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Abstract: The inkjet printing technology based on piezoelectric micro-jets can effectively realize the
efficient and high-precision processing of special-shaped structures. In this work, a nozzle-driven
piezoelectric micro-jet device is proposed, and its structure and micro-jet process are described.
ANSYS two-phase, two-way fluid–structure coupling simulation analysis is carried out, and the
mechanism of the piezoelectric micro-jet is described in detail. The effects of voltage amplitude, input
signal frequency, nozzle diameter and oil viscosity on the injection performance of the proposed
device are studied, and a set of effective control methods is summarized. The correctness of the
piezoelectric micro-jet mechanism and the feasibility of the proposed nozzle-driven piezoelectric
micro-jet device are proved by experiments, and an injection performance test is carried out. The
experimental results are consistent with the ANSYS simulation results, which confirms the correctness
of the experiment. Finally, the stability and superiority of the proposed device are verified via
comparation experiments.

Keywords: piezoelectric micro-jet; performance control method; coupling analysis

1. Introduction

Piezoelectric materials are widely used, and piezoelectric micro-jets are one of their
important applications [1–6]. A piezoelectric micro-jet is a technology based on piezoelec-
tric drive. When a pulse voltage is applied to a piezoelectric vibrator, the piezoelectric
vibrator vibrates and generates acoustic pressure waves in the cavity. After the propagation
and reflection of the pressure waves, the pressure waves propagating to the nozzle are
superimposed on each other to make the droplet eject. Piezoelectric micro-jet technology
can realize droplet injection on demand and has the advantages of high precision, fast re-
sponse speed and high efficiency [7]. Due to its unique advantages, piezoelectric micro-jets
have been widely used in many industrial fields, such as medical treatment [8], biology [9],
underwater drive [10], micro-fluid filtration [11], additive manufacturing [12], etc.

Modern micro-structure products are developing rapidly in the direction of being
compact, complicated and multi-functional, which requires a higher level of manufac-
turing and processing of products. Additive manufacturing technology was born under
such a background [13]. Additive manufacturing technology, also commonly known as
3D printing, is a key enabling technology related to many industrial fields. It breaks
through the limitations of traditional processing technology and realizes the efficient and
high-precision processing of special-shaped structures [14,15]. At present, the additive
manufacturing technologies used in the engineering field mainly include fused deposi-
tion modeling [16], selective laser sintering [17] and inkjet printing [18]. Among these
technologies, the inkjet printing technology based on piezoelectric micro-jets has been
paid more and more attention by researchers due to its advantages such as high printing
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accuracy, fast dynamic response, simple structure, no electromagnetic interference and
green environment protection [19].

The existing piezoelectric micro-jet devices can be roughly divided into four structural
types: squeeze type, bend type, push type and shear type [13]. Ulmke et al. [20] proposed a
squeeze-type piezoelectric micro-jet device, which could generate droplets with a diameter
ranging from 10 microns to 100 microns, which was equivalent to the volume of the ejected
droplets as low as 0.6 pl. Li et al. [21] designed a bend-type piezoelectric micro-jet device
to realize the active lubrication of space bearings and micro-fluid lubrication on demand.
The minimum volume of oil ejected by the device could reach 0.012 L. Gross et al. [22]
proposed a push-type piezoelectric micro-jet device, which used a nozzle with a diameter
of 40 um and could control the droplet volume within the range of 100 PL to 250 PL. Cheng
et al. [23] proposed a shear-type piezoelectric printhead with a special polarization design,
and the maximum displacement was 400 nm at a driving voltage of 120 Vpp.

Although the existing piezoelectric micro-jet devices have a series of advantages such
as high precision of injection control and fast dynamic response speed, they are still prone
to problems such as the existence of bubbles in the cavity, leading to the degradation of
injection performance or even failure, and complicated disassembly after the failure of
ceramics. In this work, a nozzle-driven piezoelectric micro-jet device is proposed, which
adopts a drive mode of nozzle vibration with piezoelectric ceramic pasted at the nozzle part.
Compared with the traditional cavity vibration method (in the traditional piezoelectric
micro-jet, the vibrator is a part of the fixed surface of the cavity, and the nozzle does not
move), the problem of reducing the injection performance due to the bubble entering the
cavity is avoided. Moreover, the external nozzle has stronger interchangeability. When
the ceramic is damaged, it is not necessary to disassemble the whole device and directly
re-paste the new ceramic.

2. Structure and Mechanism

The nozzle-driven piezoelectric micro-jet device proposed in this work is shown in
Figure 1, in which Figure 1a is the overall structure and Figure 1b is the section view of
the device. The device is mainly composed of a piezoelectric vibrator, cavity and infusion
tube, through which, viscosity lubrication oil is transported and stored in the cavity. The
piezoelectric vibrator is the core component of the micro-jet device, which is composed
of a PZT ceramic and a copper sheet and is fixed on the cavity via epoxy resin. In order
to prevent the piezoelectric vibrator from short circuiting when it encounters viscous
lubrication oil, the external surface of the PZT ceramic is insulated.
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Figure 1. The overall structure and section view of piezoelectric jet device: (a) The overall structure 
of piezoelectric jet device; (b) the section view of piezoelectric jet device. 

  

Figure 1. The overall structure and section view of piezoelectric jet device: (a) The overall structure
of piezoelectric jet device; (b) the section view of piezoelectric jet device.

A nozzle is drilled in the center of the piezoelectric vibrator with a high-precision
drilling machine, and the operation process of ejecting oil is shown in Figure 2. When the
piezoelectric vibrator is not working, as shown in Figure 2a, the vibrator always keeps
contact with the oil. When periodic square wave signals are applied in the vibrator, the
vibrator vibrates and produces deformation, and the oil begins to periodically eject from the
nozzle. As shown in Figure 2b, when the vibrator generates concave deformation, the oil is
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compressed, and instantaneous pulsating high pressure is generated in the cavity. Under
the action of high pressure, the droplets are driven to converge at the nozzle and obtain
kinetic energy. As shown in Figure 2c, when the vibrator generates convex deformation,
the cavity expands, resulting in pulsating negative pressure in the cavity. Under the dual
action of negative pressure and acquired kinetic energy, the liquid droplets are separated
from the oil in the cavity and then fly out to form liquid droplets. According to the above
analysis, the droplets are ejected periodically and uniformly with the periodic deformation
of the piezoelectric vibrator.
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Figure 2. The ejection process of droplets: (a) When no signal is applied; (b) when concave deforma-
tion occurs; (c) when convex deformation occurs.

In order to further reveal the principle of the piezoelectric micro-jet and study the
influence of signal, oil viscosity and nozzle size on the injection performance, we use
ANSYS software to carry out a two-phase, two-way fluid–structure coupling analysis on
the designed piezoelectric micro-jet device. The simulation model is shown in Figure 3. As
can be seen from the axonal diagram of the model in Figure 3a, the simulation model is
composed of a cavity, copper sheet, PZT ceramics, liquid inlet and liquid outlet. The solid
model of the cavity and infusion tube is removed, and the internal fluid model of the cavity
and infusion tube is added. As can be seen from the front view of the model in Figure 3b, in
order to simulate the injection of oil from the nozzle into the air, a fluid domain simulating
the external air environment is added on the right side of the nozzle. The piezoelectric
vibrator is set as the structural domain, and the cavity part is set as the fluid domain (oil).
PZT-5H is selected as the material of PZT ceramics, and its Young′s modulus is 56 Gpa,
Poisson’s ratio is 0.36 and density is 7600 kg/m3. The copper sheet is made of red copper
with a Young′s modulus of 108 Gpa and Poisson′s ratio of 0.32. The thickness of copper
and PZT ceramics is 0.2 mm. The transient structure analysis module and fluent module
are used to simulate the two-phase, two-way fluid–structure coupling analysis.
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In the transient analysis module, the fixed boundary condition is applied to the
circumference of the copper sheet. The surface where the piezoelectric vibrator contacts the
fluid domain is set as the fluid–solid interface, and a square wave pulse signal is applied
to the piezoelectric vibrator. In the fluent module, the fluid domain is meshed via the
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sweep method, and the dynamic mesh method (remesh and smooth) is used to simulate
the dynamic change in the fluid domain caused by the deformation of the piezoelectric
vibrator through the coupling surface. The inlet of the fluid domain is set to the pressure
inlet of 100 MPa constant pressure, and the outlet of the fluid domain is set to the pressure
outlet of 0 MPa constant pressure.

In order to achieve the best injection effect, it is necessary to find an optimal injection
frequency. The acoustic structure coupling analysis of the piezoelectric vibrator is carried
out, that is, the bidirectional coupling frequency response analysis considering fluid re-
action. First, the frequency with the largest amplitude is found within a large frequency
range, and then, the frequency analysis range shrinks towards this frequency to obtain the
exact optimal frequency value. The results of the amplitude–frequency response are shown
in Figure 4. Figure 4a shows the result of the amplitude–frequency response in a large
frequency analysis range, and Figure 4b shows the exact optimal frequency value. It can be
seen that the vibration amplitude of the piezoelectric vibrator is maximum at 8090 Hz, so
8090 Hz is set as the optimal working frequency in this work.
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Figure 4. The results of the amplitude–frequency response: (a) The result of amplitude–frequency
response in a large frequency analysis range; (b) the exact optimal frequency value.

For the follow-up study on the influence of a single parameter on the injection state, the
basic parameters are set as follows: voltage amplitude is 100 V, signal frequency is 8090 Hz,
nozzle diameter is 0.4 mm, and oil viscosity is 200 Pa.s. The single-droplet-injection two-
phase flow diagram of the piezoelectric micro-jet device under standard parameters is
shown in Figure 5. The mechanism of the piezoelectric micro-jet will be elaborated upon in
Figure 5. At t = 0 s, the device has no signal input and the liquid level remains stationary. At
t1, the high-level pulse signal is applied to the piezoelectric vibrator, and the vibrator begins
to produce concave deformation and squeezes the cavity to produce positive pressure,
resulting in the oil beginning to converge to the nozzle. From t1 to t3, the vibrator continues
to receive positive voltage signal, the cavity keeps positive pressure and the oil continues
to be ejected out. At t4, the pulse signal changes to a low level after the falling edge. At this
time, the vibrator begins to produce convex deformation, and the cavity begins to expand,
negative pressure begins to be generated and part of the oil begins to be sucked back. At t5,
it can be seen that part of the droplets are sucked back, and the droplets are completely
separated from the oil and ejected outward. The simulation results show the feasibility of
the piezoelectric micro-jet and describe the generation process of droplets in detail.
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The single-injection pressure diagram of the piezoelectric micro-jet device under stan-
dard parameters is shown in Figure 6, in which Figure 6a corresponds to the concave
deformation of the piezoelectric vibrator, and Figure 6b corresponds to the convex defor-
mation of the piezoelectric vibrator. As can be seen from Figure 6a, when the piezoelectric
vibrator generates concave deformation, positive pressure is formed inside the cavity,
which gives kinetic energy to the oil and squeezes the oil to the nozzle. As can be seen
from Figure 6b, when the piezoelectric vibrator generates convex deformation, negative
pressure is generated inside the cavity, which helps the droplet to separate from the oil.
The simulation results are consistent with the previous analysis of droplet ejection.
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Figure 6. The single-injection pressure diagram: (a) The pressure diagram when the piezoelectric
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The injection velocity diagram of the piezoelectric micro-jet device under standard pa-
rameters is shown in Figure 7. Figure 7a,b show the velocity diagram of the droplet during
the convergence of the droplet at the nozzle. Figure 7c,d show the velocity diagram of the
droplet during the separation and ejection of the droplet from the oil. From Figure 7a–d, it
can be seen that with the gradual ejection of the droplet, the kinetic energy of the droplet is
gradually lost due to the need to overcome the viscous resistance of the oil, and the velocity
of the droplets is gradually reduced.
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3. Performance Controlling

In the above section, we describe in detail the basic principle of the piezoelectric
micro-jet and the formation process of single-droplet injection under standard parameters.
In order to propose an injection performance control method for this device, this section
will study the influence of various parameters—voltage amplitude, signal frequency, oil
viscosity and nozzle diameter—on the injection performance. The injection performance
considered in this work mainly includes droplet volume, droplet outlet velocity and ejection
state. The outlet flow rate of the nozzle is integrated with time to obtain the droplet volume,
and the droplet outlet velocity and ejection state are the droplet outlet velocity and ejection
state at which the droplet is separated from the oil and is about to eject. In order to ensure
that droplets can be fully ejected, the total duration of this simulation is set as 0.0003 s,
which is about twice the period of a single pulse.

The voltage amplitude can affect the injection performance of the piezoelectric micro-
jet device by changing the vibration amplitude of the piezoelectric vibrator. Firstly, the
influence of voltage amplitude variation on the injection performance of the device is
studied, and Figures 8–10 reflect the influence of voltage amplitude variation on device
injection performance. Figure 8 shows the change in the droplet ejection state caused by
the change in voltage amplitude. It can be seen that when the voltage is too low, such as
50 V and 75 V, droplets cannot be formed and ejected within a total duration of 0.0003 s,
while when the voltage amplitude is higher than 100 V, droplets can be ejected normally,
and the larger the voltage amplitude, the earlier the droplet is ejected. If it is difficult to
eject droplets, we can increase the voltage amplitude of the input signal.

Figure 9 shows the change in droplet outlet velocity caused by the change in voltage
amplitude. It can be observed that the droplet outlet velocity increases gradually with the
increase in voltage amplitude. Figure 10 reflects the influence of voltage amplitude change
on the volume of droplets ejected. It can be seen that the oil is first extruded inwards
and then injected. With the increase in voltage amplitude, the volume of droplets ejected
gradually increases, and the injection efficiency increases while the control accuracy of the
droplets decreases. Therefore, if you want to reduce the difficulty of injection or improve



Micromachines 2023, 14, 1267 7 of 17

the outlet velocity and injection efficiency of the droplets, you can appropriately increase
the voltage amplitude, and if you want to improve the control accuracy of the droplets, you
can appropriately reduce the voltage amplitude.
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Figure 9. The change in droplet outlet velocity caused by the change in voltage amplitude. 

  

Figure 9. The change in droplet outlet velocity caused by the change in voltage amplitude.
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Figure 10. The change in the volume of droplets ejected caused by the change in voltage amplitude.



Micromachines 2023, 14, 1267 8 of 17

Signal frequency also has an influence on the injection performance. When the fre-
quency of the applied signal is just under the frequency of the vibrator′s operating mode,
the amplitude of the vibrator will increase, and the injection performance will be affected
by changing the vibration amplitude of the vibrator. Figures 11–13 show the influence
of the change in signal frequency on the injection performance. It can be seen from the
comprehensive analysis of Figures 11–13 that the change in signal frequency has little
influence on the injection performance of the droplet within the range of 7940–8240 Hz.
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Figure 11. The change in droplet ejection state caused by the change in signal frequency. 

  

Figure 11. The change in droplet ejection state caused by the change in signal frequency.
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Figure 12. The change in droplet outlet velocity caused by the change in signal frequency. 

  

Figure 12. The change in droplet outlet velocity caused by the change in signal frequency.
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Figure 13. The change in the volume of droplets ejected caused by the change in signal frequency.
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Changing the viscosity of the oil will change the viscous resistance of the liquid, and
a change in the viscous resistance will lead to a change in kinetic energy loss during the
movement of the droplets. The influence of the change in the oil viscosity on the injection
performance is shown in Figures 14–16. Figure 14 reflects the influence of the change
in oil viscosity on the ejection state of the droplets. It can be seen that with the increase
in oil viscosity, the droplets are more difficult to be ejected, and the time of ejection is
later. Figure 15 shows the influence of the change in oil viscosity on the outlet velocity
of the droplet. With the increase in oil viscosity, the larger the kinetic energy loss of the
droplet, the lower the outlet velocity. Figure 16 reflects the influence of the change in oil
viscosity on the volume of droplets ejected. The analysis shows that when the viscosity is
less than 100 Pa.s, the higher the oil viscosity, the smaller the volume of droplets ejected,
and the higher the control accuracy but the lower the efficiency. When the oil viscosity is
between 100 and 200 Pa.s, the oil viscosity has little influence on the volume of droplets.
The comprehensive analysis shows that when the oil viscosity is greater than 100 Pa.s, the
increase in the oil viscosity has a weak effect on the improvement in the control accuracy,
but it will reduce the droplet outlet velocity and increase the difficulty of droplet injection,
which will lead to the unsatisfactory injection performance of the device.

Micromachines 2023, 14, x FOR PEER REVIEW 15 of 28 
 

 

 

The oil viscosity is 125cs

The oil viscosity is 150cs The oil viscosity is 175cs The oil viscosity is 200cs

The oil viscosity is 10cs The oil viscosity is 50cs The oil viscosity is 100cs

0.62T 0.628T 0.637T 0.641T

0.653T 0.6572T 0.682T

1

9.000×10-1

0

8.000×10-1

7.000×10-1

6.000×10-1

5.000×10-1

4.000×10-1

3.000×10-1

2.000×10-1

1.000×10-1

1

9.000×10-1

0

8.000×10-1

7.000×10-1

6.000×10-1

5.000×10-1

4.000×10-1

3.000×10-1

2.000×10-1

1.000×10-1

1

9.000×10-1

0

8.000×10-1

7.000×10-1

6.000×10-1

5.000×10-1

4.000×10-1

3.000×10-1

2.000×10-1

1.000×10-1

1

9.000×10-1

0

8.000×10-1

7.000×10-1

6.000×10-1

5.000×10-1

4.000×10-1

3.000×10-1

2.000×10-1

1.000×10-1

1

9.000×10-1

0

8.000×10-1

7.000×10-1

6.000×10-1

5.000×10-1

4.000×10-1

3.000×10-1

2.000×10-1

1.000×10-1

1

9.000×10-1

0

8.000×10-1

7.000×10-1

6.000×10-1

5.000×10-1

4.000×10-1

3.000×10-1

2.000×10-1

1.000×10-1

1

9.000×10-1

0

8.000×10-1

7.000×10-1

6.000×10-1

5.000×10-1

4.000×10-1

3.000×10-1

2.000×10-1

1.000×10-1

 
Figure 14. The change in droplet ejection state caused by the change in oil viscosity. 

  

Figure 14. The change in droplet ejection state caused by the change in oil viscosity.
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Figure 15. The change in droplet outlet velocity caused by the change in oil viscosity. 

  

Figure 15. The change in droplet outlet velocity caused by the change in oil viscosity.
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of droplets ejected by the piezoelectric micro-jet device gradually increases. If the size of 
droplets ejected is to be increased to improve the injection efficiency, the nozzle diameter 
can be increased. 

  

Figure 16. The change in the volume of droplets ejected caused by the change in oil viscosity.

The influence of the change in nozzle diameter on the injection performance is shown
in Figures 17–19. Figure 17 shows the influence of the change in nozzle diameter on the
ejection state of the droplet. With the increase in nozzle diameter, the stability of the droplet
slightly decreases, and the tail begins to jitter. The larger the diameter of the nozzle, the
greater the difficulty of the droplet ejection and the later the droplet ejection time. Figure 18
shows the influence of the nozzle diameter change on the droplet outlet velocity. With
the increase in the nozzle diameter, the droplet outlet velocity gradually decreases. The
nozzle diameter can be appropriately reduced if the initial kinetic energy of the droplet
is to be increased. Figure 19 shows the influence of the nozzle diameter change on the
volume of droplets. It can be seen that with the increase in the nozzle diameter, the volume
of droplets ejected by the piezoelectric micro-jet device gradually increases. If the size of
droplets ejected is to be increased to improve the injection efficiency, the nozzle diameter
can be increased.
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Figure 17. The change in droplet ejection state caused by the change in nozzle diameter. 

  

Figure 17. The change in droplet ejection state caused by the change in nozzle diameter.
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Figure 18. The change in droplet outlet velocity caused by the change in nozzle diameter. 

  

Figure 18. The change in droplet outlet velocity caused by the change in nozzle diameter.
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Figure 19. The change in the volume of droplets ejected caused by the change in nozzle diameter. 

Based on the above simulation analysis, it can be seen that the frequency adjustment 
in a small range has little influence on the injection performance of the piezoelectric micro-
jet device. In order to reduce the difficulty of injection, improve the injection efficiency 
and increase the droplet outlet velocity and volume, the following aspects can be consid-
ered: increasing the voltage amplitude of the input signal, reducing the nozzle diameter 
and using low viscosity oil. If the main consideration is to improve the accuracy of droplet 
control, we can try to reduce the voltage amplitude of the input signal, increase the nozzle 
diameter and use high-viscosity oil. The voltage amplitude and the nozzle diameter have 
significant influences on the droplet injection performance, while the oil viscosity has little 
influence on the droplet volume, namely the control accuracy, when it is greater than 100 
Pa.s. However, as the viscosity of the oil increases, the difficulty of droplet injection increases 
and the outlet velocity decreases. Therefore, the piezoelectric micro-jet device is more suit-
able for ejecting droplets below 100 Pa.s. In the above simulation analysis, the micro-jet de-
vice can achieve the highest accuracy of 15.53 nL with a nozzle diameter of 0.2 mm. Under 
the voltage amplitude of 200 V, the maximum injection volume of 82.21 nL can be reached; 
that is, the device proposed in this work has both high efficiency and high precision. 
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Figure 19. The change in the volume of droplets ejected caused by the change in nozzle diameter.

Based on the above simulation analysis, it can be seen that the frequency adjustment in
a small range has little influence on the injection performance of the piezoelectric micro-jet
device. In order to reduce the difficulty of injection, improve the injection efficiency and
increase the droplet outlet velocity and volume, the following aspects can be considered:
increasing the voltage amplitude of the input signal, reducing the nozzle diameter and
using low viscosity oil. If the main consideration is to improve the accuracy of droplet
control, we can try to reduce the voltage amplitude of the input signal, increase the nozzle
diameter and use high-viscosity oil. The voltage amplitude and the nozzle diameter have
significant influences on the droplet injection performance, while the oil viscosity has
little influence on the droplet volume, namely the control accuracy, when it is greater than
100 Pa.s. However, as the viscosity of the oil increases, the difficulty of droplet injection
increases and the outlet velocity decreases. Therefore, the piezoelectric micro-jet device is
more suitable for ejecting droplets below 100 Pa.s. In the above simulation analysis, the
micro-jet device can achieve the highest accuracy of 15.53 nL with a nozzle diameter of
0.2 mm. Under the voltage amplitude of 200 V, the maximum injection volume of 82.21 nL
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can be reached; that is, the device proposed in this work has both high efficiency and high
precision.

4. Experiment Test

In the above section, the basic mechanism of micro-droplet injection is explained
through ANSYS two-phase, two-way fluid–structure coupling analysis, and the influence
of various parameters on the device′s injection performance is analyzed. In this section, an
experimental system will be set up to shoot micro-droplet injection videos with industrial
cameras to further verify the feasibility of the proposed device.

In order to verify the feasibility of the proposed device, the experimental system is
built, as shown in Figure 20. The experimental system mainly consists of a prototype, a
personal computer (PC), a signal generator (DG4162, RIGOL, Beijing, China), a power
amplifier (ATA-4051, Aigtek Inc., Xi’an, China) and an industrial camera. The experimental
steps are as follows: firstly, the prototype is injected with a certain viscosity of viscosity
lubrication oil; then, a given square wave signal is applied in the prototype through the
signal generator and power amplifier, and then, the industrial camera is started to record
the injection process. Finally, the video taken with the industrial camera is exported and
analyzed using the PC.
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Corresponding to the above simulation analysis, the experimental parameters are
set as follows: voltage amplitude, 100 V; square wave signal frequency, 728 Hz; nozzle
diameter, 0.4 mm; fluid viscosity, 200 Pa.s. The results of the injection experiment are shown
in Figure 21. Figure 21a shows the state of the piezoelectric micro-jet device when it is not
working, and Figure 21b–d are the injection diagrams of the piezoelectric micro-jet device
after the given square wave signal is applied. Figure 21b–d, respectively, correspond to the
droplet just being squeezed out of the nozzle, the droplet separating from the oil and being
ejected and forming satellite droplets, which are in accordance with the simulation in the
above section, further verifying the correctness of the injection mechanism revealed. It can
be seen from the observation that after the device works, the size of the droplets ejected
is uniform and the injection state is stable, which can realize long-term continuous and
stable injection, which confirms the correctness of the piezoelectric micro-jet principle and
the feasibility of the proposed piezoelectric micro-jet device. The experimental video is
attached as Video S1.
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Figure 21. The results of the injection experiment: (a) The state of the piezoelectric micro-jet device
when it is not working; (b) the droplet just being squeezed out of the nozzle; (c) the droplet separating
from the oil and being ejected; (d) the formation of satellite droplets.

In this work, the verification experiment is carried out according to the simulation
content in the previous part. The main research is to investigate the outlet velocity and
droplet volume of the piezoelectric micro-jet device under different voltage amplitudes,
signal frequencies, oil viscosities and nozzle diameters. The standard experimental con-
ditions are set as follows: voltage amplitude, 100 V; signal frequency, 8090 Hz; nozzle
diameter, 0.4 mm; oil viscosity, 200 Pa.s. The experimental results of the effects of voltage
amplitude, signal frequency, oil viscosity and nozzle diameter on droplet outlet velocity
when other experimental conditions remain unchanged are shown in Figure 22. The ex-
perimental results are consistent with the simulation results in the above part, and the
errors are all within the acceptable range. The maximum error of Figure 22a–d is 11.93%,
11.53%, 8.797% and 11.55%, respectively. The experimental results of the effects of voltage
amplitude, signal frequency, oil viscosity and nozzle diameter on droplet volume when
other experimental conditions remain unchanged are shown in Figure 23. The experimental
results are consistent with the simulation results in the above section, and the errors are all
within the acceptable range. The maximum error in Figure 23a–d is 12.17%, 6.92%, 4.86%
and 9.61%, respectively.
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Figure 22. The experimental results of voltage amplitude, signal frequency, oil viscosity and nozzle
diameter on droplet outlet velocity: (a) The experimental results of voltage amplitude on droplet
outlet velocity; (b) the experimental results of signal frequency on droplet outlet velocity; (c) the
experimental results of oil viscosity on droplet outlet velocity; (d) the experimental results of nozzle
diameter on droplet outlet velocity.
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Figure 23. The experimental results of voltage amplitude, signal frequency, oil viscosity and nozzle
diameter on droplet volume: (a) The experimental results of voltage amplitude on droplet volume;
(b) the experimental results of signal frequency on droplet volume; (c) the experimental results of oil
viscosity on droplet volume; (d) the experimental results of nozzle diameter on droplet volume.

The nozzle-driven piezoelectric micro-jet device proposed in this work is not like the
traditional piezoelectric micro-jet device; due to the entry of bubbles, the stability of the
device will gradually decline as the work progresses. Once the bubbles are entrapped,
the air bubble grows via rectified diffusion and results in a malfunction [13]. In addition
to excellent stability, the piezoelectric micro-jet device proposed in this paper also has
good accuracy and ejection speed. The device has a maximum drop outlet velocity of
29.056 m/s at a voltage amplitude of 200 V and a maximum drop accuracy of 13.864 nL at
a nozzle diameter of 0.2 mm. A piezoelectric micro-jet device with a pin joint designed by
Deng et al. is a typical traditional piezoelectric micro-jet device. Under the condition of an
operating frequency of 100 HZ and voltage amplitude of 100 V, 1 Pa.s adhesive is sprayed,
and its maximum control accuracy can reach about 35 nL [24]. The piezoelectric micro-jet
device proposed by Li et al. can obtain the injection speed of 4.7 m/s under the voltage
amplitude of 130 V, and the control accuracy can reach 4.7 nL under the signal of a 50%
duty cycle [25]. In summary, compared with the traditional piezoelectric micro-jet device,
the nozzle-driven piezoelectric micro-jet device proposed in this work performs well in
terms of control accuracy and ejection speed, while in terms of stability, the nozzle-driven
piezoelectric micro-jet device is better because it is not affected by bubbles.

In order to prove the stability of the proposed nozzle-driven piezoelectric micro-jet
device, a traditional piezoelectric micro-jet device is fabricated in this work, and its internal
structure is shown in Figure 24a. The cavity structure and experimental settings of the
two sets of experimental devices are the same, and the experimental system built is shown
in Figure 24b. The comparison experiment steps are as follows: under the settings of a
voltage amplitude of 100 V, signal frequency of 8090 Hz, nozzle diameter of 0.4 mm and oil
viscosity of 200 cs, the same continuous pulse signal is applied to the two sets of devices
through a signal generator and power amplifier, and the volume of droplets ejected by
the devices under multiple pulses is measured. The experimental results are shown in
Figure 25. The analysis shows that both sets of devices have good ejection conditions in
the initial few cycles, and both have high control accuracy. However, with the increase in
the total working time, the ejection performance of the traditional piezoelectric micro-jet
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device gradually decreases due to the entry of bubbles until the device almost fails. Based
on the above and experimental results, it can be seen that the nozzle-driven piezoelectric
micro-jet device proposed in this work has good stability and control accuracy compared
with the traditional piezoelectric micro-jet device.
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experimental system: (a) The internal structure of the traditional piezoelectric micro-jet device; (b) the
comparison experimental system.
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5. Conclusions

In this work, a piezoelectric micro-jet device is proposed. Its unique nozzle driving
mode makes the device have many outstanding advantages that traditional piezoelectric
micro-jet devices do not have: (1) The external nozzle is different from the traditional cavity
vibration type, which avoids the problem that the bubble enters the cavity and reduces
the injection performance. (2) The external nozzle makes the structure of the device more
compact, and the cavity cannot consider the assembly of the vibrator and the problem of
an outlet wire. (3) The external nozzle has strong interchangeability, which can be replaced
and repaired from time to time without remanufacturing and assembling the device.

Based on the brief description of the structure of the device and the process of micro-
jet, ANSYS two-phase, two-way fluid–structure coupling analysis is carried out, and the
mechanism of the piezoelectric micro-jet is elaborated upon in detail. On the basis of
determining the optimal working frequency, the influence of voltage amplitude, input
signal frequency, nozzle diameter and oil viscosity on the injection performance of the
proposed device is studied, and a set of control methods is proposed based on this. A
small range of frequency adjustment has little influence on the injection performance.
Increasing the voltage amplitude, decreasing the nozzle diameter and decreasing the oil
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viscosity will reduce the difficulty of injection, increase the droplet outlet velocity and
droplet volume and improve the injection efficiency of the device, but the control accuracy
of the droplet will decrease. In addition, when the oil viscosity is greater than 100 Pa.s,
it has little influence on the volume of droplets, namely, the control accuracy, while the
influence on the difficulty of injection and the outlet velocity of droplets still exists. This
work proved the correctness of the piezoelectric micro-jet mechanism and the feasibility
of the proposed nozzle-driven piezoelectric micro-jet device through experiments and
carried out the injection performance test experiment, which mainly investigated the effects
of voltage amplitude, signal frequency, oil viscosity and nozzle diameter on the droplet
outlet velocity and droplet volume. The experimental results showed that the piezoelectric
micro-jet device has a maximum droplet outlet velocity of 29.056 m/s and a maximum
droplet volume of 86.45 nL at a voltage amplitude of 200 V, while the device can achieve a
maximum droplet accuracy of 13.864 nL at a nozzle diameter of 0.2 mm. From the above
mentioned, it can be seen that the device combines high precision and high efficiency
excellently. The experimental results coincide with the ANSYS simulation results, which
confirms the correctness of the simulation experiment. Finally, a comparation experiment
is carried out in this work, and the stability and superiority of the proposed device are
verified by the experiment with the traditional piezoelectric micro-jet device.

Supplementary Materials: The following supporting information can be downloaded at: https:
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