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Abstract: Since its discovery in 1989, RNA interference (RNAi) has become a widely used tool
for the in vitro downregulation of specific gene expression in molecular biological research. This
basically involves a complementary RNA that binds a target sequence to affect its transcription or
translation process. Currently, various small RNAs, such as small interfering RNA (siRNA), micro
RNA (miRNA), small hairpin RNA (shRNA), and PIWI interacting RNA (piRNA), are available for
application on in vitro cell culture, to regulate the cells’ gene expression by mimicking the endogenous
RNAi-machinery. In addition, several biochemical, physical, and viral methods have been established
to deliver these RNAs into the cell or nucleus. Since each RNA and each delivery method entail
different off-target effects, limitations, and compatibilities, it is crucial to understand their basic mode
of action. This review is intended to provide an overview of different nucleic acids and delivery
methods for planning, interpreting, and troubleshooting of RNAi experiments.
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1. Introduction

In 1928, an astonishing observation was made during experiments with viruses on
tobacco plants by Wingard et al., who observed that only the first leaves infected with the
ringspot virus developed the full virus disease, while the upper leaves showed a miraculous
recovery and resistance. Wingard was not able to explain this on a molecular biological
level, but this recovery phenomenon formed the starting point for the discovery of the
mechanism of RNA interference (RNAi).

More than 50 years later, Izant et al. showed that injection of complementary tran-
scripts into mouse cells reduced the expression of specific genes [1]. The concept of
“pathogen-derived resistance” was developed by Abel et al. in 1986, whereby defective
expression of a pathogen’s gene product resulted in protection against that pathogen. How-
ever, this concept was still based on the assumption that the interaction occurred at the
level of gene products (protein complexes) [2]. In 1989, Powell et al. studied the effect of
antisense and satellite RNA and found that nucleic acid interaction was responsible for this
protective effect [3].

The phenomenon of complementary nucleic acids inhibiting each other is conserved
in most eukaryotes and is an indispensable part of the physiology of many organisms [4].
In plants, it balances the organism’s efforts between pathogen defense and growth [5]. As
shown as early as 1928, RNA interference plays a central role in virus defense, as the double
stranded RNA (dsRNA) triggers the plant RNAi system to silence complementary genes,
thereby generating immunity [6,7]. In mammalian organisms, endogenous RNAi systems
are important elements for the control of development, fate, and death of cells in various
physiological and pathological states.

Micromachines 2023, 14, 1321. https://doi.org/10.3390/mi14071321 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14071321
https://doi.org/10.3390/mi14071321
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-9538-1517
https://orcid.org/0000-0003-3276-6505
https://orcid.org/0000-0001-5151-7390
https://orcid.org/0000-0002-3684-274X
https://doi.org/10.3390/mi14071321
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14071321?type=check_update&version=2


Micromachines 2023, 14, 1321 2 of 22

In experiments studying the effects of gene expression, targeted knockout has become
an indispensable procedure to gain new insights. For a long time, culturing knockout
organisms was the gold standard for this purpose, limited by the enormous time and
costs, ethical concerns, and limited analysis of individual tissue or cells. RNA interfer-
ence has overcome these obstacles, and today, there are numerous companies offering a
wide range of artificial nucleotide acids for RNAi as well as various carrier systems for
intracellular delivery.

In this review, we aim to provide an overview of the basic biological principles of
RNA interference, available nucleotide acids, and in vitro delivery systems for use in gene
expression experiments.

2. Principles of RNA Interference

The term RNA interference describes the principle of reducing the expression of a
particular gene by complementary short RNAs. In general, this effect can be induced after
transcription by mRNA cleavage or translation repression and at the transcriptional level
by transcriptional silencing [8].

The process starts with RNA-dependent RNA polymerases (RdRPs) that generate
long dsRNA from single stranded RNA templates [9,10]. The long dsRNA is transferred by
endocytosis to the cytosol and processed by endoribonuclease Dicer or Tar-RNA-binding
protein (TRBP) [11]. The resulting nucleic acid is called siRNA [12,13].

In the following steps, the nucleic acid is loaded onto the RNA-induced silencing
complex, or RISC. This multiprotein RNA complex plays an essential role in the RNA
silencing process. Its function is mainly based on Argonaute proteins that occur in sub-
clades for miRNA, siRNA, or piRNA processes and contain specific domains [8]. The
N-domain of Argonautes unwinds the single strand of RNA, while the PAZ-domain
binds the 3′-overhang [14–16]. The MID-domain binds the 5′ end, while the PIWI-domain
can cleave the target sequence [17,18]. In this process, the RISC selects one strand as
the guide or antisense strand, while the complementary passenger strand is degraded.
This strand selection is influenced by thermodynamic stability and nucleobase of the 5′

end [15]. The entire process is dependent on HSP90 proteins that keep the Argonautes in
the correct conformation [19].

After the process of RISC loading, the attached siRNA is 20–27 nt long and directs
the RISC to its complementary target sequence, either RNA or DNA. Subsequently, DNA
methylation or chromatin modification inhibits the transcription of DNA (TGS), and mRNA
cleavage or translation inhibition affects the posttranscriptional processes (PTGS) [20].

MiRNAs have a similar yet different origin, function, and purpose. The polynu-
cleotides are approximately 18–26 nt long, single stranded, and in a stem-loop structure.
Their production begins with the transcription of specific genes by RNA polymerase II [21].
The resulting pri-miRNA is capped and polyadenylated and further processed by the
Drosha (RNAse III) and DGCR8 protein [22]. This pre-miRNA is hairpin-structured and
exported from the nucleus by exportin 5 [23]. Subsequently, Dicer cleavage forms a 21 nt
ds miRNA, which is loaded onto RISC similar to siRNAs [24]. However, in some cases
both strands of miRNA (passenger and guide strand) bind a target sequence and affect
gene expression [25]. Unlike siRNAs, miRNAs are often only partially complementary to
their target sequence [26]. More specifically, they target 3′ UTR regions of mRNAs, with nu-
cleotides 2–8 being in most cases fully complementary and referred to as the “seed region”
with canonical binding, while the remaining part is only partially complementary [27].
In miRNAs, the target sequence-RISC interaction usually does not lead to cleavage by
Dicer, but to recruitment of the GW182 protein [28]. Through the interaction with the
cytoplasmic poly(A)-binding protein PABPC, GW182 induces both translation repression
and mRNA deadenylation, the latter followed by 5′-cap removal and mRNA degradation
by exoribonucleases [29] (Figure 1).
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Figure 1. Biological principle of RNA interference: 1. siRNA-pathway: RdRPs generate long dsRNA
from single-stranded RNA templates, that are taken up by endocytosis and processed into siRNA by
Dicer or TRBP which is loaded onto RISC. 2. miRNA-pathway: RNAPol II transcribes pri-miRNA,
which is processed by RNAse III and DGCR8 protein to pre-miRNA. Pre-miRNA is exported by
exportin 5 and processed by Dicer to dsmiRNA, which is loaded onto RISC. The passenger strand is
degraded, and the guide strand can bind the target sequence and alter gene expression, by cleavage,
methylation, translation inhibition, etc.

3. Nucleic Acids in RNAi
3.1. siRNA

siRNAs play an important role in gene expression silencing for research and potential
therapeutic use. siRNAs are less likely than longer nucleotides to cause immune stimulation.
They can be transported between different tissues in some species and are very precise
due to their full complementarity. Overall, siRNAs are highly efficient tools for in vitro
experiments and pose fewer problems than other interfering RNAs [30–32].

Nevertheless, many side effects have been observed with the widespread use of siRNA,
which can currently be explained by three mechanisms:

3.1.1. miRNA-like Off-Target Effects

Off-target effects are often caused by siRNA binding to non-target genes that have
partial complementarity to the 5′ end of their guide strand [33,34]. The exogenous siRNA
essentially takes over the function of an endogenous miRNA, causing unintended effects on
cell growth or altering other experimental outcomes [35,36]. This phenomenon is referred
to as the “miRNA-like off-target effect”. Since this principle is part of cell physiology, it
cannot be completely eliminated; however, there are strategies to reduce the likelihood that
this phenomenon occurs.

One option is improving the siRNA sequence design by analyzing the whole genome
of target cells and avoiding sequences that could induce miRNA-like effects [37,38].

Second, chemical modification of siRNA reduces off-target-effects by destabilizing
the two strands. Since miRNA-like bonds are shorter than the intended siRNA target
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bond, they are more affected by this destabilization. This modification can be either 2′-O-
methylation or locked nucleic acid (LNA) incorporation, which is particularly effective at
position 2 of the 5′ end [35,38].

As a third option, lower siRNA-concentration has been shown to reduce these off-
target effects [39–41]. Since a mere reduction in siRNA-concentration also reduces the
target effects [40], the method of siRNA-pooling was developed. The method uses a pool of
siRNA sequences that all target the same gene but bind at different sites. There are several
strategies for creating such a pool. The least complex pools are produced by combining
just a small number of siRNAs that share the same target gene (e.g., smart pools with four
different siRNAs). Their dilution effect, which should reduce the miRNA-like off-target
effects, is relatively low. This dilution effect is increased with endoribonuclease-produced
siRNA pools (esiRNA), produced by digestion of dsRNA using RNAse III [42] which
results in hundreds of different siRNAs [43]. Third, so-called siPools with about 30 different
sequences, in contrast to esiRNA, are designed in vitro and therefore are well-defined but
also more costly to produce. They eliminate sequence-specific off-target effects such as
esiRNA, while it is much easier to control and understand their effects on cells [43].

3.1.2. Immunostimulatory Response

SiRNA avoids some immunostimulatory response due to their size of less than 30 nt.
Nevertheless, they can still trigger an immune response [44]. The immune activation
is concentration-dependent and detectable with each siRNA application [45]. Besides
dsRNA, carriers can also be immunostimulatory triggers. Endosomal transfection systems
have been shown to be much more likely to cause immune stimulation because the en-
dosome contains many immune-activating receptors [44,46,47]. Many of the effects are
also sequence-dependent, which reduces the informative value of nonbinding sequences
as negative controls but can be reduced by avoiding immunostimulatory motifs [48]. Cell
type also influences appearance and extent of the immune activation [49].

In general, there are three distinct signaling pathways for siRNA-induced im-
mune stimulation.

First, dsRNA can bind dsRNA recognition proteins, which triggers antiviral re-
sponses and causes upregulation of Interferon (IFN) and other antiviral proteins. IFN
activates IFN-stimulated genes (ISG) such as PKR that inhibit viral replication and protein
synthesis [50]. Second, dsRNA activates oligoadenylate synthetases (OAS). They convert
ATP to oligoadenylates, thereby activating RNAse L, which is capable of degrading intra-
cellular single-stranded RNA [51]. Third, dsRNA binds to Toll-like receptors (TLR) and to
transcription factor IRF3, leading to the induction of IFN, TNF-alpha, and IL6 [44].

Activation of the cell immune system can have many complex effects on the target cells
and the experimental outcome. Chemical modification of siRNA, such as 2′-O-methylation
or locked nucleic acid incorporation, is one approach to reduce this problem [52].

3.1.3. Saturation of Endogenous RNA Interference

Exogenous siRNA can affect the endogenous RNA interference machinery of cells.
High siRNA concentrations lead to intense siRNA-RISC loading, which may reduce the
ability to generate RISC for miRNA-induced silencing. The reduced miRNA suppression
may lead to undesired gene expression, thereby affecting cell phenotype [53].

Considering all these challenges, choosing an appropriate siRNA sequence is not
trivial. This sequence should not only be complementary to the target gene but also very
specific and preferably not affecting other genes or signaling pathways in the cell. Sequence
design is mainly done in silico applying several rules. A low G/U content is preferred as
this reduces immunostimulation [54], as is low internal stability at the 5′ end of antisense
strands to facilitate RISC entry. Stable internal repeats are avoided since they cause internal
folding that interferes with target binding [55].
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3.2. miRNA

MiRNAs, short for micro RNAs, are 21 to 25 nt long, occur ubiquitously in eukaryotic
cells, and form a stem-loop-structure [56]. They not only inhibit gene expression but can
also induce transcription by mRNA-promoter binding [57]. Most miRNAs are formed
by modifying specific DNA-transcripts (pre-miRNAs) that are exported from the nucleus
and processed by Dicer enzymes. In addition, there are other, non-canonical pathways for
miRNA production. These include so-called “mirtrons”, spliced introns of mRNA, fully
Dicer-independent miRNA which is derived from endogenous shRNA processed by Drosha
and cleaved by hAgo2 (Human Protein argonaute-2) or m7g (7-methylguanosine)-capped
pre-miRNA that can be exported to the cytoplasm without Drosha cleavage [58–60]. In
many cases, multiple miRNAs are transcribed as one long transcript (cluster) that is subse-
quently cleaved. These “miRNA families” usually bind similar seed regions [61].

Unlike other small RNAs, miRNAs are able to move between different compartments
of an organism and can therefore be detected in extracellular fluids [62,63].

Currently, miRNAs have gained importance due to their expression in various diseases,
especially cancer [64].

However, miRNAs are less suitable for in vitro analysis of gene expression and for
experiments that require precise gene silencing. Their complementarity is not perfect,
resulting in unstable and non-specific mRNA binding that can even be toxic [26]. The
main benchside application of miRNA is to analyze and validate their expected effects on
gene expression and phenotype of cells to decide on further investigations and possible
therapeutic applications [65]. To this end, cell cultures are transfected with a miRNA
mimic and a scramble sequence [66]. However, in these experiments, miRNAs show many
side effects, such as causing interferon response, strand bias, or unspecific binding to
non-target sites [67–69]. For this reason, miRNA inhibitors are the preferred approach
for miRNA validation, especially miRNA sponges. MiRNA sponges are plasmids that
contain many miRNA binding sites [70]. To avoid RNAse H activity, their sequences are not
perfectly complementary to miRNAs. To avoid unintended binding, their design is quite
complex, and they are mostly planned by using webtools such as miRNAsong, whereas also
engineered circular RNA (circRNA) with miRNA-sponging function may be used [71–73].

3.3. shRNA

Short hairpin RNAs (shRNAs) are RNA sequences that form a tight hairpin based on
their sequence consisting of a target specific part, a spacer, and a reverse complement of
the target sequence [74].

To achieve more stable knockdown experiments, researchers have been inspired by
the design of endogenous pre-miRNA in the development of shRNAs [75,76].

Usually, shRNA sequences are introduced into the cell by vectors (e.g., plasmids) and
must be transcribed in the nucleus to obtain the hairpin-structured shRNA. Based on their
transcription pathway, current shRNAs can be divided into first and second generation.

The first generation of shRNAs uses RNA polymerase III promoters in their vectors, in
most cases the U6 and H1 promoter [77–79]. Transcription produces stem-loop-structured,
pre-miRNA-like shRNAs in the cell. These shRNAs can be processed into more potent
RNA interference nucleotides than those provided by endogenous mechanisms [80].

However, first generation shRNAs cause many off-target effects that lead to toxicity
and disruption of endogenous miRNA [81–83].

Second-generation shRNAs mimic pri-miRNAs, a preform of pre-miRNAs that re-
quires an additional processing step [76,84]. Their gene template is transcribed by RNA
polymerase II. This transcription process involves capping and poly-A tailing [84,85]. In
comparison to the first generation, this approach is more adaptable and offers the possibility
of transferring entire shRNA clusters [86,87]. However, second-generation shRNAs are less
well understood and more complex.

After transcription, shRNAs are processed into siRNA. This is achieved with the help
of the cell’s endogenous RNAi-processing machinery. For the shRNAs to be recognized
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and processed by the endogenous pathways, specific signals are required in the shRNA.
Since these design requirements are quite complex, endogenous miRNAs are currently
used as templates for the design of shRNAs [88]. Another challenge is that cleavage sites
for the same shRNA sequence have been shown to be inconsistent. Rules for length and
loop position may mitigate this disturbance [89,90].

RISC loading of the resulting siRNA can be improved by aiming for hAgo2 cleavage-
dependent RISC formation. Strand selection is improved by designing the 5′ end of the
guide strand to be less stable than the passengers one [91,92]. For ideal target sequence
binding, imperfect complementarity has been shown to result in a weaker outcome and
more off-target effects [93]. Perfect matches, whereas complementarity at the 3′ end is
negligible, result in more efficient hAgo2-dependent cleavage of the target [94].

Overall, shRNA systems have many advantages over siRNA. Their effect on cell gene
expression lasts much longer because the vector often remains in the cell and is transcribed
more than once [75]. Moreover, controllable vectors can be designed by inserting selection
markers or inducible elements into the sequence and its promoter.

Nevertheless, the entire shRNA system is very complex and still not well under-
stood. Identical shRNA sequences are processed differently in different cell lines, causing
miRNA-like off-target effects and immune stimulation, that cannot yet be avoided by im-
proved shRNA design [48,95,96]. Furthermore, shRNA must be transcribed in the nucleus,
requiring vectors with precise nuclear delivery [74]. Not least, shRNA utilizes many parts of
the cell’s endogenous RNAi system, which can easily lead to saturation of, e.g., exportin 5 or
Argonaute proteins and thus severely disrupt the cells’ gene expression regulation [97,98].

Currently, shRNAs are widely used to transduce cells for efficient gene knockdown.
They can enable mass production of siRNA in vitro, and their potential future role in
treatment of viral diseases should not be underestimated due to numerous ongoing research
and trials in different phases [86,99].

3.4. piRNA

PIWI-interacting RNAs (piRNAs) are 21–35 nt long single stranded nucleic acids
that carry a 2′-O-methylation at their 3′ end, uridine as a terminal base at the 5′ end,
or adenosine at the tenth position [100–102]. They do not share a specific common sec-
ondary structure [100].

PiRNAs were first identified in animal germ cells. They were found to be produced
in a Dicer-independent manner, copied from non-coding genomic regions with repeats,
and are an important player in posttranscriptional regulation, particularly in protecting
germline cells from transposable elements (TE) [103]. PiRNAs have also been detected
in somatic cells, where they are required for epigenetic regulation through methylation,
transposon silencing, and chromatin modification. Their importance is particularly evident
in various malignant pathogenesis pathways [104].

PiRNAs interact with PIWI proteins. PIWI proteins represent a subfamily of Arg-
onautes and therefore play an important role in the formation and function of RISC. In this
context, PIWI proteins have an endonuclease function and can cleave RNAs [105].

PiRNAs affect cell gene expression through various mechanisms. In transcriptional gene
silencing (TGS), piRNA/PIWI protein complexes bind the target gene, methylate DNA, and
modify histones [106–108]. In post-transcriptional gene silencing (PTGS) piRNAs act similarly
to miRNAs and form a piRISC on mRNAs to prevent their translation [109,110]. Furthermore,
piRNA/PIWI protein complexes modify posttranslational processes (PTM) by interacting
with transcription factors, leading to their posttranscriptional phosphorylation [111,112].

Since piRNAs bind nonspecifically to different targets and their effects in cells are not
yet well predicted, they are currently not used for gene expression experiments. Never-
theless, their role in controlling Tes could provide an approach for therapy in cancer or
other diseases [113].
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3.5. ASO as an Alternative to RNAi

The use of Antisense Oligonucleotides (ASOs) is an alternative approach to RNAi for
the regulation of gene expression. Considering the common goals and shared challenges of
RNAi and antisense approaches, ASOs are herein discussed.

ASOs are short, synthetic, single-stranded oligonucleotides (both DNA- and RNA-based)
with antisense function, and they downregulate gene expression via different mechanisms [114].
Because of a DNA:RNA heteroduplex formation, some induce Rnase H-mediated tar-
get cleavage [115]. Others induce cleavage by hAgo2 and other Argonaute proteins. In
addition, there are ASOs that only occupy their target, thereby either preventing transla-
tion and causing cleavage through the resulting arrest or promoting translation through
altered splicing [116].

When first developed, ASOs were found to be toxic, rapidly degradable, and difficult
to transfer through membranes due to their negative charge [117]. Today, multiple ASO
modifications are established to overcome these obstacles [118,119].

Compared to nucleic acids for RNAi, ASOs have been shown to be more flexible.
They comprise both hydrophobic and hydrophilic parts, making them amphiphilic [120].
Interestingly, discoveries in siRNA design have improved ASO development and vice
versa [121]. ASOs can cross the cell membrane in different ways. Most ASOs are modified
with phosphorothioates (PS-ASOs), which allow them to bind surface proteins and enter
the cell through endocytosis [122]. After passive diffusion through nuclear pores, ASOs
can bind their target sequence and initiate various pathways [123].

As mentioned previously, the most common ASO modification today is PS-ASO, in
which the phosphodiester in the backbone is replaced by a phosphorothioate at one or more
sites [120]. This modification increases the distance between the charged parts, making the
molecule more lipophilic and thus facilitating protein binding [124].

Modification of 2′-C of ribose increases stability, target affinity, avoids DNA:RNA
heteroduplex formation, but can also trigger inflammatory processes [116,119,123]. When
RNAse H degradation is intended, 2′ modifications in the target-binding core should
be avoided, only the extremities can carry modifications to increase stability (“gapmer”
structure) [125]. In many cases, the core of this gapmer structure contains deoxynucleotides,
with RNA flanking regions. These chimeric DNA-RNA molecules enable the formation of
DNA:RNA-duplexes with the target RNA, which are well recognized by Rnase H [123].

For specific drug delivery, ASO can carry specific conjugates. For example,
N-Acetylgalactosamine (GalNAc) bound to PS-ASO enhances delivery to hepatocytes,
while glucagon-like peptide 1 (GLP-1)-PS-ASOs are specifically delivered to the pancreatic
beta cells [123,126].

Challenges in using ASOs for in vitro knockdown include high nonspecific signals
by scramble sequences, no significant knockdown, and viability reduction [127,128]. As
ASO design is complicated, most researchers purchase them from manufacturers. Lacking
knowledge of the exact sequence or chemistry, it is much more difficult to interpret non-
specific signals and optimize design [129–131]. Nevertheless, there are already approaches
and studies using ASOs in therapeutic contexts to treat viral diseases, genetic alterations,
cancer, chronic inflammation, and COVID-19 [130,132,133].

4. Intracellular Delivery
4.1. Biochemical Methods
4.1.1. Lipid-Based Delivery

The first established lipid-based delivery method was lipofection (or lipoplex-based
delivery), in which nucleic acids, lipids and polymers form complexes [134]. These com-
plexes are mainly introduced into the cell by endocytosis, while also fusion to the membrane
occurs in some cases [135].

The cationic lipids of lipoplexes interact with and neutralize negatively charged nucleic
acids [136]. They contain a positively charged polar head, a hydrophobic tail, and a linker
bond [137]. The type, length, and orientation of linkers have a critical impact on the
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efficiency, toxicity, stability and biodegradability of lipoplexes [138]. In addition, linkers
can be designed to be environmentally sensitive and can be altered by pH, oxidation,
or enzymes [139,140]. The most widely used and best characterized cationic lipid is the
ether-linked 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) [141].

The neutral lipids contain phosphatidylethanolamines, phosphatidylcholines, or
cholesterol and very often 1,2-dioleoyl-3-glycero-phosphatidylethanolamine (DOPE) is
used. They decrease cytotoxicity and increase transfection efficiency [142,143].

However, lipofection shows to have several side effects and disadvantages.
The delivery of cationic lipids depends mostly on the cellular endocytosis system,

whose function varies between different cell types and is very sensitive to factors that
disrupt these endocytic pathways [144–146] Furthermore, lipofection reduces cell viability,
which is mainly caused by the cytotoxicity of their headgroups [147] but also by stimulating
pro-inflammatory pathways through binding of pattern recognition factors (PPRs) in
endosomes [145,148–151]. Beyond that, lipofection shows relatively slow and weak effects
caused by the high lysosomal degradation during endosomal delivery [152].

An approach to address these issues are multi-component lipoplexes, that in-
crease efficiency 10–100-fold by destabilizing the endosome and adjusting pH through
polymers [153–156]. Another possibility is the protection of nucleic acids by albumin, chi-
tosan, or protamine. In some cases chloroquine is added to improve endosomal release [157].

To bypass endocytosis, fusogenic liposomes were developed as another lipid-based
delivery agent [158]. Here DOPE, DOTAP, and an aromatic molecule are used to create a
cationic liposome that fuses directly with the negatively charged cell membrane without
requiring interaction with a protein [159–161]. This is achieved by electrostatic interactions
of a delocalized π-electron system [158,162]. As a result, nucleic acids are delivered directly
to the cytosol [163].

Neutral lipids can be used as a control element, as smaller head groups increase fusion
efficiency [162]. However, the ratios need to be optimized as neutral lipids on the one hand
reduce toxicity, but on the other hand can disrupt the interaction between the positive
liposome and the negative cell membrane [164]. Overall, fusogenic liposomes are more effi-
cient, cause less cell death and achieve much faster effects than lipoplex-based systems and
therefore represent an attractive alternative for in vitro gene expression experiments [145].

Especially in vivo, so-called lipid nanoparticles (LNPs) are used. Unlike standard
lipoplexes, they can carry ionizable lipids instead of cationic lipids, which are pH sensitive
and can adjust their electrical charge to the environment [165]. In addition, lipids can
be modified with PEG residues to be exposed on the surface of the liposome, preventing
serum protein uptake, phagocytosis, and aggregation, and can be functionalized to bind
specific targets, while often impeding cellular uptake and endosomal release [166].

4.1.2. Polycationic Polymers

Another approach for oligonucleotide delivery is represented by the use of polycationic
polymers that form polyplexes with negatively charged nucleic acids through electrostatic
interaction to facilitate membrane passage and improve stability [167]. Commonly used
polycationic polymers include polyethylenimine (PEI), polyaminoethyl methacrylate, and
dendrimers [168]. Polyplexes can be modified to allow active and passive targeting, stimu-
lation of endosomal release, and encapsulation of other drugs [168,169]. Despite numerous
modifications and developments in polymer technology, they still have low biodegrad-
ability, which often leads to cytotoxicity and limits their application [170]. DNA-inspired
nucleic acid vehicles may solve this problem [171].

4.2. Physical Methods
4.2.1. Electroporation

Delivery by electroporation is based on the principle that an electric field applied
to a cell increases its membrane permeability. This is achieved by raising the transmem-
brane potential (TMP) above a certain threshold. For example, in eukaryotic cells nor-
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mal TMP is at −0.07 V and the threshold at which permeability is increased is around
0.2–0.5 V [31] (Figure 2).
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Figure 2. Simplified principle of electroporation: Higher TMP causes the formation of random
hydrophobic pores. Liquid penetrates, making it more stable for lipids to rotate and form hy-
drophilic pores.

In this process, higher TMP raises the energy level of the membrane, causing forma-
tion of random hydrophobic pores. With TMP staying elevated, liquid enters the pores,
lipids turn around and form hydrophilic pores, which is called reversible electroporation
(RE) [172]. If the TMP is raised above a threshold (around 1 V), cells cannot restore a closed
membrane anymore, which is called irreversible electroporation (IRE) [173]

The TMP, which is critical for the efficiency of transmission and cell viability, is
determined by several parameters such as membrane diameter, cell shape and radius, the
applied electric field, and the angle of the field to the cell [174]. An important factor is
also the conductivity of extracellular fluid, membrane, and cytoplasm, which changes
dynamically during electroporation due to ion flow [175].

The pulse frequency has an enormous influence on efficiency. In most cases, low
frequencies of 1–10 Hz are chosen [176]. They are particularly suitable for longer pulses
(around 100 µs) [177]. Higher frequencies may cause side effects especially in vivo [178].
However, for nanosecond pulses, higher frequencies increase efficiency [179]. Very high
frequency pulses can accumulate in cells and reduce the threshold of energy required
for RE [180,181]. In contrast, very low frequencies (0.1–1 Hz) can increase efficiency by
electrosensitization of the membrane [182,183].

There are numerous different electroporation systems used in experimental re-
search. Based on their size, they can be divided in major 3 groups: macro-, micro-, and
nanoscale electroporation.

During macroscale electroporation, also called bulk or cuvette electroporation, mul-
tiple cells are treated at once in chambers with a diameter of at least 1 mm, providing a
straightforward, inexpensive, and high-throughput transfection method [184].

Microscale electroporation is performed in chambers or channels with a diameter of
micrometers. It offers many advantages over the bulk approach: smaller electrodes and lower
voltages are required, therefore being better at maintaining cell viability; as surface-to-volume
ratio of cells increases, there is less heat dissipation; the possibility of real-time monitoring;
electrode positions can be adjusted to allow electroporation of individual cells while main-
taining high-throughput through flow devices [185]. Microscale systems can have parallel or
transverse electrodes, contain channels of varying width for locally enhanced electric fields, or
specialized microfluids that enable droplet-based electroporation [186–188].

In nanoscale electroporation, charged fluids pass nanostructures (nanochannels, nanopores
or nanostraws). This allows electric fields to be applied very precisely to specific membrane
regions of a cell [189–191]. Nanofountains even exhibit a gun-like structure by applying an
electric field generated with an atomic force microscope through a microcatheter with an
opening of less than 1 µm [192]. While the precision of nanoscale electroporation cannot be
surpassed by other systems, nanoscale electroporation is very complex and expensive to
establish and has low throughput.
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Overall, electroporation is a relatively inexpensive and safe approach for intracellular
delivery. It is feasible for many cell types, especially primary cells where viral transduction
is often insufficient [193–199]. However, the system configuration to achieve an appropriate
TMP is challenging, because several factors need to be considered and high TMPs can
reduce viability through IRE, while when TMPs are too low, the applied energy is used for
heat dissipation, electrophoresis and electrolysis [173–175,200,201].

4.2.2. Sonoporation

During sonoporation, acoustic waves are applied to cells or the fluid surrounding
them to disrupt the cell membrane [202]. Most sonoporation systems rely on bubbles in the
surrounding fluid (bubble-based), whereas newer approaches can disrupt the membrane
without bubbles (non-bubble-based).

For bubble-based sonoporation, 3 main mechanisms are currently in use.
“Inertial cavitation” uses the jet flow generated by the bursting of bubbles due to sound

waves. This jet flow leads to rupture of the cell membrane, and the fluid stream generated
by the collapse also leads to membrane perforation [203,204]. However, irreversible pores
lead to cell death and unstable byproducts, such as temperature dissipation and reactive
oxygen species, which decrease viability [203,205,206].

“Stable cavitation” uses the shear stress generated by the fluid stream of oscillating
bubbles to disrupt membranes [207]. The approach has fewer side effects than inertial
cavitation, and the bubbles can also adhere directly to the cell membrane and open mi-
cropores [208–210]. However, this method requires precise bubble size and bubble-to-cell
distance, which is often difficult to maintain even under experimental conditions [209,211].

“Acoustic radiation force” as a third mechanism pushes bubbles through the cell
membrane, creating holes in it [212,213]. Factors such as bubble size, acoustic impedance,
and acoustic energy density must be adjusted to achieve satisfactory results [214].

The challenges of bubble-based sonoporation are the need for a contrast agent, a
specific bubble distance and bubble-to-cell ratio [209,211,215].

In non-bubble-based mechanisms, three main forces are applied to the cell: acoustic
radiation force, shear force due to acoustic streaming and energy applied by an adherent
substance stimulated by acoustic waves [216–218]. These forces stress the cell membrane,
leading to pore formation. The radiation force is used to push the cells to a pressure node
where they can be observed, or to push them through constricting nozzles or against walls to
increase membrane stress [219–221]. Cells attached to acoustically stimulated substrates are
directly exposed by their attachment [222]. High frequency acoustic waves as concentrated
acoustic radiation can precisely target one single cell [223,224]. Hyper-frequency acoustic
waves or focused transducers can even achieve membrane disruption by the stream of
acoustic waves [225,226].

In summary, sonoporation is a promising tool for intracellular delivery that is suitable
for various cell types and cargoes. It can be combined with other delivery methods [227,228].
Nevertheless, there are still many challenges: thermal dissipation can affect cell viabil-
ity, reactive oxygen species can cause apoptosis and necrosis, and genotoxicity has also
been observed [229–232].

4.2.3. Microinjection

The oldest method to transfer genetic material into a cell is microinjection. Using
a glass pipette with a diameter of 0.5–15 µm, fluids can be injected into floating and
adherent cells [233]. This allows for targeted delivery into single cells, such as zygotes,
to generate transgenic organisms [234]. However, this method has a particularly low
throughput and requires an experienced researcher for cell holding, injection site selection,
and volume [235]. Automated microinjection systems are currently being developed to
address this challenge [235].
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4.3. Viral Transduction

In 1967, it was discovered that adenoviruses can transiently regulate the gene expres-
sion of a cell [236]. The adenovirus genome contains so-called Early genes (E genes), that
control the viral life cycle. Of these, E1A is required to initiate viral replication, while E3
does not play a critical role for viral survival or replication [237].

Adenoviruses used for intracellular delivery include replication defective and con-
ditionally replicating adenoviruses. Replication defective adenoviral vectors lack E1 and
E3. Therefore, they cannot replicate but provide space for insertion of external genes [238].
They are commonly used for gene delivery in in vitro research. For construction, the gene
of interest (GOI) is cloned into a plasmid vector. The final plasmids contain at least the
GOI (usually shRNA in case of RNAi) in an open reading frame (ORF), a promoter and
a marker gene. The adenovirus is then transfected into packaging cells that express E1A
and allow adenoviral reproduction [239,240]. The replicated adenovirus, particles lacking
DNA and cellular debris are separated by ultracentrifugation so that the final adenovirus
contains the GOI and lacks E1 and E3, preventing it from replicating in humans. Adenoviral
vectors release their genome into the nucleus, where it is not integrated into the genome
but remains in the episomal state for transcription, is retained much longer than non-virally
delivered nucleic acids, but considerably reduced by cell division [241,242] (Figure 3).
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Figure 3. Production of recombinant adenoviruses (rAdV): A shuttle vector containing the GOI
is recombined with a plasmid containing adenoviral genes but lacking E1 and E3 (pAd). The
resulting pAd-GOI is transfected into packaging cells that express E1A and allow replication of rAdV.
Ultracentrifugation with CsCl (cesium chloride) is used to separate rAdV from cellular debris and
finally dialyzed to obtain purified rAdV.

Conditionally replicating adenoviruses (CRA) have the E1A promoter replaced by a
cancer-specific one [243]. This modification restricts viral replication to cancer cells, while
benign cells are unaffected. Nevertheless, its clinical application has not been successful
so far. Target specific CRAs carry promoters that depend on several factors, and viral
replication is possible only when these factors are present [244].

Adeno-associated viruses (AAV are non-enveloped, single-stranded DNA viruses
belonging to the Parvoviridae family [245]. Because they have low pathogenicity and
immunotoxicity, a high safety profile in clinical trials, long-lasting transgene expression,
and a simple genome that is easy to be modified, AAV are promising candidates for in vivo
drug delivery [245–247]. However, AAV are dependent parvoviruses as their replication
is dependent on other viruses [248]. Despite intensive research on stable production lines
in recent decades, the production of high quantities of AAV is very time-consuming and
costly [248]. In addition, AAV can cause damage to insertion sites and have limited capacity
for transgene cargo [249,250]. Overall, viral delivery is still the most efficient and durable
method for gene transfer into most cell types [251]. Nevertheless, its price and especially its
higher risk profile for insertional mutagenesis and immune responses dampen enthusiasm
about its use and potential, especially for in vivo therapies [252].

Another common virus family for gene transfer are lentiviruses. In lentiviruses, genes
encoding viral structural proteins can be replaced by GOIs, and unlike adenoviruses, they
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integrate their genes into the genome of infected cells [253,254]. For this reason, modulation
of gene expression with lentiviruses is exceptionally long and stable, but also entails more
oncogenic risks depending on the insertion site. Lentiviruses are well suited for gene trans-
fer as they elicit little immune response while inducing stable transgene expression [255].

5. Conclusions

Numerous discoveries in the field of RNA interference and intracellular delivery
have been reported in the past few decades. Today, researchers can choose from a vast
array of methods to perform their gene expression experiments. However, knowledge of
background processes, pitfalls, and compatibilities with cells and cargo is indispensable for
appropriate method selection, correct application, and meaningful interpretation. For this
reason, the review provides an overview and orientation for all those approaching RNA
interference and relative in vitro application.
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Abbreviations

Abbreviation Definition
hAgo2 Human Protein argonaute-2
ASO Antisense Oligonucleotides
ATP Adenosine triphosphate
COVID-19 Coronavirus disease 2019
CRA Conditionally replicating adenovirus
CsCl Cesium chloride
DGCR8 protein DiGeorge syndrome critical region 8 protein
DOPE 1,2-dioleoyl-3-glycero-phosphatidylethanolamine
DOTAP 1,2-dioleoyl-3-trimethylammonium-propane
dsDNA Double stranded DNA
E1–4 Early-transcribed regions 1–4 in adenoviruses
esiRNA Endoribonuclease-produced siRNA pools
GalNAc N-Acetylgalactosamine
GLP-1 glucagon-like peptide 1
GOI gene of interest
GW182 Protein Gawky
HSP90 Heat shock protein 90
IFN Interferon
IL6 Interleukin-6 gene
IRE irreversible electroporation
IRF Interferon regulatory factor
ISG IFN-stimulated genes
LNA locked nucleic acid
m7g 7-methylguanosine
miRNA microRNA
mRNA messengerRNA
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OAS oligoadenylate synthetases
ORF open reading frame
PABPC protein poly(A)-binding protein cytoplasmatic
piRNA PIWI-interacting RNA
PIWI P-element induced wimpy testis
PKR Protein kinase R
PPR pattern recognition factor
pre-miRNA Precursor-miRNA
pri-miRNA Primary-miRNA
PS-ASO Phosphorothioate-modified ASO
PTGS post-transcriptional gene silencing
PTM Posttranscriptional modification
rAdV recombinant adenoviruses
RdRP RNA-dependent RNA polymerase
RE reversible electroporation
RISC RNA-induced silencing complex
RNAi RNA interference
RNAPol RNA polymerase
RNAse Ribonuclease
shRNA Short hairpin RNA
siRNA Small interfering RNA
sRNA Small RNA
TE transposable element
TGS transcriptional gene silencing
TLR Toll-like receptor
TMP transmembrane potential
TNF-alpha Tumor necrosis factor alpha
TRBP Tar-RNA-binding protein
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182. Dermol, J.; Pakhomova, O.N.; Pakhomov, A.G.; Miklavčič, D. Cell Electrosensitization Exists Only in Certain Electroporation
Buffers. PLoS ONE 2016, 11, e0159434. [CrossRef]

183. Pakhomova, O.N.; Gregory, B.W.; Khorokhorina, V.A.; Bowman, A.M.; Xiao, S.; Pakhomov, A.G. Electroporation-induced
electrosensitization. PLoS ONE 2011, 6, e17100. [CrossRef]

184. Potočnik, T.; Maček Lebar, A.; Kos, Š.; Reberšek, M.; Pirc, E.; Serša, G.; Miklavčič, D. Effect of Experimental Electrical and
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