction). Consequently, a more effective and cost-effective
approach using the Taguchi method is proposed to determine the optimal hyperparameter
setting for constructing the best-fitted prediction model.
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4. Process Modeling

An FEA-based process modeling approach that integrates the ANSYS element death/birth
technique and nonlinear FEA is introduced for effectively evaluating the warpage of the
FCCSP during the fabrication process. Considering its symmetry, a quarter-symmetric
FEA model of the FCCSP is adopted, where a symmetric boundary condition is imposed
on these symmetric planes, i.e., the nodal displacements normal to the symmetric planes
are zero. In addition, to avoid rigid body motion, the displacement of the bottom node
on the intersecting line of these two symmetric planes is constrained in the z-direction.
The FEA model of the FCCSP is primarily composed of a coreless substrate, an EMC, Cu
pillar bumps, and a silicon die, as shown in Figure 5, together with the imposed boundary
conditions. Hexahedral solid elements in ANSYS, i.e., solid 185, are adopted. Table 2
lists the number of nodes and solid elements of the FEA models associated with TV1,
TV2, and TV3. The Young’s modulus (E) and coefficient of thermal expansion (CTE) of
the EMC, prepreg, Sn-Ag-Cu(SAC)305 solder, and solder mask are characterized using a
thermal-mechanical analyzer (TMA) (TA Instruments, New Castle, DE, USA) and a dynamic
mechanical analyzer (DMA) (TA Instruments, New Castle, DE, USA), and the results are
displayed in Figure 6. Except for the EMC, which is assumed to be a linearly viscoelastic
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material, they are considered to be linearly elastic, isotropic, and temperature-dependent.
In addition, the CTEs and Young’s moduli of the silicon die and Cu are 2.8 ppm/◦C and
160 GPa, and 16.3 ppm/◦C and 121 GPa, respectively. According to the fabrication process
displayed in Figure 3, the process modeling primarily involves the die bonding process
(steps 0–3) and mold cure process (steps 3–6). At step 0, the silicon die, solder layer of
the CPB, and EMC are deactivated. At step 1, i.e., heating to the die bonding temperature
(260 ◦C), the solder layer and silicon die are activated to form a mechanical connection
between the silicon die and the coreless substrate. At step 4, i.e., heating to the mold cure
temperature (175 ◦C), the EMC is activated to simulate a fully cured EMC.
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Figure 5. 3D FEA model of the FCCSP.

Table 2. Number of nodes and elements of the 3D FEA model.

TV1 TV2 TV3

Nodes 131,400 136,656 136,656
Elements 122,475 127,800 127,800
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Figure 6. Thermal-mechanical properties of materials: (a) EMC, (b) prepreg, (c) SAC solder and
(d) solder mask.

EMC materials play a significant role in the thermal-mechanical behavior of elec-
tronic packaging [9]. Typically, EMC materials reveal temperature-, time- and strain-rate-
dependent viscoelastic behaviors (see, e.g., [10]), such as creep, stress relaxation, and even
hysteresis behavior. The viscoelastic relaxation behavior is generally depicted by a general-
ized Maxwell model, comprising multiple Maxwell elements and an independent spring
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connected in parallel. This generalized Maxwell model is well approximated by a Prony
series representation for fitting measured relaxation data,

E(t) = E∞ +
m

∑
i=1

Ei exp
(
− t

τi

)
, (1)

wherein E(t) denotes the relaxation modulus of the entire model, Ei the relaxation modulus
of the ith Maxwell element, E∞ the long-term fully relaxed modulus, t the time, τi the
relaxation time, and m the total number of Maxwell elements. Based on the following
relationship between the unrelaxed modulus E0 and E∞,

E0 = E∞ +
m

∑
i=1

Ei , (2)

the Prony series representation of the generalized Maxwell model (Equation (1)) can be
rewritten as

E(t) = E0

[
β∞ +

m

∑
i=1

βi exp
(
− t

τi

)]
, (3)

where βi represents Ei/E0.
The time and temperature dependence of the mechanical properties of a viscoelastic

material can be correlated using the time–temperature superposition principle (TTSP) [10].
More specifically, the TTSP suggests that a relaxation curve of a viscoelastic material
at a specific temperature can be employed as a reference for further characterizing the
relaxation curves at other temperatures by conducting a horizontal translation of the
reference relaxation curve in the logarithmic time domain. The temperature translation
factor λT is normally approximated using an empirical relationship, the so-called Williams–
Landel–Ferry (WLF) equation,

log10 λT =
−κ1(T − Tr)

κ2 + (T − Tr)
, (4)

In Equation (4), κ1 and κ2 are the curve fit coefficients, and Tr the reference temperature.
The master curve of the relaxation modulus at a reference temperature can be constructed

by translating the measured frequency-dependent storage moduli at multiple temperatures
along the time axis with temperature translation factors λT. Based on the relaxation modulus
at different isothermal temperatures under 1% applied strains [10], the constructed reference
master curve at the glass transition temperature of the EMC is shown in Figure 7 and the fitted
coefficients (βi,τi) of the Prony series model with 21 terms are given in Table 3. Furthermore,
the fitted coefficients κ1 and κ2 of the WLF model for the characterized translation factors as a
function of temperature are 74.7 and 313.9, respectively.
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Table 3. Fitted Prony series coefficients.

i τi βi i τi βi

1 1.0 × 10−8 0.006318 12 1.0 × 103 0.211667
2 1.0 × 10−7 0.010797 13 1.0 × 104 0.125250
3 1.0 × 10−6 0.011782 14 1.0 × 105 0.074790
4 1.0 × 10−5 0.013151 15 1.0 × 106 0.014854
5 1.0 × 10−4 0.019278 16 1.0 × 107 0.008881
6 1.0 × 10−3 0.021791 17 1.0 × 108 0.005064
7 1.0 × 10−2 0.029155 18 1.0 × 109 0.004296
8 1.0 × 10−1 0.054915 19 1.0 × 1010 0.002483
9 1.0 × 100 0.055408 20 1.0 × 1011 0.002877

10 1.0 × 101 0.124230 21 1.0 × 1012 0.002496
11 1.0 × 102 0.124722

5. Results and Discussion
5.1. Characterization of Process-Induced Warpage of FCCSP

The process-dependent warpage evolution of these three FCCSP test vehicles (TV1,
TV2 and TV3) during the fabrication process is calculated, and displayed in Figure 8. The
stress-free temperature of the substrate is set 145 ◦C to model the initial warpage of the
substrate, i.e., about 67 µm ± 15 µm. The results show a significant rise in warpage after
the die bonding process step. This dramatic increase in warpage suggests that the process
temperature plays a significant role in the warpage. Furthermore, the process-induced
warpage of the FCCSP is significantly reduced after the mold cure process, mainly owing to
the EMC’s ability to reduce the CTE mismatch between the substrate and die. This implies
the capability of the EMC for suppressing the warpage. The FEA results are compared with
the warpage measurement data obtained using Shadow Moiré, as shown in Table 4. Note
that the warpage is measured on the bottom surface of the substrate at room temperature
after the mold cure process, i.e., step 6, using a Shadow Moiré measurement technique
(Akrometrix TherMoire AXP 2.0, Atlanta, GA, USA). In addition, the warpage is defined as
the discrepancy between the maximum and the minimum of the z-direction deformation.
The viscoelastic effect of the EMC on the process-induced warpage of the FCCSP is also
examined. It is found that the warpage result after the mold cure process obtained from
the process modeling approach considering the EMC viscoelastic effect shows a much
more consistency with the measurement data than that without considering the effect,
indicating that the EMC viscoelastic effect is essential for the prediction of the process-
induced warpage. The modeled and measured warpage contour plots of the FCCSP after
the mold cure process are presented in Figure 9, where the FCCSP would deform in a
convex shape. Moreover, the minimal warpage takes place at the center of the FCCSP
while the maximal warpage takes place at the four corners. Evidently, these two warpage
contours also agree well with each other. The close agreement in warpage between the
simulation (with the EMC viscoelastic effect) and the measurement clearly proves the
effectiveness of the proposed process modeling approach in warpage prediction.

5.2. Identification of Key Factors Affecting Process-Induced Warpage

The influences of some geometric and material factors on the process-induced warpage
of the FCCSP are investigated through parametric analysis using the validated FEA-based
process modeling approach. The considered geometric and material factors are the side
length and thickness of the die, side length of the package, thickness of the EMC, CTE of the
EMC and substrate, and Young’s modulus (E) of the substrate. It should be noted that the
variation of the side length of the package would correspondingly change the side length of
the substrate and EMC while keeping the dimension of the other components unchanged.
These design factors are nominally varied by ±15% from their nominal values. Note that
the width and length of this FCCSP package are identical, and those of the silicon die are
very similar. Since there is a very comparable parametric analysis result with respect to
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the width and length of the package and silicon die, they are simply replaced by the “side
length” of the package and silicon die for better clarity and conciseness of presentation. The
parametric results of the effects of the side length of the silicon die and package, and the
effect of the thickness of the die and EMC are presented in Figure 10a. The process-induced
warpage is found to increase with an increasing die side length and a decreasing package
side length. This is mainly because as the die’s side length goes up, the mechanical stresses
because of the CTE mismatch between the top layer (the composite layer of the EMC and
die) and the bottom substrate become more pronounced, thereby resulting in an increased
warpage. On the other hand, the decrease in package side length would also reduce the
size of the substrate and EMC, which as the die size remains unchanged, would increase
the proportion of the silicon die in the top layer, and resultingly enhance the CTE mismatch
between the composite top layer and the substrate. Furthermore, an increased warpage
can be also observed with an increasing die thickness and a decreasing EMC thickness,
primarily due to the growth in the CTE mismatch between the composite top layer and the
bottom substrate as a result of the increased proportion of the silicon die in the top layer.
Figure 10b summarizes the parametric results of the influences of the Young’s modulus
and CTE of the substrate and the CTE of the EMC. It demonstrates that a decrease in the
CTE and Young’s modulus of the substrate would diminish the process-induced warpage,
while an increase in the CTE of the EMC would lessen it. The explanations can also be
found above.
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Table 4. The measured and simulated warpages (unit: µm).

Test Vehicle TV1 TV2 TV3

Measured
Average 49.4 41.2 38.0

Warpage range (42.0~58.0) (35.0~49.0) (34.0~42.0)

Simulated (W/O Viscoelastic) 30.6 22.0 20.0

Simulated (W/Viscoelastic) 53.6 43.6 34.9

5.3. Establishment of Training/Test and Validation Datasets

Based on the results of the parametric analysis, the degree of influence of these seven
factors on the warpage behavior of the FCCSP after the fabrication process is ranked from
the highest to the lowest as follows and as also listed in Table 5: EMC thickness, substrate
CTE, EMC CTE, die side length, die thickness, substrate Young’s modulus and package
side length. Out of them, the top six highest-influence factors are chosen to establish the
ANN prediction model for the process-induced warpage. They are considered as the input
parameters in the ANN input layer, and are also used to establish the training/test dataset.
A variation range of ±20% is considered for these input parameters. For the establishment
of the training/testing dataset, several sampling strategies are available. Two of the most
widely used ones are global structured (GS) sampling and global random (GR) sampling.
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GS sampling is a well-established factorial design-based sampling strategy in which a
full factorial design (FFD) of design of experiment (DOE) is utilized for the entire design
domain (the design region of the factors) to create the sample data. This method exploits
all the combinations of factors at all levels. It is known for its ability to achieve an even
distribution of sample data across the entire design domain, which in turn could give a
better assessment of the interactions among factors. Because the number of sample data
increases with an increase in the number of factors, the number of sample data could be
very large if the amount of input features and levels are excessive, probably leading to a
high computational cost [21]. In addition, this strategy needs to reconstruct the sampling
datasets using an FFD of DOE when more data are needed to obtain a more accurate
prediction, thereby being less flexible in additional data generation. In contrast, the GR is
a sampling strategy that randomly selects a subset of the population (sample data) from
the entire population (the entire designed region of the factors). This is a very simple and
straightforward method, as compared to the GS sampling strategy, since it has no need
of prior knowledge about the sampling population. In addition, because of the use of
randomization, this strategy would better avoid sampling and selection biases and enjoy
high flexibility in generating additional data if needed. Nevertheless, this method may
result in an uneven data distribution, which is not beneficial to a thorough and effective
evaluation of the interactions among factors.
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Figure 10. Effects of components’ (a) geometric parameters (length, width and thickness) and
(b) material constants (CTE and Young’s modulus).

To take into account the flexibility and feasibility of additional data generation without
the need of re-establishing the sampling dataset, and achieve an even data distribution,
this study proposes a subdomain random (SR) sampling strategy to construct the datasets
by partitioning the whole design domain into multiple subdomains, in which a random
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generation of sample data is made. The schematic diagrams of the GS, GR, and SR sampling
strategies are shown in Figure 11. In addition, two of their combinations (the so-called
hybrid approaches), namely, GS combined with GR (hereafter termed the GSGR strategy),
and GS combined with SR (hereafter termed the GSSR strategy), are also proposed. The
training/testing dataset is constructed using these five sampling strategies and their results
in terms of model performance are compared to each other. Four different sample data
sets are considered for the GS, GR and SR strategies, i.e., 216, 324, 540, and 810. For the
GSGR and GSSR hybrid sampling strategies, three additional different sample data sets,
namely, those with 108, 324, and 594 samples, are generated by GR and SR, respectively,
and they are further combined with the 216-sample data set generated by the GS to form
three sample data sets, i.e., data sets of sizes 324, 540, and 810. For GS, the corresponding
factors and levels together with the total number of sample data used in the training/test
phase are presented in Table 6. The same total number of sample data are created using
GR. For SR, an increase in the number of subdomains would enhance the sampling and
modeling complexities. To reduce the number of subdomains, any two design factors are
grouped together into one cluster, and each of them is further divided into two regions. For
this six-factor design, a total of eight subdomains can be formed. Beside the training/test
dataset, a validation dataset with sixty-four sample data is established using GS to verify
the prediction accuracy of the trained ANN warpage prediction model. The factors and
levels used in the validation phase for GS are listed in Table 7.

Table 5. Ranking of factors in terms of degree of influence.

Factor Degree of Influence Rank

EMC Thickness 128.7% 1
Substrate CTE 108.3% 2

EMC CTE 100.9% 3
Die length 44.5% 4

Die thickness 41.9% 5
Substrate E 23.9% 6

Package length 9.0% 7
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Table 6. Factors and levels corresponding to the four training/test datasets for the GR sampling strategy.

Dataset

216 324 540 810

Factor Level Value

Die side length (mm) 6.4/9.6 6.4/8.0/9.6 6.4/8.0/9.6 6.4/8.0/9.6
Die thickness (mm) 0.16/0.24 0.16/0.24 0.16/0.24 0.16/0.20/0.24

EMC thickness (mm) 0.36/0.45/0.54 0.36/0.45/0.54 0.36/0.41/0.45/0.50/0.54 0.36/0.41/0.45/0.50/0.54
EMC CTE −20%/20% −20%/0%, 20% −20%/0%/20% −20%/0%/20%

Substrate CTE −20%/0%/20% −20%/0%, 20% −20%/0%/20% −20%/0%/20%
Substrate E −20%/20% −20%/20% −20%/20% −20%/20%
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Table 7. Factors and levels used in the validation phase.

Factor Level Value

Die length (mm) 7.0/9.3
Die thickness (mm) 0.18/0.24

EMC thickness (mm) 0.38/0.44
EMC CTE −18%/15%

Substrate CTE −18%/19%
Substrate E −18%/18%

Total data 64

5.4. Hyperparameter Optimization Using Taguchi Method

The design of a machine learning prediction model consists in seeking hyperparameter
optimization. In addition, the optimal values of the hyperparameters are highly problem-
dependent. In this investigation, the initial/untuned hyperparameter values, namely,
optimizer (Adam) [27], activation function (ReLU) [15], the number of hidden layers
(three) [28], and the estimate of the upper limit of the number of neurons in each layer [29],
are specified based on the literature results. Note that the size of the training dataset is
directly related to the number of neurons applied in each layer. The learning rate is set
according to the default value of the Keras Adam optimizer, and the fold number (K) of
the K-fold cross-validation method is set according to the size of the test dataset, which is
10~15% of the training data. The GS sampling strategy is used to form the training/test
dataset. Moreover, the untuned hyperparameter values used for constructing the ANN
models with four different training/test datasets (i.e., 216-, 324-, 540- and 810-sample data)
are listed in Table 8. Min–max normalization is applied to scale these input features to a
fixed range such that each feature has a comparable weight for the feature learner. The
mean square errors (MSEs) of the predictions of the trained ANN models on the test data
for these four training/test datasets are shown in Table 9. It is clear to see that these MSE
values are considerable, indicating that there is a significant degree of discrepancy between
the predictions and calculations, and, also, there is a great room to improve the ANN
prediction models.

Table 8. Untuned hyperparameter values used for training ANN models under four different training
datasets.

Hyperparameter
Training/Test Dataset

216 324 540 810

Optimizer Adam Adam Adam Adam
K-Fold number (K) 10 10 10 10

Neural number of hidden layers (5, 5, 5) (8, 8, 8) (11, 11, 11) (14, 14, 14)
Activation function ReLU ReLU ReLU ReLU

Learning rate 0.001 0.001 0.001 0.001

Table 9. Prediction MSEs of the trained ANN models on the test data.

Training/Test Dataset 216 324 540 810

MSE 77.8 ± 25.1 46.9 ± 11.4 28.8 ± 5.3 20.9 ± 8.1

To improve the model’s performance, the Taguchi method is applied to determine
the optimal hyperparameter values. For the six-factor, three-level experimental design
problem, one two-level factor and seven three-level factors are employed in Taguchi’s
orthogonal array (OA), as shown in Table 10, to seek the optimal combinations of hyperpa-
rameters and levels. According to the previous literature reports, three hidden layers are
found to effectively reduce the calculation time, and, meanwhile, provide good prediction
accuracy [28]; the optimizer Adam could achieve good results with high efficiency on most
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neural network architectures [27]. Thus, they are implemented in the ANN model. The
considered hyperparameters for optimization are activation function (A), batch size (B),
learning rate (C), number of neurons in the first hidden layer (D), number of neurons in the
second hidden layer (E), number of neurons in the third hidden layer (F), and two dummy
factors. For the hyperparameter optimization, the training/test dataset with 324 sample
data is used. The hyperparameters and their levels used in the Taguchi experimental design
are presented in Table 11. The MSE of the predictions of the trained ANN model on the test
dataset is considered as the objective of the Taguchi experimental design. The the-smaller-
the-better criterion is used for the minimization of the MSE. The signal-to-noise (S/N) ratios
of all the experimental runs in the OA are calculated. The mean S/N ratio for each level of
control factors is summarized in the S/N response graph shown in Figure 12. The response
graph is utilized to identify the most significant hyperparameters and their optimal level
set for achieving an improved performance of the trained ANN warpage prediction model.
From this response graph, it is found that the optimal level set of these hyperparameters is
A1, B3, C3, D3, E3, and F3, i.e., exponential linear unit (ELU) activation function, a batch
size of 30, a learning rate of 0.005, and 11 neurons for all three hidden layers.

Table 10. L18(21 × 37) OA and variable assignments.

EXP
Factor

A B C D E F Dummy

1 1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 1 2
3 1 3 3 3 3 3 1 3
4 2 1 1 2 2 3 1 3
5 2 2 2 3 3 1 1 1
6 2 3 3 1 1 2 1 2
7 3 1 2 1 3 2 1 3
8 3 2 3 2 1 3 1 1
9 3 3 1 3 2 1 1 2

10 1 1 3 3 2 2 2 1
11 1 2 1 1 3 3 2 2
12 1 3 2 2 1 1 2 3
13 2 1 2 3 1 3 2 2
14 2 2 3 1 2 1 2 3
15 2 3 1 2 3 2 2 1
16 3 1 3 2 3 1 2 2
17 3 2 1 3 1 2 2 3
18 3 3 2 1 2 3 2 1

Table 11. Hyperparameters and levels considered for Taguchi hyperparameter optimization.

Factorial Levels and Their Values Level 1 Level 2 Level 3

A. Activation
function ELU ReLU Leaky ReLU

B. Batch size 10 20 30
C. Learning rate 0.0005 0.001 0.005

D. Neural number
in hidden layer 1 5 8 11

E. Neural number
in hidden layer 2 5 8 11

F. Neural number
in hidden layer 3 5 8 11

5.5. Performance Characterization and Comparison of the Trained ANN Models on Validation Dataset

With the optimal set of hyperparameters, four ANN models are trained again using
these four different training/test datasets (i.e., 216, 324, 540 and 810 sample data) generated
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with the GS sampling strategy. The MSEs and their standard deviations on the test data
associated with the four training/test datasets are characterized and described in Table 12.
For comparison, the corresponding results of the trained ANN models with the untuned
hyperparameter setting are also presented in this table. Noteworthy is that for each
training/test dataset, the same training/test data are utilized for both the untuned and
tuned hyperparameter settings. Evidently, this demonstrates that both the prediction
accuracy (MSEs) and precision (standard deviations) of the trained ANN models with the
tuned hyperparameter setting are exceptionally improved for all these four training/test
datasets, suggesting that the present hyperparameter optimization using the Taguchi
method is an effective and feasible means of enhancing the performance of the ANN
prediction model. With the same optimal hyperparameter setting, the ANN models are also
trained on these four different training/test datasets generated by the other four sampling
strategies (namely, GR, SR, GSGR, GSSR). In total, there are twenty trained ANN prediction
models in accordance with the four training/test datasets and five sampling strategies.
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Table 12. MSEs on test data predicted by the ANN models with the untuned and tuned hyperparam-
eter (HP) settings (unit: µm).

Sampling Strategy HP Setting
Training/Test Datasets

216 324 540 810

GS
Untuned 77.8 ± 25.1 46.9 ± 11.4 28.8 ± 5.3 20.9 ± 8.1

Tuned 23.5 ± 8.1 11.2 ± 3.3 10.6 ± 2.6 8.0 ± 2.9

GR
Untuned 75.1 ± 56.0 37.5 ± 30.1 20.9 ± 20.5 9.8 ± 2.2

Tuned 14.5 ± 9.1 7.7 ± 4.3 7.8 ± 3.3 6.5 ± 1.6

SR
Untuned 32.8 ± 44.2 18.0 ± 11.0 8.3 ± 3.3 6.9 ± 2.2

Tuned 9.9 ± 4.0 8.4 ± 2.8 6.9 ± 3.1 5.5 ± 2.8

GSGR
Untuned - 39.5 ± 10.2 26.7 ± 5.9 20.0 ± 6.9

Tuned - 18.9 ± 6.8 8.6 ± 2.8 7.3 ± 2.2

GSSR
Untuned - 41.7 ± 8.4 27.5 ± 10.9 21.5 ± 11.3

Tuned - 19.5 ± 7.5 14.1 ± 5.3 8.4 ± 4.6

After the ANN models were suitably trained, the aforementioned validation dataset
with sixty-four sample data generated with the GS sampling strategy was further used
to assess and compare the performance of these twenty trained ANN warpage predic-
tion models. The corresponding prediction performances of the ANN models with the
tuned hyperparameter settings are summarized in Table 13 and Figure 13, in terms of the
difference in the average warpage with standard deviation and the maximum warpage
between the calculations and predictions. The following facts can be observed from this
table. First of all, it is clear to see that a larger number of training/test data tends to yield a
better prediction result in terms of both the average warpage and maximum warpage for
all these five sampling strategies. This result is aligned with the literature findings, such
as Panigrahy et al. [21]. Then, among these five sampling strategies, without a doubt, the
GS strategy would have the best prediction performance, irrespective of the training/test
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datasets applied, due to its even data distribution, while the GR would obtain the worst
prediction results due to an uneven data distribution. It is, however, pointed out that even
though the GS can obtain the best prediction results, it needs to completely reconstruct the
whole sampling dataset using an FFD of DOE when more sample data are in demand for
better prediction accuracy, thus requiring a much higher computational and modeling effort
in data generation. Next, it is interesting to see that the proposed SR sampling strategy
tends to demonstrate a superior prediction capability than the GR, and even the GSGR,
especially in the average warpage difference between the calculations and predictions,
despite having a poorer performance than the GS. Apart from that, the proposed GSSR
hybrid sampling strategy outperforms not only the GR and GSGR but also the proposed SR.
Finally, the GS and the proposed GSSR provide a very comparable prediction performance,
but the latter is comparatively much more flexible in producing more sample data and is
also more computationally cost-effective.

Table 13. Warpage prediction performance of the ANN models with the tuned hyperparameter
setting (unit: µm).

Sampling Strategy

Training/Test Datasets

216 324 540 810

Avg. Max Avg. Max Avg. Max Avg. Max

GS 5.7 ± 3.9 15.8 3.8 ± 2.8 10.4 3.0 ± 2.2 9.8 1.6 ± 1.1 4.3
GR 6.2 ± 6.4 38.8 4.2 ± 3.9 20.4 3.6 ± 3.6 20.2 3.2 ± 2.3 10.0
SR 6.0 ± 4.8 18.6 4.0 ± 3.4 17.2 3.2 ± 3.2 20.2 2.3 ± 2.3 11.7

GSGR - - 4.0 ± 2.9 14.2 3.4 ± 2.4 12.2 2.4 ± 1.7 7.1
GSSR - - 3.9 ± 3.0 13.4 3.1 ± 2.2 9.8 1.8 ±1.4 6.5
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6. Conclusions

This study successfully establishes an ANN-based deep learning warpage prediction
model using a novel subdomain-based sampling technique and Taguchi hyperparameter
optimization to facilitate the process-induced warpage prediction and design of the FCCSP
in the initial design stage. To characterize the process-dependent warpage behavior of the
FCCSP, an FEA-based process modeling approach that takes into account the viscoelastic be-
havior of the EMC material. The effectiveness of the proposed process modeling approach
is extensively demonstrated by comparing the simulated results with the measured data.
The validated process modeling approach is subsequently applied in both the parametric
analysis for exploring the key factors most affecting the process-induced warpage behavior,
and the construction of the warpage prediction model using the ANN. The superiority of
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the proposed sampling and hyperparameter tuning techniques is extensively justified by
comparing with other existing models, and the applicability of the constructed warpage pre-
diction model is well confirmed using the validation dataset. Several essential conclusions
are deduced below.

1. The proposed process modeling approach turns out to be very effective in the as-
sessment of the process-dependent warpage evolution of the FCCSP, where after the
mold cure process, the FCCSP would deform in a simple convex shape, where the
minimal warpage takes place at the center of the FCCSP, and the maximal warpage at
the four corners.

2. Process temperature is found to play a significant role in the process-dependent
warpage, and, in addition, the die bonding process step would induce significant
warpage while the mold cure process step would suppress the warpage, primarily
due to the CTE effect of the EMC.

3. The viscoelastic behavior of the EMC is crucial for an accurate estimate of the process-
induced warpage behavior of the FCCSP.

4. Parametric analysis shows that an increasing side length and thickness of the sili-
con die and the CTE and Young’s modulus of the substrate, and a decreasing side
length of the package and thickness and CTE of the EMC would enlarge the process-
induced warpage.

5. Taguchi hyperparameter optimization suggests that the optimal hyperparameters are
the exponential linear unit (ELU) activation function, a batch size of 30, a learning rate
of 0.005, and 11 neurons for all these three hidden layers. It turns out that the Taguchi
method can be a very effective and feasible way to augment the model’s performance.

6. The prediction results can be improved with a larger number of training/test data
tends, which is in good match with the literature findings.

7. Among these five sampling strategies (GS, GR, SR, GSGR, GSSR), GS tends to provide
the best prediction accuracy because of its even data distribution, and, in contrast, GR
reveals the worst because of likely producing an uneven distribution of sample data.
It is worth mentioning that in spite of having the best prediction results, GS demands
a much greater computational and modeling effort to totally reconstruct the entire
sampling dataset when additional sample data are needed.

8. Even though having an inferior performance than the GS, the proposed SR sampling
strategy surpasses both the GR and GSGR. More importantly, the proposed GSSR
outperforms not only GR and GSGR but also the proposed SR. It is also interesting
to find that even though both GS and the proposed GSSR can give an equivalent
prediction performance, GSSR is the preferred choice because of its greater flexibility in
generation of additional sample data, thereby being less computationally demanding.
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