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Abstract: This paper proposes a low-noise interface application-specific integrated circuit (ASIC)
for a microelectromechanical systems (MEMS) disk resonator gyroscope (DRG) which operates in
force-to-rebalance (FTR) mode. The ASIC employs an analog closed-loop control scheme which
incorporates a self-excited drive loop, a rate loop and a quadrature loop. A Σ∆ modulator and a
digital filter are also contained in the design to digitize the analog output besides the control loops.
The clocks for the modulator and digital circuits are both generated by the self-clocking circuit, which
avoids the requirement of additional quartz crystal. A system-level noise model is established to
determine the contribution of each noise source in order to reduce the noise at the output. A noise
optimization solution suitable for chip integration is proposed based on system-level analysis, which
can effectively avoid the effects of the 1/f noise of the PI amplifier and the white noise of the feedback
element. A performance of 0.0075◦/

√
h angle random walk (ARW) and 0.038◦/h bias instability

(BI) is achieved using the proposed noise optimization method. The ASIC is fabricated in a 0.35 µm
process with a die area of 4.4 mm × 4.5 mm and power consumption of 50 mW.

Keywords: ASIC; MEMS disk resonator gyroscope; force-to-rebalance; angle random walk; bias
instability

1. Introduction

Planar microelectromechanical systems (MEMS) gyroscopes have outstanding ad-
vantages in terms of size, power consumption and cost and are now widely used in the
consumer market and low- and mid-range industrial markets based on micromechanical
techniques [1–3]. Several kinds of MEMS gyroscopes have reached near-navigation accu-
racy in recent years with the advances in fabrication processes and the optimization of
gyroscope structures [4–8]. Among these MEMS gyroscopes, the disk resonator gyroscope
(DRG) shows excellent potential to be the next-generation MEMS gyroscope due to its
fully symmetrical structure and perfect degenerate working modes [4,5]. Nowadays, the
interface circuit of the DRG is mainly realized by discrete devices, which results in high
power consumption and large size and seriously restricts the advantages of MEMS devices
themselves. Therefore, research on interface ASICs for MEMS DRGs has great significance
for their practical implementation.

Proper selection of the operation mode and circuit control scheme is the precondition
for chip integration. The main operation modes of an MEMS DRG include full-angle mode
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and force-to-rebalance (FTR) mode. The full-angle mode, also known as the rate-integrating
mode, offers significant advantages in terms of measurement range and bandwidth. How-
ever, the performance under full-angle mode is highly susceptible to processing errors [9,10].
In FTR mode, the MEMS DRG is less affected by the process, and it easy to achieve higher
accuracy [5]. Therefore, the FTR mode is selected here to achieve higher accuracy.

The circuit control methods for MEMS DRGs are mainly divided into the analog
scheme and the mixed digital–analog scheme. In the analog scheme, the sensing and
processing of the signals are both implemented by analog circuits, and the structure is
relatively simple. In mixed digital–analog solutions, the sensing and feedback of the
signals are implemented in analog circuits, while the processing is implemented in digital
circuits. The advantage of this scheme is that the signal processing is more flexible and
easier to debug. However, this solution imposes high requirements on the data converters
(ADCs, DACs) since the converters need a relatively larger bandwidth to process the
gyroscope resonant signal. In additional, the typical digital–analog scheme requires two
ADCs and three DACs [5], which occupy a large chip area. Therefore, this paper prefers the
analog circuit scheme for system integration for the sake of compromise between detection
accuracy, chip area, system power consumption and implementation cost.

High-precision detection is one of the main focuses of interface circuit design, and
the output noise is an important factor which limits the detection accuracy. The contri-
bution of noise sources in FTR gyroscope systems has been tested and discussed in some
studies [11,12]; however, the gyroscope circuits in these articles are built by discrete devices
and unable to be optimized specifically. Therefore, traditional discrete device solutions typi-
cally involve improving the accuracy by purchasing expensive devices, which undoubtedly
increases system costs.

Integrated circuits allow the design of circuit elements to be optimized for specificity
and can achieve a compromise between power consumption, area, cost and performance.
The main contribution of this paper is the low-noise interface ASIC design for the complex
MEMS DRG system. This paper gives a detailed analysis of the noise contribution of each
circuit element in the system, based on which a noise optimization solution suitable for
chip integration is proposed. The noise optimization method proposed in this paper can
effectively avoid the effects of the 1/f noise of the PI amplifier and the white noise of the
feedback element. A performance of 0.0075◦/

√
h angle random walk (ARW) and 0.038◦/h

bias instability (BI) is achieved by using the proposed method. The ASIC also incorporates
a ΣD modulator and a digital circuit for digital output.

This paper is organized as follows: Section 2 describes the MEMS DRG we used and
the system architecture we proposed. Section 3 focuses on the effect of each noise source on
the output under FTR mode. Section 4 gives the implementation details. The experimental
results are presented and discussed in Section 5, and the paper ends with the conclusions
given in Section 6.

2. System Overview
2.1. MEMS DRG Structure

The gyroscope system consists of a MEMS sensing element and an interface ASIC,
and the characteristics of the sensing element directly determine the performance. The
structure and key parameters of the MEMS DRG we used are shown in Figure 1 and Table 1,
respectively. The following advantages ensure the performance of the MEMS DRG.

Table 1. Key parameters of MEMS DRG.

Parameters Values Unit

Resonator diameter 8 mm

Beam width 12 µm

Gap width (d) 11 µm
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Table 1. Cont.

Parameters Values Unit

Effective mass (m) 2.54 × 10−6 kg

Stiffness coefficient (k) 2168.2 N/m

Damping coefficient (D) 1.769 × 10−7 N/(m/s)

Resonant frequency (f ) 4650 Hz

Quality factor (Q) 5.1 × 105 -

Mechanical bandwidth (ωm) 0.0349 rad/s

Oscillation amplitude (Ax) 4 µmMicromachines 2023, 14, x FOR PEER REVIEW 3 of 20 
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Figure 1. (a) Top view of the MEMS DRG. (b) Top view of radial electrodes. 
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Figure 1. (a) Top view of the MEMS DRG. (b) Top view of radial electrodes.

2.1.1. High-Quality Factor (Q)

The ARW caused by mechanical-thermal noise in FTR mode can be computed by the
following [13]:

Ωrω ≈
√

kBTωy

A2
xmω2

xQy

(
1 +

∆ω2

ω2
m

)
× 3437.7◦/

√
h (1)

where kB is Boltzmann’s constant; T is the temperature in degrees of Kelvin; Ax and m
are the oscillation amplitude along drive mode and the effective mass of the gyroscope,
respectively; ωx/y and Qx/y are the resonance frequencies and quality factors of drive and
sense mode, respectively; and ∆ω and ωm represent the frequency split and mechanical
bandwidth of the gyroscope, respectively. Equation (1) shows that the high-quality factor,
which determines the white noise contribution in the MEMS sensing element, is the es-
sential attribute of a good performance for mode-matched gyroscopes. The Q factor of an
optimized DRG prototype reaches 650 k by using Q factor improvement methods such as
spoke length distribution optimization and lumped mass configuration, which guarantee
the AWR of the sensor itself lower than 0.001◦/

√
h [5,14].

2.1.2. Large Oscillation Amplitude

According to Equation (1), increasing the oscillation amplitude Ax is an obvious way
to reduce mechanical-thermal noise. However, the maximum amplitude may be limited
by nonlinear problems. The electrostatic nonlinearity and capacitive nonlinearity can be
reduced and the ultimate oscillation amplitude can be increased to 49% of the capacitive
gap by optimizing the electrode arrangement based on the vibration amplification [15].
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2.1.3. Fully Symmetrical Structure

A fully symmetrical structure ensures the parameters of the DRG changing syn-
chronously when the environment changes. The MEMS DRG used in this design has high
immunity to fabrication error due to the in-plane isotropic properties of the <111> crystal
orientation and the optimized structure [16]; thus, the frequency split ∆ω varies slightly as
the temperature changes. This advantage alleviates the need for a frequency control loop
and can avoid the noise contribution on BI caused by frequency control circuits [11].

2.1.4. Abundant Electrodes

The electrode configuration of the DRG is shown in Figure 1a. The DRG contains
both outer and inner electrodes, which are divided as sixteen separate electrodes. The elec-
trodes in the 0◦ (90◦, 180◦, 270◦) and 45◦ (135◦, 225◦, 315◦) directions are drive/sense
electrodes. The electrodes of these directions can also act as frequency tuning elec-
trodes. The inner and outer electrodes in the 22.5◦ (112.5◦, 202.5◦, 292.5◦) and 67.5◦

(157.5◦, 247.5◦, 337.5◦) directions are quadrature tuning electrodes. In the circuit testing,
one end is connected to the ground of the PCB board and the other to the quadrature
feedback voltage. Figure 1b shows the inner electrodes in driving and sensing directions.
The two electrodes in the same mesh are divided into a positive and negative electrode,
which is separated by an isolation layer in the middle. This configuration achieves dif-
ferential driving and eliminates common mode error. In addition, the abundant inner
electrodes could increase the capacitance sensibility and improve the efficiency of elec-
tromechanical conversion, which contribute to reducing output noise and tunning voltage.
The quadrature tunning voltage is usually within 2 V.

2.2. MEMS DRG System Architecture

Figure 2 gives a detailed block diagram of the DRG system. The control circuit consists
of a drive loop, a rate control circuit, a quadrature nulling loop, a self-clocking circuit, a
low-pass ΣD modulator and a digital decimation filter.
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The drive loop adopts the noise self-excited scheme. The front end of the drive circuit
is a transimpedance amplifier (TIA), the output of which is quadrature with the resonator
displacement. This signal is amplified by a VGA and applied to the drive actuation electrode
(drvact±). Since the phase relationship between the actuation force and displacement at
the resonant frequency is 90◦, the phase shift of the drive loop is zero. According to the
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Barkhausen criterion, when the loop gain is larger than 1, positive feedback is established
and circuit noise makes the loop self-excited at resonant frequency. The advantage of the
self-excited start-up scheme is that no extra phase control loop is required in the loop. Once
the resonator oscillates, the phase-locked loop (PLL) can be used to generate the various
clocks required by the system. The VGA works at maximum gain for fast start-up during
the initial operation of the drive circuit. The PI controller plays the role of maintaining the
amplitude constant when the amplitude reaches the reference level.

The self-clocked circuit contains a comparator and the PLL, which is used for fre-
quency locking, 90◦ phase shifting and frequency multiplication of the drive signal. In
Figure 2, clk_x/v represent the output clocks in-phase with driving displacement and
driving velocity, respectively, and they are used as modulation and demodulation clocks in
the FTR loop. Additionally, clk_sys is a multiplier clock of clk_x, which is used for low-pass
Σ∆ modulator and digital circuits.

The rate control loop and quadrature nulling loop ensure that the amplitude of the
resonator in the sensing direction is zero, which guarantees that the displacement towards
the sensing axis is in the FTR state. The output of the PI controller in the rate loop is the
analog output of the DRG, and this signal is modulated and applied to the sensing actuation
electrodes (snsact±). The DC quadrature nulling loop is used here, which benefits from
the presence of quadrature electrodes in the MEMS DRG, as can be seen in Figure 2. The
output of the PI controller (approximate DC signal) in the quadrature loop acts directly
on the quadrature tuning electrodes to suppress the quadrature component. Since the
voltage acting on the sensing actuation electrode is a resonant frequency signal, no electrical
coupling exists from the quadrature electrode to the sensing electrode. In addition, the
quadrature component before the PI controller is suppressed to zero due to the PI controller
and thus cannot affect the rate sensing. Moreover, the DC quadrature nulling loop possesses
better environmental adaption compared to the AC quadrature nulling method, which
helps the gyroscope achieve better stability [17].

The ASIC also integrates the Σ∆ modulator and the digital filter to digitize the analog
output. The gyroscope output signal is commonly at low frequency, typically within a few
hundred Hertz. Therefore, a low-speed, high-precision Σ∆ ADC structure is implemented
here. The digital circuit converts the one-bit stream signal from the output of the Σ∆
modulator to a digital signal through decimating and filtering.

The DC voltage added on the mass is 10 V, which is applied off-chip.

3. Noise Analysis of MEMS DRG System

A MEMS DRG system operating in FTR mode has a more complex structure and
additional noise sources than conventional open-loop gyroscopes, as can be seen from
the analysis in Section 2. Each noise source has a different impact on the output, so a
system-level noise model is required to analyze the impacts of each source and to optimize
them specifically. In addition, since the FTR system contains demodulation and modulation
circuits, the signal frequencies processed by each unit are not the same. Therefore, the
signals before and after modulation/demodulation need to be unified to make the analysis
easier. In this section, the dynamic characteristics of the resonators under the sense mode
are equated using the stochastic averaging method [18], and the influence of each noise
source is analyzed based on it.

3.1. Slow Signal Equivalence of the DRG Dynamics

The stochastic averaging method is used to simplify the dynamic model of the resonant
oscillator. This method extracts information about the slow signals (amplitude signals)
and allows for a unified noise model analysis. Consider the typical gyroscopic dynamical
model:

..
x +

ωx

Qx

.
x + ω2

xx− 2nAgΩ
.
y =

Fd
m

sin(ωxt) (2)
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..
y +

ωy

Qy

.
y + ω2

yy + 2nAgΩ
.
x =

Fs

m
sin(ωxt) (3)

where Fd and Fs are the amplitudes of driving force and sensing feedback force, respectively;
n = 2 is the wineglass mode and Ag = 0.4 is the angular gain for the MEMS DRG. Let
u =

.
x/ωx, v =

.
y/ωx; the second-order dynamics model of the gyroscope can be rewritten

as follows:
.
x = ωxu (4)

.
u = −ωxx− ωx

Qx
u +

Fd sin(ωxt)
mωx

+ 2nAgΩv (5)

.
y = ωxv (6)

.
v = −ωxy−

ωy

Qy
v +

Fs

m
sin(ωxt)− 2∆ωy− 2nAgΩu (7)

Since the drive circuit employs a self-excitation scheme, the drive force is 90◦ in
phase with the resonator displacement when the amplitude is stable. However, the phase
relationship between the feedback force and the displacement at the sensing axis is not
perfectly in-phase or orthogonal due to the presence of frequency split. Therefore, the
following is assumed:

x = Ax cos(ωxt) (8)

y = Ay cos(ωxt) + Ay,Q sin(ωxt) (9)

where Ay and Ay,Q are the displacement amplitudes orthogonal and in-phase with the
actuation force at the sensing axis, respectively. By substituting Equations (8) and (9) into
(4) and (5), we obtain the following:

.
Ay = − ωy

2Qy
Ay + ∆ωAy,Q − nAgΩAy − Fs

2mωx

+
[

ωy
2Qy

Ay − ∆ωAy,Q + nAgΩAx +
Fs

2mωx

]
cos(2ωxt)

+
[

ωy
2Qy

Ay,Q − ∆ωAy

]
sin(2ωxt)

(10)

.
Ay,Q = − ωy

2Qy
Ay,Q − ∆ωAy +

[
ωy

2Qy
Ay,Q + ∆ωAy

]
cos(2ωxt)

+
[

ωy
2Qy

Ay − ∆ωAy,Q + nAgΩAx +
Fs

2mωx

]
sin(2ωxt)

(11)

By using the stochastic averaging method, the differential equation for the slow signal
(amplitude signal) can be obtained:

.
Ay = −

ωy

2Qy
Ay + ∆ωAy,Q −ΩAy −

Fs

2mωx
(12)

.
Ay,Q = −

ωy

2Qy
Ay,Q − ∆ωAy (13)

By using the Laplace transform on Equations (12) and (13), we obtain the following:

sAy(s) = −
ωy

2Qy
Ay(s) + ∆ωAy,Q(s)− AxnAgΩ(s)− Fs(s)

2mωx
(14)

sAy,Q(s) = −
ωy

2Qy
Ay,Q(s)− ∆ωAy(s) (15)
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Both the Coriolis force 2mωxAxΩ(s) and Fs are the external forces in the system. There-
fore, assuming that the total force towards the sensing axis is
Fy(s) = 2mnAgωxAxΩ(s) + Fs(s) and deducing (14) and (15), we obtain the following:

HFy(s) =
Ay(s)
Fy(s)

=
s + ωy

2Qy

2mωx

[(
s + ωy

2Qy

)2
+ ∆ω2

] (16)

HFy,Q(s) =
Ay,Q(s)

Fy(s)
=

− ωy
2Qy

2mωx

[(
s + ωy

2Qy

)2
+ ∆ω2

] (17)

Note that the effect of the transfer function HFy,Q(s) will be filtered out by the demod-
ulator and low-pass filter in the rate loop; only the effect of (16) is taken into account when
modeling system-level noise.

3.2. Noise Analysis in the System

The system noise model of the MEMS DRG is shown in Figure 3 based on the dynamic
model of the slow signal of the resonator. In Figure 3, kvi and kVF are the conversion factors
from resonator velocity to sensing current and from actuation voltage to force, respectively;
Ci is the integrated capacitance of the charge sensing amplifier (CSA) and km is the gain of
the modulator. The transfer functions of the PI controller and low-pass filter (LPF) are as
follows:

PI(s) = Kp +
KI
s

(18)

LPF(s) =
ωp

s + ωp
(19)

where Kp and Ki are the proportional and integral terms of the PI controller, respectively,
and ωp is the cutoff frequency of the LPF. Since the loop gain is infinite at low frequency
due to the PI controller, the Coriolis force is equal to the feedback force in the closed loop:

2mnωx Ag AxΩ = VoutkmkVF (20)

Therefore, the scale factor of the MEMS DRG system is as follows:

SF =
Vout

Ω
=

2mnωx Ag Ax

kmkVF
(21)
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The main noise sources in the rate loop are CSA noise at resonant frequency Iwn,cv, 1/f
noise of the PI amplifier VPI, f n, mechanical noise NMEMS and electrical noise introduced
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by the feedback element VFB. The feedback element refers to the circuits after gyroscope
output, such as a DAC in a digital circuit and a multiplier in conventional analog circuits.

According to the system-level noise model in Figure 3, the output noise voltage can be
obtained:

Vout,n(s) =
Icv,n + CiωxVPI, f n

ωx HFy(s)
(

kVFkvikm + Ci
LPF(s)PI(s)HFy(s)

) +
NMEMS
kVFkm

+ VFB (22)

The LPF(s)PI(s) is much larger than 1 within bandwidth. By combining Equation (21),
the output noise of the system can be given as follows:

Ωn(s) =

(
s + ωy

2Qy

)2
+ ∆ω2

nAg Axkviωx

(
s + ωy

2Qy

)(Icv,n + CiωxVPI, f n

)
+

NMEMS + kmkVFVFB
2mnωx Ag Ax

(23)

From Equation (23), one can see that Iwn,cv and VPI, f n are suppressed by the transfer
function of the mechanical structure, but the frequency split ∆ω may deteriorate the shaping
ability of the resonator at low frequencies. Velec and NMEMS may directly affect the output
of the DRG and deteriorate the noise floor. Since the MEMS DRG possesses a very high
Q factor as Section 2 discussed, the effect of NMEMS is negligible compared with other
electrical noises [14].

The simulation verification of the system noise model is given in Figure 4. The circuit
system shown in Figure 2 is built in the Cadence IC environment, where the LRC electrical
equivalent is used for the sensing element in order to perform co-simulation [19].

Micromachines 2023, 14, x FOR PEER REVIEW 9 of 20 
 

 

The simulation verification of the system noise model is given in Figure 4. The circuit 
system shown in Figure 2 is built in the Cadence IC environment, where the LRC electrical 
equivalent is used for the sensing element in order to perform co-simulation [19]. 

Figure 4a gives the output noise spectral density for different frequency split cases. 
Only the transient noise of the CSA is added in the setup to avoid interference from other 
noise sources. The black, red and blue lines are the output noise spectra with frequency 
splits of 0 Hz, 0.5 Hz and 1 Hz, respectively. The simulation results show that the noise 
floor increases at low frequency with the increase in frequency split, which is consistent 
with Equation (23). 

Figure 4b shows the verification of the effect of FBV . The blue line is the output spec-
trum with only CSA noise added, the red line is the spectrum when 5 μV H zFBV =  is 
artificially injected and the black line is the spectrum with both included. From the simu-
lation results, it is clear that FBV  directly affects the output and deteriorates the noise floor, 
which coincides with the analysis above. 

Figure 4c shows the verification of the effect of 1/f noise of the PI amplifier. The red 
and blue lines show the output noise spectra with and without the addition of PI amplifier 
noise, respectively. Since the 1/f noise of the PI amplifier is higher at a low frequency [20], 
the output noise floor is raised. 

Frequency (Hz)

N
oi

se
 o

ut
pu

t  
(°

/s
)

Frequency split Δω=1Hz
Frequency split Δω=0.5Hz
Frequency split Δω=0 Hz

10−3

10−4

10−5

10−6

10−1 100 101

 

Output noise introduced by VFB
Output noise introduced by CSA

Total output noise

Frequency (Hz)

N
oi

se
 o

ut
pu

t  
(°

/s
)

10−3

10−4

10−5

10−6

10−1 100 101

 
(a) (b) 

Frequency (Hz)

N
oi

se
 o

ut
pu

t  
(°

/s
)

Output noise introduced by CSA and PI
Output noise introduced by CSA

10−1 100 101

10−3

10−4

10−5

10−6

10−2

 
(c) 

Figure 4. Simulation verification of (a) frequency split, (b) influence of feedback element and (c) 1/f
noise of PI amplifier.
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Figure 4a gives the output noise spectral density for different frequency split cases.
Only the transient noise of the CSA is added in the setup to avoid interference from other
noise sources. The black, red and blue lines are the output noise spectra with frequency
splits of 0 Hz, 0.5 Hz and 1 Hz, respectively. The simulation results show that the noise
floor increases at low frequency with the increase in frequency split, which is consistent
with Equation (23).

Figure 4b shows the verification of the effect of VFB. The blue line is the output
spectrum with only CSA noise added, the red line is the spectrum when VFB = 5 µV/

√
Hz

is artificially injected and the black line is the spectrum with both included. From the
simulation results, it is clear that VFB directly affects the output and deteriorates the noise
floor, which coincides with the analysis above.

Figure 4c shows the verification of the effect of 1/f noise of the PI amplifier. The red
and blue lines show the output noise spectra with and without the addition of PI amplifier
noise, respectively. Since the 1/f noise of the PI amplifier is higher at a low frequency [20],
the output noise floor is raised.

3.3. Angle Random Walk Analysis and Optimization

The above analysis gives the relationship between the output noise and frequency. In
order to optimize the performance of the MEMS DRG, the ARW needs to be estimated
from the noise spectrum. The relationship between Allan variance and the power spectrum
density is given by the following [21]:

σ2(τ) = 4
∫ ∞

0
Ω2

n( f )
sin4(π f τ)

(π f τ)2 d f (24)

The value of ARW can be obtained by reading the slope line at τ = 1 [21]:

ARW = σ(1) = 2

√∫ ∞

0
Ω2

n( f )
sin4(π f )

(π f )2 d f (25)

The main lobe of the window function sin2(πf )/(πf ) is within 1 Hz, while the side
lobes are attenuated. Therefore, a low ARW design needs to focus on the optimization of
output noise within 1 Hz. The following optimization methods ensure the low ARW.

Firstly, the selected MEMS DRG possesses a very high Q factor, with its own ARW con-
tribution being less than 0.001◦/

√
h [14]. Secondly, compared with mode-split gyroscopes,

a mode-matched gyroscope has higher mechanical sensitivity, and the noise contribution
from the front end (CSA) is suppressed by the transfer function of the mechanical structure.
Thirdly, the low-frequency noise of the PI amplifier can be converted to output noise, and
this issue should be taken into account when designing the integrated circuit. A low ripple
chopping technique is used here to reduce this part of the noise. Fourthly, switching to
phase-sensitive modulation instead of the traditional analog multiplier is used here, which
greatly reduces the noise contribution in the modulation feedback stage. Lastly, the manual
frequency method is used to reduce the frequency split, and the specific implementation can
be referred to in previous work [14,22]. Benefiting from a highly symmetrical mechanical
structure as described in Section 2, the frequency split ∆ω varies slightly as the environment
changes. The implementation of the low-noise interface circuit will be described in the next
section.

4. Circuit Implementation Details
4.1. Current Sensing Amplifier

The transistor level circuit of the CSA in this paper is shown in Figure 5. The amplifier
employs a three-stage topology for high DC gain. The first two stages employ a fully
differential input to reduce system offset. The amplifier employs trans-conductance with
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a capacitance feedback compensation (TCFC) topology in order to maintain stability and
lower the power dissipation [23].

In Figure 5, Cp is the total parasitic capacitance of the front end, including the parasitic
capacitance of the sensing element and the parasitic capacitance of the CSA itself. The noise
current Iwn,cv in Figure 3 is the ratio of the equivalent input voltage noise of the CSA Vn,cv
to the capacitance Cp:

Iwn,cv = ωxCpVn,cv (26)

Therefore, the main focus of the CSA design is to reduce the equivalent input voltage
noise at the resonant frequency. The resonant frequency of the MEMS DRG used in the
paper is about 4.65 kHz, at which point the 1/f noise is still large for a traditional CMOS
amplifier. Therefore, the circuit design should focus on optimizing the 1/f noise at the
resonant frequency. Since the equivalent input voltage noise of the second and third stages
will be suppressed by the gain of the front stage, the first stage noise contribution is the
main focus of our concern. A simple current mirror structure is used in the first stage
to avoid the introduction of more noise sources. Since the 1/f noise coefficient of the
PMOS transistor is smaller than that of the NMOS transistor, the input transistor (M2) uses
the PMOS transistor to reduce the 1/f noise. The area of the current mirror transistors
(M3a, M3b) should be designed to be large enough to suppress the 1/f noise by themselves.
In addition, the area of M2 should not be too large so as to avoid excessive parasitic capaci-
tance Cp, which should be optimized in compromise with the 1/f noise. The simulation
result of the voltage noise of the CSA is given in Figure 6. After optimization, the equivalent
input voltage noise density at 4.65 kHz is about 7.43 nV/

√
Hz.
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4.2. Amplifier in PI Controller

The PI and LPF circuits used in the paper are shown in Figure 7, both of which are
completed by only one amplifier. From the discussion in Section 3, it can be seen that the
1/f noise of the amplifier in the PI controller needs to be reduced in order to lower the
output noise. Therefore, a low 1/f noise amplifier is proposed here, as shown in Figure 8.
The main structure of the amplifier is the same as the CSA in Figure 5. The circuit adopts
the chopping technique to reduce the low-frequency noise. At the same time, a continuous-
time AC-coupled ripple reduction loop (RRL) is added to the amplifier to eliminate the
high-frequency ripple caused by chopping [24]. Figure 9a gives the spectral density of the
equivalent input voltage noise before and after chopping, and the noise at 1 Hz decreases
from 1.7 µV/

√
Hz to 11.5 nV/

√
Hz after chopping. Figure 9b shows the verification of the

ripple suppression loop, where the output ripple drops from 500 mV to 100 µV in 400 µs.
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4.3. Feedback Element

The noise from the feedback element VFB may directly affect the output noise floor, as
can be seen from the analysis in Section 3.2. Moreover, Equation (21) also shows that the
variation of the gain of the feedback element km also affects the scale factor of the gyroscope
system. A conventional analog closed-loop scheme based on discrete devices employs
multipliers for force feedback [14]. However, an analog multiplier with low noise, high
linearity and good full temperature characteristics is difficult to design in integrated circuits
since it requires complex compensation techniques [25]. Although the digital–analog hybrid
structure multiplier can achieve a better performance, it includes an ADC, digital signal
processing (DSP) and DAC itself [26], which does not facilitate a single-chip integrated
design.

A phase-sensitive modulator is used here instead of a multiplier to avoid the above
problems, as Figure 10 shows. Although high-order harmonic components of the resonant
frequency exist at the output of the modulator, these harmonic components can be filtered
by a mechanical resonator with a high Q factor. In Figure 10, Vdemout represents the outputs
of the demodulator, VPIout± represents the outputs of the PI controller in the rate control
loop and clk_v is the clock in phase with velocity. The modulation feedback circuit contains
only switches and is easy to integrate. Since the resistance is only about 100 ohms when the
switch turns on, the thermal noise introduced by the switch is only 1.29 nV/

√
Hz according

to the thermal noise equation VR =
√

4kBTR, which is much smaller than the effect of
other noise sources.
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4.4. Other Circuit Elements

In addition to the above units, the MEMS DRG interface ASIC also includes a self-
clocking circuit, a VGA (non-linear multiplier) and a Σ∆ ADC.

The self-clocking circuit is shown in Figure 11. The input of the self-clocking circuit is
connected to the output of the TIA in the drive loop, and the resonator velocity signal is
locked, multiplied and 90◦ phase-shifted by the PLL. The 90◦ phase shift is generated by
exclusive OR (XOR) operation between clk_v and its multiple frequency clock.
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The design details of the low harmonic distortion nonlinear multiplier and the Σ∆
ADC can be found in our previous works [27,28].

5. Experimental Results and Discussion

The interface integrated circuit for the MEMS DRG is implemented using a 0.35 µm
CMOS process. The chip photograph with the drive loop, rate and quadrature loop, self-
clocking circuit, low-pass Σ∆ modulator and digital circuits is shown in Figure 12a. The
total area of the ASIC is 4.5 mm × 4.3 mm, and the power dissipation is 50 mW, with a
±2.5 V supply voltage. The MEMS DRG is sealed in a vacuum package and connected to
the ASIC on a print circuit board (PCB). The test board is shown in Figure 12b.

Using an Agilent 35670A dynamic signal analyzer to analyze the analog output noise
of the MEMS DRG and setting the resolution to 31.25 mHz, the output noise spectrum is
tested in Figure 13. The spectrum shows that the output noise is well suppressed at low
frequencies, which is consistent with the analysis in Section 3. In addition, it can be seen that
the noise starts to rise at 78.1 mHz, which indicates that the main source of output noise at
this frequency is still the noise of the CSA. Since the frequency split ∆ωmay deteriorate the
shaping ability of the resonator before ∆ω according to Equation (23), the noise spectrum
also demonstrates that the ∆ω is below 78.1 mHz. This result also demonstrates that the
output noise introduced by the feedback element using the phase-sensitive modulator is
negligible, which is consistent with the analysis in Section 4.3. The noise shaping ability at
high frequencies deteriorates due to the limited bandwidth of the MEMS DRG system. The
system bandwidth can therefore be estimated from the frequency spectrum, which is about
15 Hz. The scale factor of the analog output is 40 mV/◦/s, and thus, the noise floor at low
frequencies is about 7.5 µ◦/s (at 31.25 mHz resolution), which is similar to the simulation
results in Section 3.2.

The digital outputs of the MEMS DRG under rotations of −50◦/s, −25◦/s, −12.5◦/s,
−5◦/s, −2.5◦/s, −1.25◦/s, −0.5◦/s, −0.25◦/s, −0.1◦/s, −0.05◦/s, 0.05◦/s, 0.1◦/s, 0.25◦/s,
0.5◦/s, 1.25◦/s, 2.5◦/s, 5◦/s, 12.5◦/s, 25◦/s and 50◦/s were measured to characterize the
scale factor and the nonlinearity of the system, and the test results are given in Figure 14a,b.
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A scale factor of 116,850 LSB/(◦/s) over the±50◦/s full range and a maximum nonlinearity
of 320 ppm were obtained according to the measurement.
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The zero-rate output (ZRO) of the MEMS DRG was tested at room temperature with
a sample frequency of 2 Hz. The gyroscope output was recorded for 4 h, as shown in
Figure 15a,b. The bias stability (1σ, at a binning time of 10 s), bias instability and ARW of
the gyroscope system were 0.47◦/h, 0.038◦/h and 0.0075◦/

√
h, respectively.
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Figure 15. (a) Origin data of ZRO at room temperature and (b) Allan deviation of the origin data. 
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Table 2 lists a comparison of the performances of DRG systems in recent years.
The front-end and control circuits in this paper are both implemented by the ASIC, of-
fering a higher level of integration than in the comparative literature. The study [4]
shows the laboratory performance of the Boeing MEMS DRG by using the dSPACE
semi-physical simulation platform, which demonstrates that the MEMS DRG possesses
a navigation-level performance. The studies [15,22] used a lock-in amplifier HF2LI from
Zurich Instruments to control the disc gyro in order to measure its ultimate performance.
Compared with [14,15,22,29,30], this paper has advantages in terms of ARW and BI.
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Table 2. Performance comparison of MEMS DRGs.

Year Ref Circuit
Type

ARW
◦/
√

h
BI

(◦/h)
Full Scale

(◦/s)

2014 [4] dSPACE
platform 0.003 0.01 -

2014 [27]
PCB and
CMOS

front-end
0.48 20 -

2016 [20] HF2LI - 4 -

2018 [14]
Analog
discrete
circuit

0.01 0.04 ±100

2020 [15] HF2LI 0.018 0.23 ±20

2022 [28]

PCB
front-end

and digital
ASIC

0.05 0.42 ±300

2023 This paper ASIC 0.0075 0.038 ±50

6. Conclusions

This paper presents an interface ASIC for an MEMS DRG. The ASIC incorporates a
drive loop, a rate loop, a quadrature loop, a self-clocking circuit, a low-pass Σ∆ modulator
and digital circuits with a die area of 4.3 mm × 4.5 mm. The sources of the output noises
were analyzed to give guidelines for circuit design based on the slow signal equivalence
of the gyroscope dynamics. By using an integrated circuit to optimize the noise of key
elements, a performance of 0.0075◦/

√
h ARW and 0.038◦/h BI was achieved. This ASIC is

also suitable for other types of mode-matched gyroscopes such as a quad mass gyroscope,
a dual foucault pendulum gyroscope, etc.
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