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Abstract: The nonlinear hysteresis phenomenon can occur in piezoelectric-driven nanopositioning
systems and can lead to reduced positioning accuracy or result in a serious deterioration of motion
control. The Preisach method is widely used for hysteresis modeling; however, for the modeling of
rate-dependent hysteresis, where the output displacement of the piezoelectric actuator depends on
the amplitude and frequency of the input reference signal, the desired accuracy cannot be achieved
with the classical Preisach method. In this paper, the Preisach model is improved using least-squares
support vector machines (LSSVMs) to deal with the rate-dependent properties. The control part is
then designed and consists of an inverse Preisach model to compensate for the hysteresis nonlinearity
and a two-degree-of-freedom (2-DOF) H-infinity feedback controller to enhance the overall tracking
performance with robustness. The main idea of the proposed 2-DOF H-infinity feedback controller is
to find two optimal controllers that properly shape the closed-loop sensitivity functions by imposing
some templates in terms of weighting functions in order to achieve the desired tracking performance
with robustness. The achieved results with the suggested control strategy show that both hysteresis
modeling accuracy and tracking performance are significantly improved with average root-mean-
square error (RMSE) values of 0.0107 µm and 0.0212 µm, respectively. In addition, the suggested
methodology can achieve better performance than comparative methods in terms of generalization
and precision.

Keywords: piezoelectric actuator; nanopositioning; Preisach model; hysteresis; 2-DOF H-infinity
control

1. Introduction

Piezoelectric actuators (PEAs) are widely used in nanopositioning stages as they can
achieve fast and accurate positioning compared with conventional actuators. The main
drawback of piezoelectric actuators is that they contain smart materials that exhibit hystere-
sis behavior, degrading their performance and making them unsuitable for applications
that require ultra-precise motion. The reason for this behavior is the change in polarization
directions that occurs inside the smart material. This change causes distortion in strain,
which is called inhomogeneous domain switching [1,2]. Hysteresis is usually observed
as a complex nonlinear relationship between the input (reference signal) and the output
(displacement). Therefore, it is difficult to describe the piezoelectric actuator’s dynamics,
making the controller design tasks for the nanopositioning systems more difficult [3].

In addition, the hysteresis loops get larger when the input signal contains different
frequencies, which also makes the modeling tasks more difficult. This hysteresis type
is typically called rate-dependent hysteresis. In this case, the domain-switching process
necessitates a specific time duration, affecting the response of piezoelectric materials [4].
The authors in [5] proposed a model to study the impact of the domain structure and
the different frequencies of the excitation signals on the shape of hysteresis loops. The
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results show that the electric field is highly affected by the loading frequencies while
slightly affected by the domain shape. The authors in [6] developed a hysteresis model in
which the domain-switching process is represented using the constitutive theory. In 2001,
finite element techniques were proposed as a means of stimulating microscale models [7].
However, applying this method consumes more execution time.

Among the initial practical endeavors aimed at modeling hysteresis in nanoposition-
ing systems, several simple models, such as the Bouc–Wen model [8], Preisach model [9],
Duhem model [10], Dahl model [11], etc., are used. Although these models are, so far,
the most popular in hysteresis research, they cannot accurately describe rate-dependent
hysteresis. Some of these models have been improved to consider rate-dependent hys-
teresis, such as the improved Preisach model [12,13] and the improved Prandtl–Ishlinskii
model [14,15]. The authors in [16] employed the voltage change rate of the reference signals
as inputs to the Preisach model and employed the dynamic mirror coefficient to derive
the discretization form. The authors in [17] improved the Bouc–Wen hysteresis model and
described the rate-dependent characteristics within the frequency range of 1–50 Hz. The
improvement was accomplished by introducing bias parameters to the model. The authors
in [18] highlighted the utilization of rate-related factors in the PI model to describe the rate-
dependent hysteresis characteristics. However, the output displacements obtained from
these models do not align well with the actual displacements. Moreover, the identification
of certain unknown parameters within these models can prove to be quite challenging,
which in turn makes it difficult to design a control scheme that can successfully achieve
high-accuracy compensation. Thus, various methods have been proposed in an attempt
to obtain an effective control scheme. For instance, the authors in [19] proposed adaptive
feedforward controllers that employ the inverse model of the improved PI model. The au-
thors in [20] developed a modified hysteresis model based on the classical PI model, which
includes a quadratic polynomial to describe rate-independent hysteresis, and parameter
identification was achieved using self-adaptive particle swarm optimization. However,
these control schemes lack robustness in the presence of unmodeled dynamics.

Recently, intelligent models based on machine learning methods, such as artificial
neural networks (ANNs) [21] and least-squares support vector machines (LSSVMs) [22],
have been put forward to overcome the complexity of the modified classical hysteresis
models. These models have attracted attention and gained more popularity than tradi-
tional hysteresis models because they can better describe the rate-dependent hysteresis
of the PEAs. In addition, these models addressed the nonlinear mapping problem by
transforming the multivalued hysteresis mapping into single-to-single mapping. They
have also shown great improvements in the generalization ability of models on data with
rate-independent and rate-dependent hysteresis. However, the use of the inverse of these
models for designing feedforward hysteresis compensators does have some limitations. For
instance, some models fall into local optimums and lead to reduced search accuracy [23–25].

To overcome the overfitting problem, the authors in [26–29] proposed hysteresis
models based on a regression algorithm. The input of the hysteresis model was selected
based on an autoregressive model with exogenous input (NARX), where the current output
is dependent not only on the current inputs but also on the past inputs and past outputs.
The experimental results indicated that the outputs could be predicted, but the output of the
feedforward compensator accumulates errors over time in real-time control experiments
due to the feedback [21,30]. In previous studies [31,32], the authors modified the Preisach
model using a kernel-based machine learning method combined with a hysteresis memory
to overcome the error accumulation limitation. The compensator has been constructed
using two parts; hysteresis operators to solve the mapping problem and an inverse Preisach
hysteresis model based on the LSSVM algorithm optimized by particle swarm optimization
(PSO) and the improved PSO algorithms to estimate the density function. The results
showed that the modified Preisach model outperformed the LSSVM-NARX and ANN
hysteresis models. However, we used a proportional–integral–derivative (PID) feedback
controller to reduce remaining errors, as PID parameter tuning is a time-consuming task
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and significantly depends on a trial-and-error method through experiments. This makes
parameter tuning very difficult to obtain the required performance. Furthermore, PID
control is incapable of meeting the robustness and disturbance rejection requirements.
Therefore, an alternative feedback controller is needed to avoid the limitations of the
classical PID controller and improve positioning accuracy.

In this paper, we developed a robust control strategy to improve the position-tracking
performance of a piezoelectric nanopositioning system in the presence of disturbances. A
machine-learning method is used to design a feedforward hysteresis compensator. The
feedforward controller is then combined with a 2-degree-of-freedom (2-DOF) H-infinity
feedback controller for achieving the desired closed-loop tracking performance with ro-
bustness and disturbance rejection. This was accomplished by shaping the closed-loop
system’s sensitivity functions, with some constraints imposed on these functions to achieve
the desired performance. The H-infinity controller has been successfully used to solve
the problems of control in many applications [33–36]. In the H-infinity design, we used
a control scheme consisting of two parts: the first one is used in the feedback control for
disturbance attenuation and the second one is placed in the feedforward path as a pre-filter
to help the Preisach model-based controller in reducing the remaining tracking error. As
far as we know from the literature, this hybrid combination has never been employed to
control a piezoelectric actuator in nanopositioning systems. To evaluate the effectiveness of
our suggested approach, a comparison of the results was made with those obtained from
the combination of the Preisach model-based controller with the PID controller, as well as
some other related studies.

The remainder of this paper is organized as follows. Details of the experimental setup
are presented in Section 2. Hysteresis modeling and system identification are presented
in Section 3. A detailed discussion of the feedforward and feedback control strategy is
presented in Section 4. Tracking results are presented in Section 5. A comparison with other
relevant works is presented in Section 6. Finally, a conclusion is drawn in Section 7.

2. Experimental Setup

The experimental setup is shown in Figure 1. It consists of a piezo-actuated nanoposi-
tioner connected to an amplifier and a PC equipped with a controller card. The nanoposi-
tioner (PI GmbH & Co., Karlsruhe, Germany, P-752.21C) [37] is equipped with a flexure
hinge mechanism guided by a multilayer piezoelectric ceramic stack actuator. The piezo-
electric ceramic material could be induced by an operating voltage of −20 to 120 V to
generate deformations, such as expansion and contraction. Thus, this material can force
the flexures to move and achieve fast and precise displacement with a motion range of
up to 35 µm. The piezo-actuated nanopositioning stage is integrated with a capacitive
sensor (PI GmbH & Co., D-015) to measure the displacement. This sensor has a high
bandwidth of 10 kHz and can provide a subnanometer resolution of 0.01 nm. The voltage
amplifier (PI GmbH & Co., E-505.00) [38] can amplify the input voltage of −2 V to +12 V
by a voltage gain factor of 10 so that it can drive the PEA. The control board (dSPACE Co.,
Wixom, MI, USA, dSPACE 1104) [39] is used to generate the control signals and send or
receive the commands through its DAC/ADC ports. First, the control block diagrams are
developed using Simulink software. Then, the C code of the developed Simulink model is
generated by a compiler supported by dSPACE and connected with the controller using the
Real-Time Interface (RTI) library to run the process of the hardware-in-the-loop simulation.
For performance evaluation, monitor software (ControlDesk) is used to visualize and save
the results.
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Figure 1. Schematic diagram of the experimental setup for the considered nanopositioning system.

Different and adequate experimental data representing the rate-independent and rate-
dependent hysteresis were collected using this platform. These data (input and output sig-
nals of the PEA) were used to train and test both the hysteresis model and the controller. The
description of the experimental data will be presented and discussed later. The proposed
method used to model and control the PEA is presented in Sections 3 and 4, respectively.

3. Modeling and System Identification
3.1. Linear Dynamic Model

Before modeling the hysteresis, the identification of linear dynamics was performed to
find a linear model of the overall system. For this purpose, the excitation of the experimental
platform was performed by a sine wave chirp signal with multiple frequencies and an
amplitude of 1 V to avoid the appearance of hysteresis in the response. The obtained
experimental data were used to characterize the dynamic input–output behavior of the
system and identify the plant transfer function. The coefficients of the linear dynamic
model were estimated using the recursive least-squares (RLS) method [40]. The transfer
function was obtained as follows:

G(s) =
A(s)
B(s)

=
5095s3 + 1.2× 108 s2 + 7× 1011s + 4.65× 1015

s4 + 9501s3 + 2.44× 108s2 + 1.3× 1012s + 5.2× 1015 (1)

where the order of the model dynamics was chosen to be four as it properly describes the
system dynamics and matches the actual response well, as shown in Figure 2. Additionally,
Figure 3 shows that most error values of the linear dynamic model are within the range
of about ±0.05 V. Higher-order models are required to accurately capture the dynamics,
but they lead to an increase in the order of the feedback controller, which increases the
execution time of the proposed control scheme, thus affecting the applicability of the control
design. Figure 4 shows the frequency responses obtained by the identified model; it can be
noted that the first resonant mode occurs around 2200 Hz.



Micromachines 2023, 14, 1208 5 of 23Micromachines 2023, 14, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 2. Comparison between the response of the identified model and the response of the experi-
ment. 

 
Figure 3. The error between the actual output and the simulated output. 

 
Figure 4. Frequency response of the identified linear dynamic model. 

3.2. Hysteresis Modeling Using a Modified Preisach Model 
The classical Preisach hysteresis model [41,42] is developed by the relay-type opera-

tor 𝑅௦ି௥,௦ା௥[·], as depicted in Figure 5. The relay operator can be expressed as follows: 

Am
pl

itu
de

 (v
)

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (d

B)

101 102 103 104 105
-135

-90

-45

0

45

Ph
as

e 
(d

eg
)

Frequency  (Hz)

Figure 2. Comparison between the response of the identified model and the response of the experiment.

Micromachines 2023, 14, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 2. Comparison between the response of the identified model and the response of the experi-
ment. 

 
Figure 3. The error between the actual output and the simulated output. 

 
Figure 4. Frequency response of the identified linear dynamic model. 

3.2. Hysteresis Modeling Using a Modified Preisach Model 
The classical Preisach hysteresis model [41,42] is developed by the relay-type opera-

tor 𝑅௦ି௥,௦ା௥[·], as depicted in Figure 5. The relay operator can be expressed as follows: 

Am
pl

itu
de

 (v
)

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (d

B)

101 102 103 104 105
-135

-90

-45

0

45

Ph
as

e 
(d

eg
)

Frequency  (Hz)

Figure 3. The error between the actual output and the simulated output.

Micromachines 2023, 14, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 2. Comparison between the response of the identified model and the response of the experi-
ment. 

 
Figure 3. The error between the actual output and the simulated output. 

 
Figure 4. Frequency response of the identified linear dynamic model. 

3.2. Hysteresis Modeling Using a Modified Preisach Model 
The classical Preisach hysteresis model [41,42] is developed by the relay-type opera-

tor 𝑅௦ି௥,௦ା௥[·], as depicted in Figure 5. The relay operator can be expressed as follows: 

Am
pl

itu
de

 (v
)

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (d

B)

101 102 103 104 105
-135

-90

-45

0

45

Ph
as

e 
(d

eg
)

Frequency  (Hz)

Figure 4. Frequency response of the identified linear dynamic model.

3.2. Hysteresis Modeling Using a Modified Preisach Model

The classical Preisach hysteresis model [41,42] is developed by the relay-type operator
Rs−r,s+r[·], as depicted in Figure 5. The relay operator can be expressed as follows:

Rs−r,s+r[x(t)]


1 x(t) > s + r
−1 x(t) < s− r

Rs−r,s+r[x(t− 1)] s− r < x(t) < s + r
(2)
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where it is characterized by a couple of swathing thresholds, an upper threshold (a2 = s+ r)
and lower threshold (a1 = s − r), and two states ±1. The Preisach hysteresis model is
represented by a continuous linear weighted superposition of these operators, and its
output response can be expressed as follows:

y(t) =
x

s+r>s−r

µ(r, s)Rs+r,s−r[z](t)dsdr (3)

where µ(r, s) denotes the weight function (or density function) and Rs+r,s−r denotes the ba-
sic hysteretic unit (hysteron) in the Preisach plane P = (s + r, s− r) : s + r ≥ s− r, s + r < a2,
s− r < a1.
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Suppose that ψ is a curve that divides the Preisach plane P into two different areas; a
positive area P+, in which the relays take the output values of +1, and a negative area P−,
in which the relays take the output values of −1, as depicted in Figure 6. In this case, the
output response of the Preisach model can be rewritten as:

y(t) =
∫ +∞

0

[∫ ψ(t,r)

−∞
µ(r, s)ds−

∫ +∞

ψ(t,r)
µ(r, s)ds

]
dr (4)

or:
y(t) = Q(r, ψ(t, r)) (5)
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In Equations (4) and (5), it can be seen that the Preisach hysteresis model is composed
of a set of continuous hysteresis operators and a density function. The key issue with the
classical Preisach model is finding a high-accuracy approximation method for the density
function. Furthermore, this algorithm should achieve reasonable execution times, in the
sense that the time complexity should be taken into account at the various stages of the
modeling and control development process.

In this study, the Preisach plan was divided into a set of intervals (cells) to reduce
the complexity of the model, and then the density function was approximated by using a
regression method to improve the accuracy of identification and enhance the generalization
ability of the model. In this case, we used the stop operator, as depicted in Figure 7. This
operator is represented by a couple of thresholds, +r and −r, which can be defined as:

ri =
i

(n + 1)|x|max
, i = 1, 2, 3, . . . , n (6)

where n indicates the number of stop operators and |x|max indicates the maximum absolute
value of reference signal amplitudes. The output response of this operator on an interval
from ti to ti+1 can be expressed as:

z(0) = Er[x(0)]
z(t) = Er[x(t)− x(ti) + z(ti)]

(7)

where:
Er[·] = min{max{−r, .},+r} (8)

where z(t) denotes the current state of the operator at a certain time and Er[·] denotes the
stop operator.
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Then, the outputs of the stop operators were used as inputs to the prediction algorithm.
This predictor was built by using the least-squares support vector machine (LSSVM) [22,43].
The LSSVM combines the advantages of replacing inequality constraints with equality
constraints and adopting the error sum of the square loss function in the cost function rather
than the insensitive loss function of the standard SVM. These important simplifications
linearize the problem and make the algorithm a powerful tool for solving regression
problems. Basically, the LSSVM regression for input–output data pairs (z, y) is defined as:

y(z) = wT∅(z) + b (9)
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where ∅(·) denotes a nonlinear function that maps the input data z into a high-dimensional
feature space y, w denotes the dimensional weight vector, and b denotes mapping bias. In
the training phase, the parameters w and b, as well as the parameters of ∅(·), should be
well determined to yield a high degree of goodness-of-fit between the actual and predicted
output displacement of the piezoelectric actuator in the test phase. For this purpose, the
optimization problem for the LSSVM is formulated as:

min
w,e,b

Jp(w, e) =
1
2

wTw + C
1
2

N

∑
k=1

e2
k (10)

Subject to yk = wT∅
(

zk
)
+ b + ek

where e denotes the error between the actual and predicted output displacement and C
denotes the regularization parameter, which determines the balance between the training
error minimization and smoothness of the regression function and is directly related to the
generalization ability of the model. By using the Lagrangian function, the cost function of
Equation (10) can be rewritten as:

L(w, b, e; α) = Jp(w, e)−
N

∑
k=1

αk

[
wT∅

(
zk
)
+ b + ek − yk

]
(11)

where α denotes the Lagrange multiplier. The optimal solution for this problem can be
obtained by using the Karush–Kuhn–Tucker (KKT) conditions [44]. The KKT conditions
are defined by solving the partial derivatives on L(w, b, e; α) with respect to w, b, ek and αk
as follows:

∂L
∂w

= 0→ w =
N

∑
k=1

αk∅
(

zk
)

(12)

∂L
∂ek

= 0→ αk = Cek (13)

∂L
∂b

= 0→
N

∑
k=1

αk = 0 (14)

∂L
∂αk

= 0→ wT∅
(

zk
)
+ b + ek − yk (15)

Thus, the linear equations can be derived after the elimination of w and ek as follows:[
0 1T

N
1N Ω + I/C

][
b
α

]
=

[
0
y

]
(16)

where 1N denotes a unity vector, I denotes the identity matrix, and Ω is a matrix that can
be calculated by multiplying ∅

(
zk
)

with ∅
(
zj), where {j, k = 1,2, . . . ., N} and N denote the

number of samples in the training data. To calculate the matrix Ω using a simplified form,
we used a radial base function (RBF) kernel function:

K
(

zk, zj
)
= ∅

(
zk
)
∅
(

zj
)

(17)

where K
(

z, zk
)
= exp

(
−‖z− zk‖

σ2

)
(18)

where σ denotes the kernel parameter, which has to be tuned to find the optimal variance
of the Gaussian function. Like the regularization parameter, the kernel parameters are also
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directly related to the generalization ability of the model. The LSSVM regression model
can finally be expressed as:

ŷ(z) = ∑N
k=1 αkK

(
z, zk

)
+ b (19)

The particle swarm optimization (PSO) technique [45,46] was applied to optimize the
hyper-parameters C and σ of the LSSVM model. It is a robust optimization technique for
solving optimization search problems. Basically, the PSO algorithm defines the search as:

vi(t) = ηvi(t− 1) + c1r1(pbest,i − pi(t− 1)) + c2r2(gbest − pi(t− 1))
pi(t) = pi(t− 1) + vi(t)

(20)

where p and v denote the position and the velocity of a particle in iteration i, respectively.
η denotes the inertia weight, which has to be tuned to provide a tradeoff between local
search and global search, gbest denotes the global optimal position, pbest,i denotes the local
optimal position, c1 and c2 are the acceleration parameters, and r1 and r2 denote random
numbers randomly selected between 0 and 1.

For a satisfactory generalization ability, we included the derivative of the input refer-
ence signals, as it helps to describe the rate-dependent characteristics that are based on both
input voltage and input rate. Figure 8 shows how the overall structure of the proposed
modified Preisach hysteresis model was built. This model was trained, and the simulation
results will be presented and discussed in the next subsection.
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3.3. Hysteresis Modeling Results

The simulation of the dynamic hysteresis model was carried out under the MATLAB-
2022b environment (MathWorks, Natick, MA, USA). The PSO-LSSVM algorithm was
implemented with the help of the Least-Squares SVM-MATLAB Toolbox 1.8 (KU Leuven,
Leuven, Belgium) [47]. The model was trained using datasets that were selected to involve
different values of amplitudes and frequencies. These datasets consist of the excitation
signals that were sent to the PEA and the corresponding output signals obtained from the
sensor, as shown in Figure 9. Each training signal contains 500 samples (with a sample time
of 0.02 s), and their amplitudes range from 0 to 6 V before amplification. In our previous
work [31], we noted an interesting tradeoff between model complexity and accuracy and
proved that the optimal number of operators is 55; thus, we used the same number in this
study as well. Additionally, in the same previous paper, we presented a detailed discussion
of the optimal tuning of PSO hyper-parameters used for training the model. All parameter
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values obtained through the Preisach modeling of the dynamic hysteresis behavior are
illustrated in Table 1.

Micromachines 2023, 14, x FOR PEER REVIEW 10 of 24 
 

 

signals that were sent to the PEA and the corresponding output signals obtained from the 
sensor, as shown in Figure 9. Each training signal contains 500 samples (with a sample 
time of 0.02 s), and their amplitudes range from 0 to 6 V before amplification. In our pre-
vious work [31], we noted an interesting tradeoff between model complexity and accuracy 
and proved that the optimal number of operators is 55; thus, we used the same number in 
this study as well. Additionally, in the same previous paper, we presented a detailed dis-
cussion of the optimal tuning of PSO hyper-parameters used for training the model. All 
parameter values obtained through the Preisach modeling of the dynamic hysteresis be-
havior are illustrated in Table 1. 

 
(a) 

 
(b) 

 
(c) 

Figure 9. The excitation signals of the PEA in the training phase and the corresponding output sig-
nals of the sensor: (a) first training signal; (b) second training signal; (c) third training signal. 

The effectiveness of the proposed hysteresis model was validated by two test da-
tasets, as shown in Figure 10. This figure shows the actual hysteresis loops against the 
predicted hysteresis loops for the considered actuator. It can be seen that there is a good 
match between them, in the sense that the model achieved good predictive performance. 
The root-mean-square-error (RMSE) was used as a measure of modeling quality. The sug-
gested model achieved low prediction error values in test datasets, A = 0.01061 µm and B 
= 0.01086 µm, with an average RMSE of 0.0107 µm. For further comparison, we also plot-
ted the instantaneous prediction errors in Figure 11. It can be observed that most error 

Figure 9. The excitation signals of the PEA in the training phase and the corresponding output signals
of the sensor: (a) first training signal; (b) second training signal; (c) third training signal.

Table 1. The parameter values obtained for the Preisach hysteresis model.

Parameter Value

Samples/second 500
Range of reference signal amplitudes 0–6 V

Number of hysteresis operators 55
Acceleration parameters 2

Population size 30
Minimum and maximum inertia weights of particles [0.4, 0.9]

Iterations 100
Hyper-parameters C = 3.81× 103, σ2 = 3.135

Bias 1.831

The effectiveness of the proposed hysteresis model was validated by two test datasets,
as shown in Figure 10. This figure shows the actual hysteresis loops against the predicted
hysteresis loops for the considered actuator. It can be seen that there is a good match
between them, in the sense that the model achieved good predictive performance. The
root-mean-square-error (RMSE) was used as a measure of modeling quality. The suggested
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model achieved low prediction error values in test datasets, A = 0.01061 µm and B = 0.01086
µm, with an average RMSE of 0.0107 µm. For further comparison, we also plotted the
instantaneous prediction errors in Figure 11. It can be observed that most error levels are
within the range of ±0.05 µm, which indicates that our model yields an extremely good fit,
and hence its inverse can be amenably used for designing a practical compensator.
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Figure 10. Comparison between the actual hysteresis loops and the predicted hysteresis loops for the
considered actuator: (a) data A; (b) data B.
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4. Hysteresis Compensation

In this section, the proposed control scheme with all the necessary details is presented.

4.1. Feedforward–Feedback Control Structure

For hysteresis compensation and precise reference tracking, a compound control
scheme consisting of a feedforward (FF) compensation part and a robust feedback control
part was used, as shown in Figure 12. This method integrates the modified Preisach inverse
model-based controller for hysteresis compensation and a two-degree-of-freedom (2-DOF)
controller based on the H-infinity control method to improve the tracking performance
with robustness and disturbance rejection. The parameter identification of the inverse
hysteresis model was performed by training the modified Preisach model inversely as its
input was used as an output, and vice versa. Once the training phase is completed, the
inverse Preisach hysteresis model is used to construct the FF control part. The inverse model
compensator is widely used in nanopositioning applications; however, it has a disadvantage
as its tracking performance relies significantly on the accuracy of the inverse hysteresis
model employed in the design. Thus, eliminating the overall effect of hysteresis by only
placing its approximate inverse model in a feed-forward path is often challenging [48,49].
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Therefore, we combined the FF control part with a feedback control method to reduce
any remaining tracking errors. There would be significant advantages to inserting robust
control in the feedback path to eliminate modeling errors and handle any external distur-
bances. For this purpose, a 2-DOF robust H-infinity control [50] was used in this study. The
H-infinity theory is widely used for developing robust control methods to maintain local
stability and achieve satisfactory performance. The considered 2-DOF robust H-infinity
feedback controller consists of two parts; the first part (K1) is placed in the feedforward
path as a pre-filter to help the Preisach model-based controller in reducing the remaining
tracking error, whereas the second part (K2) is used in the feedback path for any possible
disturbance rejection. Details of the H-infinity control design used in this paper will be
further discussed in the next subsection.

4.2. Two-Degree-of-Freedom (2-DOF) H-Infinity Controller Design

The feedback controller should be designed so that the closed-loop system is robust
and can achieve the desired tracking performance. For this purpose, the two-degree-of-
freedom H∞ optimization method [50] was adopted in our study. The scheme of this control
strategy is shown in Figure 13. The system has a reference signal (yd) and external distur-
bance (d). G is the nominal plant model of the considered system, given by Equation (1),
which is used for the synthesis of the H∞ controller, and K1 and K2 are the H∞ controllers
to be designed. Therefore, the output response, control signal, and error signals of the
closed-loop systems can be expressed as follows:

ŷ =
K1G

1− GK2
yd +

1
1− GK2

d (21)

uh =
K1

1− GK2
yd +

K2

1− GK2
d (22)

e1 = yd (23)

e2 =
K1G

1− GK2
yd +

1
1− GK2

d (24)
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In the above equations, it is clear that we should minimize the sensitivity function
(1− GK2)

−1 for good disturbance attenuation and K1(1− GK2)
−1 and K2(1− GK2)

−1 for
less control energy to avoid saturation issues. Similarly, for the frequency range of the
reference input trajectory, the sensitivity function K1G(1− GK2)

−1 must be at 0 dB in order
to achieve precise reference tracking. This can be performed by imposing some templates
in terms of weighting functions on the shapes of the closed-loop sensitivity functions.

Two weighting functions were suggested for H∞ controller design. Wu is a weighting
function on the control signal and We is a weighting function on the error signal (ŷ− yd).
The closed-loop system was then represented in the standard configuration using the
lower linear fractional transformation (LLFT) technique [51], as shown in Figure 14. Here,
P represents the generalized plant model and z1 and z2 are the two controlled outputs.
More details about this method are available in [50]. The system is, therefore, described
as follows: 

z1
z2
e1
e2

 =


−We We WeG

0 0 Wu
1 0 0
0 1 G


yd

d
uh

 (25)

and the closed-loop transfer function matrix Tl(P, K) is given by:

Tl(P, K) =
[

We(SOGK1 − 1) WeSO
WuSiK1 WuK2SO

]
(26)

where Si = (1− K2G)−1 is the input sensitivity function and So = (1− GK2)
−1 is the

output sensitivity function. Therefore, in this case, the goal is to minimize the H∞ norm of
Tl(P, K). A description of each element of Tl(P, K) is given in Table 2.

Micromachines 2023, 14, x FOR PEER REVIEW 14 of 24 
 

 

൥௭భ௭మ௘భ௘మ൩ = ൦−𝑊௘ 𝑊௘ 𝑊௘𝐺0 0 𝑊௨10 01 0𝐺 ൪ ൥𝑦ௗ𝑑𝑢௛൩ (25)

and the closed-loop transfer function matrix 𝑇௟(𝑃, 𝐾) is given by: 

𝑇௟(𝑃, 𝐾) = ൤𝑊௘(𝑆ை𝐺𝐾ଵ − 1) 𝑊௘𝑆ை𝑊௨𝑆௜𝐾ଵ 𝑊௨𝐾ଶ𝑆ை൨ (26) 

where 𝑆௜ = (1 − 𝐾ଶ𝐺)ିଵ  is the input sensitivity function and 𝑆௢ = (1 − 𝐺𝐾ଶ)ିଵ  is the 
output sensitivity function. Therefore, in this case, the goal is to minimize the 𝐻ஶ norm 
of 𝑇௟(𝑃, 𝐾). A description of each element of 𝑇௟(𝑃, 𝐾) is given in Table 2. 

 
Figure 14. Generalized block diagram with a 2-DOF 𝐻ஶ controller design. 

Table 2. Description of H-infinity functions that have to be minimized for the proposed control de-
sign. 

Function Description 𝑊௘(𝑆ை𝐺𝐾ଵ − 1) The weighted error between the ideal and actual closed-loop system 𝑊௘𝑆ை Weighted output sensitivity 𝑊௨𝑆௜𝐾ଵ Weighted control action that can occur due to reference 𝑊௨𝐾ଶ𝑆ை Weighted control action that can occur due to disturbance 

Hence, the generalized optimization problem of the 𝐻ஶ controller design is given as 
follows: 𝑚𝑖𝑛‖𝑇௟(𝑃, 𝐾)‖ஶ = 𝑚𝑖𝑛 [𝑚𝑎𝑥ఠ 𝜎ത ൫𝑇௟(𝑃, 𝐾)(𝑗𝜔)൯] (27)

where 𝑚𝑎𝑥 𝜎ത(·) denotes the maximum singular value of 𝑇௟(𝑗𝜔). 

4.3. Performance Specifications and Robustness Analysis 
We used the 𝐻ஶ suboptimal problem so that the 𝐻ஶ norm of the closed-loop transfer 

function is less than a specified positive value (𝛾 = 1), as given below: ‖𝑇௟(𝑃, 𝐾)‖ஶ < 1 (28)

The closed-loop sensitivity functions must remain under the magnitudes of the inverse of 
corresponding weighting functions, where: 

Figure 14. Generalized block diagram with a 2-DOF H∞ controller design.



Micromachines 2023, 14, 1208 14 of 23

Table 2. Description of H-infinity functions that have to be minimized for the proposed
control design.

Function Description

We(SOGK1 − 1) The weighted error between the ideal and actual closed-loop system

WeSO Weighted output sensitivity

WuSiK1 Weighted control action that can occur due to reference

WuK2SO Weighted control action that can occur due to disturbance

Hence, the generalized optimization problem of the H∞ controller design is given
as follows:

min‖Tl(P, K)‖∞ = min
[
max

ω
σ (Tl(P, K)(jω))

]
(27)

where maxσ(·) denotes the maximum singular value of Tl(jω).

4.3. Performance Specifications and Robustness Analysis

We used the H∞ suboptimal problem so that the H∞ norm of the closed-loop transfer
function is less than a specified positive value (γ = 1), as given below:

‖Tl(P, K)‖∞ < 1 (28)

The closed-loop sensitivity functions must remain under the magnitudes of the inverse of
corresponding weighting functions, where:

|SOGK1 − 1| < 1
We

, |SO| <
1

We
, |SiK1| <

1
Wu

, |K2SO| <
1

Wu

The constraints imposed on the sensitivity functions method are demonstrated in
Table 3.

Table 3. The constraints imposed on the sensitivity functions.

Constraint Description

‖S0‖∞ < 6 dB For good robustness and sufficient stability margin

|S0| < −23 dB For good disturbance attenuation and less tracking error

|SiK1| < 20 dB
|K2SO| < 20 dB To avoid saturation of the control signal

In order to achieve the above-mentioned constraints, the weighting functions were
chosen as follows:

We(s) =
0.505s + 248.4

s + 17.59
(29)

Wu(s) =
50s + 3936
s + 42, 800

(30)

Thus, the transfer functions of the optimal controllers K1 and K2 were obtained as follows:

K1(s) =
Kn(s)
Kd(s)

=
n1s6 + n2s5 + n3s4 + n4s3 + n5s2 + n6s + n7

s7 + d1s6 + d2s5 + d3s4 + d4s3 + d5s2 + d6s + d7
(31)

K2(s) =
Kp(s)
Kz(s)

=
p1s6 + p2s5 + p3s4 + p4s3 + p5s2 + p6s + p7

s7 + z1s6 + z2s5 + z3s4 + z4s3 + z5s2 + z6s + z7
(32)

where the parameters of these controllers are given in Table 4. The designed controller
meets the desired performance objectives and constraints with a minimal achievable value
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(min(‖Tl(P, K)‖∞)) of 0.984. The sensitivity functions lie under the curves of the constraints
represented by 1/We and 1/Wu, as shown in Figures 15 and 16. These figures show good
modulus margins, ‖S0‖∞ = 0.077 dB and ‖K2SO‖∞ = 1.427 dB, and a satisfactory tracking
bandwidth that covers the reference signals used in this study. These results indicate that
the required good performance and disturbance rejection requirements are fully met with
our control design.

Table 4. Parameter values for the numerator and denominator polynomials of the proposed 2-DOF
H∞ controller.

Parameter Value Parameter Value

n1 0 d1 0

n2 1.315 × 103 d2 −1.315 × 103

n3 6.880 × 107 d3 −6.880 × 107

n4 8.559 × 1011 d4 −8.559 × 1011

n5 1.544 × 1016 d5 −1.544 × 1016

n6 8.003 × 1019 d6 −8.003 × 1019

n7 2.927 × 1023 d7 −2.927 × 1023

p1 1 z1 1

p2 1.477 × 105 z2 1.477 × 105

p3 1.652 × 109 z3 1.652 × 109

p4 3.515 × 1013 z4 3.515 × 1013

p5 1.948 × 1017 z5 1.948 × 1017

p6 7.649 × 1020 z6 7.649 × 1020

p7 1.339 × 1022 z7 1.339 × 1022
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5. Tracking Results

For the evaluation of the proposed control scheme, the test reference signals men-
tioned in Section 3.3 were used to excite the considered PEA and then compared with the
corresponding measured output displacements. For better performance evaluation, the
root-mean-square error (RMSE) was used to measure the tracking error, which is suitable for
the measurement of tracking errors for nanopositioning systems. Figure 17 shows the track-
ing results with only the 2-DOF H∞ feedback controller without the hysteresis feedforward
compensator for two test datasets. As the H∞ feedback controller was designed for a linear
plant model and the nonlinear hysteresis of the actuator was not compensated for in this
case, large tracking errors (A = 0.1006 µm and B = 0.1664 µm) were observed, as expected.
As depicted in Figure 18, the tracking error has been significantly reduced to A = 0.0258 µm
and B = 0.0361 µm when utilizing only the hysteresis feedforward compensator, resulting
in improved tracking performance.

Further improvements in the tracking performance have been achieved by utilizing the
2-DOF H∞ feedback controller in the presence of the nonlinear hysteresis feedforward com-
pensator, as illustrated in Figure 19. The proposed control design effectively compelled the
system’s output to closely follow the reference trajectory, achieving an RMSE of 0.019 µm
and 0.0233 µm, respectively. These results indicate that the feedforward hysteresis compen-
sator does not have an adverse effect in the presence of the 2-DOF H∞ feedback controller,
which has two parts (K1 and K2). Nonlinear hysteresis compensation with an inverse
hysteresis feedforward compensator is indeed required with a feedback controller, which
is designed for a linear plant model in order to achieve the desired tracking performance.
Figure 20 shows the effectiveness of our controller on the considered nanopositioning
system in reducing the hysteresis nonlinearity of the PEA, where it describes a highly linear
relationship between the input and output.

Table 5 shows the tracking performance for the proposed control scheme compared
with the LSSVM-PID feedback controller, which has been proposed in our previous
work [31]. It can be observed that the 2-DOF H∞ controller achieved better trajectory
tracking performance than the traditional PID feedback controller, obtaining a 0.0212 µm
RMSE on average while the PID achieved a 0.0241 µm RMSE on average. To further clarify
the difference, the instantaneous tracking errors for both schemes were compared on test
dataset B, as shown in Figure 21. These differences, in terms of mean RMSE and error
levels, may seem small, but their effect is astonishing in nanoscale systems.
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Table 5. Tracking errors in terms of the RMSE for the proposed control scheme.

Data
RMSE (µm) Percentage of Improvement

%PID-Preisach Proposed

A 0.0214 0.0190 11.2
B 0.0267 0.0233 12.7

Mean 0.0241 0.0212 12.03
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The above results presented in this study were achieved after carefully considering
the tradeoff between two critical factors: tracking performance and system robustness.
It is well-known that improving tracking performance often requires sacrificing system
robustness while enhancing system robustness typically results in decreased tracking
performance. Therefore, the tracking error shown in Figure 21 could be further reduced by
modifying the template of the weighting function imposed on the closed-loop sensitivity
function in the H∞ design, but this comes at the cost of lower robustness and stability
margins of the system.

6. Comparison with Other Relevant Works

In this section, we compare our results to some existing results in related works
mentioned in Section 1. The results are shown in Table 6, where we can see that our
method improves tracking performance on nanopositioning systems and outperforms in
comparison with the other methods in terms of average RMSE. The compensation method
that is based only on the improved inverse Preisach [52] method has low accuracy (RMSE
of =0.15 µm), but it is better than the compensation method based on the recurrent neural
networks (RNNs) [25], which produced an average RMSE of 0.465 µm. The FF-FB control
method based on the LSSVM algorithm without modeling hysteresis [28] produced the
highest RMSE value (0.62 µm). The authors in [26] have tried to apply the same algorithm
(LSSVM) to model hysteresis based on an autoregressive model with exogenous input
(NARX), as they reduced the average tracking error to 0.03 µm. In our previous work [31],
we designed a hybrid control scheme consisting of an FF controller developed by modified
Preisach using the PSO-LSSVM algorithm, whereas the FB controller was developed by
incremental PID control, where the average tracking error was reduced to 0.0241 µm for
the same test dataset. The performance improvement strategy in this paper has a better
average tracking error (0.0212 µm) than the PID-LSSVM controller. In addition, Table 6 also
compares our results with those obtained by other studies that used the same piezoelectric
actuator (P-752.21C), as our presented control strategy using the 2-DOF H∞ robust feedback
controller achieved better tracking performance than comparative studies in terms of the
RMSE. This comparison demonstrated that our method is more powerful and has a higher
degree of generalization than the other methods in handling the effects of the nonlinearities
of the PEA on nanopositioning systems.
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Table 6. Comparison of the improved method with other methods.

Method Control Structure Type of PEA RMSE (µm)

LSSVM [28]
The feedforward–feedback controller
was designed by LSSVM without
modeling hysteresis.

PEA actuator
(T434-A4-201, Piezo Systems,
Inc., Cambridge, MA, USA)

0.62

RNN [25]
The feedforward compensator was
developed by the deep learning
method (RNN).

PEA actuator
(P-621.1CD, Karlsruhe,

Germany,
PI Co.)

0.465

Modified Preisach [52]
The feedforward compensator was
developed by the improved
inverse Preisach.

PEA actuator
(P-885.50, PI Co.) 0.15

PID-NARX-LSSVM [26]

The feedforward compensator was
designed by the least-squares support
vector machine and the feedback
controller was designed by PID.

PEA actuator
(name of the company

is unavailable)
0.03

PID-Modified Preisach [31]

The feedforward compensator was
designed by modified Preisach using
PSO-LSSVM and the feedback
controller was designed by incremental
PID control.

Same actuator
(P-752.21C) 0.0241

Fuzzy-PID control [53] The FB compensator was designed by
the fuzzy PI controller.

Same actuator
(P-752.21C) 0.333

Modified Bouc–Wen [54]

The nonlinear internal model
(estimator) coupled with the Bouc–Wen
model for only rate-independent
hysteresis.

Same actuator
(P-752.21C)

Maximum = 0.015
(for rate-independent

hysteresis)

CLC/MRF controller [55]

A complex lead compensator (CLC)
using the phase-stabilized
compensation method, combined with
a multi-resonant filter (MRF).

Same actuator
(P-752.21C) 0.0278

The proposed method

The feedforward compensator was
designed by modified Preisach using
PSO-LSSVM and the feedback
controller was designed by the 2-DOF
H∞ control.

(P-752.21C) 0.0212

7. Conclusions

This paper presents a new compound control architecture in such a way that it can
handle nonlinearities and enhance the tracking performance of the control system for a
piezoelectric actuator. The author created a robust controller by combining the improved
inverse Preisach hysteresis model with the 2-DOF H∞ control. The PSO-LSSVM algorithm
and the hysteresis stop operator algorithm were used to model the hysteresis response
and design the inverse of the Preisach hysteresis. For H-infinity control, the two-degree-
of-freedom H-infinity control strategy was used to provide robust performance under
external disturbances.

The achieved results show that the hysteresis model developed in this study can yield
accurate results, with an average prediction accuracy of 0.0107 µm. In addition, it has been
found that the feedforward controller, which uses only the inverse LSSM model, achieved
better tracking results compared to the suggested 2-DOF H∞ controller without hysteresis
compensation. For dataset A, the feedforward controller had a tracking error of 0.0258 µm,
while the H∞ controller had a tracking error of 0.1006 µm. Similarly, for dataset B, the
feedforward controller had a tracking error of 0.0361 µm, while the H∞ controller had a
tracking error of 0.1664 µm. The combination of both control approaches produced the best
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tracking results, with a tracking error of 0.019 µm for dataset A and 0.0233 µm for dataset
B. This approach was superior to some of the recent approaches described in the literature,
which means that our control scheme is highly capable of dealing with disturbances and
compensating for PEA nonlinearities, as it could precisely track the reference input signals
with an average tracking precision of 0.0212 µm.

It is possible to further reduce the tracking error obtained by the proposed control
method by modifying the template of the weighting function imposed on the closed-loop
sensitivity function in the H∞ design. However, doing so comes at the cost of lower
robustness and stability margins of the system. Additionally, increasing the number of
hysteresis operators can also improve the results, but it comes with a tradeoff of increased
computational complexity of the control part, which can affect the applicability of the
control system.
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