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Abstract: We present the prototype and analytical model of a miniaturized impact actuation mecha-
nism, providing a fast out-of-plane displacement to accelerate objects against gravity, allowing for
freely moving objects and hence for large displacements without the need for cantilevers. To achieve
the necessary high speed, we chose a piezoelectric stack actuator driven by a high-current pulse
generator, connected to a rigid support and a rigid three-point contact with the object. We describe
this mechanism with a spring-mass model and compare various spheres with different masses and
diameters and from different materials. As expected, we found that larger flight heights are achieved
by harder spheres, achieving, e.g., approx. 3 mm displacement for a 3 mm steel sphere using a
3 × 3 × 2 mm3 piezo stack.

Keywords: piezo actuator; impact actuator; freely moveable masses

1. Introduction

In this study, we introduce a miniaturized impact actuation mechanism providing
a fast and large out-of-plane displacement of freely moving objects without the need for
cantilevers. With our 3 mm actuator dimensions, we bridge the gap between impact-
type microactuators [1,2] in the sub-millimeter range and medium-sized actuators in the
centimeter regime [3,4].

Cantilever-type beams and springs replace bearings in the microscopic world because
they are compatible with microsystem technologies. They prevent movable structures
from suffering from friction, which becomes large in relation to the other forces at small
scales. Cantilever suspensions have been implemented in a plethora of microsystems for
many different applications for in-plane, out-of-plane, and torsional movements. Popular
application examples are acceleration sensors, gyroscopes, or scanning mirrors. Thereby,
an object which is to be moved or displaced is always in a defined neutral position, as
the force of the actuator needed for the displacement is balanced by the restoring force
of the bent cantilever. Hence, cantilevers have the advantage of predictable forces and
positions in addition to the absence of friction and wear with essentially no fatigue if made
from silicon. Their disadvantages, however, are not much discussed. They are exactly the
opposite of what we previously stated: the direction of motion is limited by the direction of
the force of the actuator, we always have to overcome the restoring forces by an actuator
which does not only need to accelerate the object but also balance the force of the cantilever
springs. The cantilevers, therefore, limit the maximum displacement, and if we want to
keep a displaced position constant we always have to provide some force by the actuator,
which is constantly consuming power.
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Only a few microactuators avoid cantilevers and perform phases of true free flight.
One class is represented by magnetic levitation as has been shown, for example, by
Badilita et al. [5], who combined two co-axial microcoils, one for levitation and one for
stabilization, to inductively levitate a conductive disc. This concept was later combined
with an electrostatic positioning mechanism [6]. The same holds true for freely floating
spheres which were only recently introduced by Hoffmann et al., who used electrostatic
bending actuators to transfer both force and torque to the spheres resulting in a step-wise
rotation with multiple stable final positions [7].

Most microactuators are designed to provide steady force-displacement curves for a
continuous motion, and their movable masses are usually suspended on cantilevers, as
mentioned above. However, some impact microactuators have also been investigated,
mostly to generate quasi-continuous motion. In the early years of MEMS, Pisano et al. [1]
and Muller et al. [2] were among the first to build impact-based micro rotational [1] and
linear [2] motors consisting of comb actuators that transfer their energy to a rotor, or a slider,
respectively, creating a stepwise motion. The comb actuators were suspended to cantilevers,
whereas the rotor was mounted on a central hub and the slider was completely free.

A special impact mechanism is used for so-called stick and slip microactuators which
use a combination of inertia, on the one hand, and friction, on the other hand. Fujita et al. [8]
presented a quasi-infinite linear displacement of a tiny silicon chip using electrostatic
impact forces to let an inertial mass on this chip, being suspended to cantilevers, bump
against a stopper. The chip underneath, however, was free to move, i.e., without a limiting
suspension, and thus slipped stepwise across a surface. A comprehensive model of this
system was presented by Nayfeh et al. [9], and Toshiyoshi et al. later extended this idea to
motions in two dimensions [10]. A magnetically driven resonant impact actuator for haptic
feedback in mobile phones has been demonstrated by Kwon et al. As this was slightly
larger, the inertial mass was not suspended to microstructured cantilevers but to in-plane
bendable steel springs instead [11].

A slightly different class of impact-based stick and slip actuators relies on alternating
low and high-speed phases, for example, by slow elongation of an actuator loaded with a
sliding mass and rapid contraction afterward, the first one dominated by high static friction,
the second by lower dynamic friction. They have been implemented, e.g., by Hosaka et al.
using piezoelectric actuation with in-plane polarization and superposing two longitudinal
resonant modes, resulting in a close to saw-shaped step-wise displacement [12], or by
Higuchi et al. using a shape memory alloy (SMA)-based actuation through rapid contraction
of an SMA wire when resistively heated and slower cooling by surrounding air [13]. The
same group even demonstrated actuation by laser-induced thermal [14] where the active
part incorporated mirror surfaces for multiple laser beam reflections, thereby heating the
element. As these impact-based stick and slip actuators are typically not in the microsystems
domain, they are not suspended to cantilevers and provide untethered motion.

Another popular example of stick and slip microactuators, though not impact type
and mentioned here for completeness, is the electrostatic scratch drive which was first
introduced by Shono et al. [15] for in-plane movement and later extended by Fujita et al.
for out-of-plane motion [16], and by Bright et al. even for the rotary motors [17]. Scratch
drive actuators are also mostly suspended to cantilevers, however, with a different purpose,
i.e., to suspend the scratch drive to a movable frame. In this case, the actuator does not
need to balance the spring force.

In order to further overcome the restrictions imposed by cantilevers, in this paper we
study an out-of-plane impact “kick” actuation mechanism based on a tiny piezoelectric
chip actuator. Our freely moving object is a sphere that performs a ballistic, i.e., free flight
out-of-plane in one dimension according to gravitational acceleration. Falling down, the
sphere exhibits several bounces until it comes to a standstill again. A single actuation cycle
is illustrated in Figure 1.
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Figure 1. Actuation cycle of the ballistic sphere entering a free flight phase triggered by a short 
strong kick type actuation of a piezoelectric chip. The red arrows indicate qualitatively the speed, 
the blue arrows, however are not to scale (should be as long as the red ones). When falling down, 
the sphere experiences several bounces. 

We investigate the acceleration of spheres of various diameters and materials, i.e., 
with different masses and hardness. The setup is characterized by measuring those trajec-
tories and obtaining the initial kinetic energy or speed as a function of the mass of the 
object and the displacement of the actuator. We then relate these results to a mechanical 
spring-mass model that takes into account the compliance of the actuator and the ballistic 
sphere in addition to their masses. 

2. Experimental Setup 
For a demonstrator, we used a small PZT stack actuator (3 × 3 × 2 mm3, Thorlabs 

PA3JEAW, Thorlabs, Inc., Newton, NJ, USA) with a fixed boundary condition at the bot-
tom and an open boundary condition with three well-defined contact points for the pro-
jectile at the top. The ballistic sphere is then horizontally contained with a guidance struc-
ture that is supposed to guide the sphere back to the piezo in case it is released at an angle, 
but not to guide it in a vertical direction. We drove the piezo with a low-impedance pulse 
generator in order to achieve fast speeds. 

2.1. Mechanical and Electric Setup 
The mechanical setup is shown in Figure 2a–d. As a base, we used a 10 mm block of 

aluminum into which we glued a 10 × 10 mm sheet of 1 mm thick glass to provide a smooth 
surface and spread the load of the piezo, which we glued with low-viscosity epoxy (Aral-
dite 2020) at the center. 

To provide reliable contact to the ballistic sphere, we used three 1 mm contact spheres 
of zirconia. We glued them, again using Araldite 2020, in 1.1 mm holes with a 60° conical 
bottom and 1.35 mm pitch in a 1 mm thick titanium structure. To prevent the ballistic 
sphere from falling out of the experimental setup, we created a guidance structure that we 
laser-cut from 1 mm and 0.5 mm FR2 for the structural parts and 0.2 mm glass for the 
vertical guidance, leaving 0.125 mm space next to the sphere. We designed the structure 
to fix all its degrees of freedom when fitted together and fixated the pieces with cyanoacry-
late “superglue”; it rests in a circular grove in the aluminum base. 

To achieve a fast response time of the piezo leading to the desired kick and release of 
the sphere from the piezo, we needed a voltage source with a high peak current. For that 
purpose, we used the circuit shown in Figure 2e, where we stabilized the input voltage 
with a 2.2 µF capacitor Csrc and applied it with an N-channel MOSFET (FQP32N20C) to 
the 113 nF piezo (CPZT). 

Figure 1. Actuation cycle of the ballistic sphere entering a free flight phase triggered by a short strong
kick type actuation of a piezoelectric chip. The red arrows indicate qualitatively the speed, the blue
arrows, however are not to scale (should be as long as the red ones). When falling down, the sphere
experiences several bounces.

We investigate the acceleration of spheres of various diameters and materials, i.e., with
different masses and hardness. The setup is characterized by measuring those trajectories
and obtaining the initial kinetic energy or speed as a function of the mass of the object and
the displacement of the actuator. We then relate these results to a mechanical spring-mass
model that takes into account the compliance of the actuator and the ballistic sphere in
addition to their masses.

2. Experimental Setup

For a demonstrator, we used a small PZT stack actuator (3 × 3 × 2 mm3, Thorlabs
PA3JEAW, Thorlabs, Inc., Newton, NJ, USA) with a fixed boundary condition at the bottom
and an open boundary condition with three well-defined contact points for the projectile at
the top. The ballistic sphere is then horizontally contained with a guidance structure that is
supposed to guide the sphere back to the piezo in case it is released at an angle, but not to
guide it in a vertical direction. We drove the piezo with a low-impedance pulse generator
in order to achieve fast speeds.

2.1. Mechanical and Electric Setup

The mechanical setup is shown in Figure 2a–d. As a base, we used a 10 mm block
of aluminum into which we glued a 10 × 10 mm sheet of 1 mm thick glass to provide a
smooth surface and spread the load of the piezo, which we glued with low-viscosity epoxy
(Araldite 2020) at the center.

To provide reliable contact to the ballistic sphere, we used three 1 mm contact spheres
of zirconia. We glued them, again using Araldite 2020, in 1.1 mm holes with a 60◦ conical
bottom and 1.35 mm pitch in a 1 mm thick titanium structure. To prevent the ballistic
sphere from falling out of the experimental setup, we created a guidance structure that
we laser-cut from 1 mm and 0.5 mm FR2 for the structural parts and 0.2 mm glass for the
vertical guidance, leaving 0.125 mm space next to the sphere. We designed the structure to
fix all its degrees of freedom when fitted together and fixated the pieces with cyanoacrylate
“superglue”; it rests in a circular grove in the aluminum base.

To achieve a fast response time of the piezo leading to the desired kick and release of
the sphere from the piezo, we needed a voltage source with a high peak current. For that
purpose, we used the circuit shown in Figure 2e, where we stabilized the input voltage
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with a 2.2 µF capacitor Csrc and applied it with an N-channel MOSFET (FQP32N20C) to the
113 nF piezo (CPZT).
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circuit; (f) overview on LabView controlled measurement setup including the voltage supply from 
(e); (g) close-up view of (b) below a triangulation sensor. 

2.2. Setup Characterization 
We characterized both the actuator and the flight trajectories of the ballistic spheres 

with optical sensors, in both cases taking a number of samples (212 = 441 to 412 = 1681) in 
a square raster over an area of 200 × 200 µm. While this gives a raster spacing of 10 or 5 
µm, correspondingly, the relevance was to create a high number of data points for statis-
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H022K (Keyence Corporation, Osaka, Japan) triangulation sensor that we operated in a 
LabView-controlled measurement set-up at a sampling frequency of 200 kHz; see Figure 
2f,g. We show the mechanical and electrical response at 100 V input voltage in Figure 3 
where we observe a fast mechanical response of approx. 10 µs, followed by a superposi-
tion of different resonances and a long-term creep. The height of the displacement should 
not be considered an exact value as it may be different at different positions on the surface. 
Due to the noise even with a large number of samples, it is difficult to compute an accurate 
value of the initial speed of the piezo surface. Taking samples at 20 V and 100 V, we find 
a maximum speed of approx. 100 to 130 s  times the asymptotic displacement at the 
given voltage, which corresponds well to the response time. We also see that the electric 
response of the circuit, measured directly at the contact wires of the piezo, (red curves) is 

Figure 2. (a) Exploded view of the experimental setup; (b) photograph of the base plate, the guiding
structures, and the projectile on the piezo actuator; (c) detail of the actuator with contact spheres
from zirconia; (d) photograph of the piezo actuator (3 × 3 × 2 mm3) with contact spheres; (e) driving
circuit; (f) overview on LabView controlled measurement setup including the voltage supply from
(e); (g) close-up view of (b) below a triangulation sensor.

2.2. Setup Characterization

We characterized both the actuator and the flight trajectories of the ballistic spheres
with optical sensors, in both cases taking a number of samples (212 = 441 to 412 = 1681)
in a square raster over an area of 200 × 200 µm. While this gives a raster spacing of 10
or 5 µm, correspondingly, the relevance was to create a high number of data points for
statistics to reduce the noise. For the characterization of the actuator, we used a Keyence
LK-H022K (Keyence Corporation, Osaka, Japan) triangulation sensor that we operated
in a LabView-controlled measurement set-up at a sampling frequency of 200 kHz; see
Figure 2f,g. We show the mechanical and electrical response at 100 V input voltage in
Figure 3 where we observe a fast mechanical response of approx. 10 µs, followed by a
superposition of different resonances and a long-term creep. The height of the displacement
should not be considered an exact value as it may be different at different positions on the
surface. Due to the noise even with a large number of samples, it is difficult to compute an
accurate value of the initial speed of the piezo surface. Taking samples at 20 V and 100 V,
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we find a maximum speed of approx. 100 to 130 s−1 times the asymptotic displacement
at the given voltage, which corresponds well to the response time. We also see that the
electric response of the circuit, measured directly at the contact wires of the piezo, (red
curves) is sufficiently fast in order not to affect the mechanical response (black curves). The
difference of about 5% of the initial value compared to the input voltage can be explained
by the ratio of the capacitances. We verified that the actuator is not limited by its internal
resistance or inductance by measuring the impedance spectrum, which showed the typical
resonance (480 kHz) and anti-resonance (600 kHz) in addition to a few highly suppressed
modes that may result from the aluminum base. At the frequency range of relevance for
the step response between 10 and 100 kHz, the actuator acts like a near-perfect capacitor
with 104 nF and a phase between −89.2◦ and −89◦. Between 20 and 24 kHz, there is a very
small fluctuation in the phase of about 0.05◦, and another one between 45 and 70 kHz with
0.15◦, which may correspond to the mechanical ringing that we see in the step response in
Figure 3.
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Figure 3. (a) Displacement of the surface of the actuator setup (black) and electric signal (red) for a
trigger signal of 1 Hz and 50% duty cycle and an input voltage of 100 V; (b) initial response (left)
and full cycle (right). (c) Corresponding vertical speed of the surface obtained through numerical
differentiation, normalized by the steady-state displacement, for input voltages of 100 V and 20 V.

To demonstrate the kinematics, we show the trajectory of a 3 mm 1.4034 hardened
steel sphere in Figure 4a that we measured with a chromatic confocal sensor (Polytec CL4,
Polytec GmbH, Waldbronn, Germany) and the velocity as derived from the local slope
in Figure 4b. The blue line in Figure 4a represents the equivalent height that represents
the total energy composed of the potential and kinetic energy hequiv = E

mg = v2

2g + h. The
height h was taken directly from the confocal sensor and the vertical speed v was obtained
through numerical differentiation, which explains why the data is more noisy in the phases
when the energy is dominated by the kinetic energy. We see the usual kinematics with
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approximately constant total energy and a series of bounces of the sphere on the piezo
actuator. One has to keep in mind that the speed is comparatively noisy, and there may be
contact with the guidance structure and a possible rotation of the sphere, in particular after
the bounces. We did not track the actual spherical shape of the surface, so there may be
some artifacts coming from a sideways motion in combination with the spherical surface
profile that appears as an altered overall speed in combination with a slightly stronger
gravitational acceleration. With a speed of at most approximately 0.2 m/s, we ignore
aerodynamic friction for the rest of the paper.
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Figure 4. Single kick of a 3 mm hardened steel sphere, ejected at 100 V input voltage. (a) Vertical
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2.3. Mechanical Model

To first order, such a device can be described by a simple spring-mass model with an
effective spring constant ke f f representing the stiffness of the actuator assembly including
all effects caused by the glue and the geometry and possibly a section of the ballistic sphere,
and a mass M = me f f + m consisting of an effective mass me f f of the actuator setup and
the mass m of the sphere. For the sake of simplicity, we ignore damping in our model,
knowing that it will not be exact, regardless of including damping. In Figure 5, we illustrate
that immediately after applying the electric signal, the spring is in a compressed state
corresponding to the total DC displacement z0 (ignoring creep effects). It then relaxes with
a harmonic motion with an angular frequency ω =

√
ke f f /M, starting the sphere at the

maximum speed v = ωz0. Hence, we expect a linear dependence of the initial speed of the
sphere on the DC displacement of the actuator for different input voltages. The angular
frequency should increase with decreasing mass, approaching the 100 to 130 m/s of the
bare actuator setup at zero mass, even though me f f and ke f f will depend on the mechanics
of the actuator sphere contact, i.e., on the size of the sphere and its hardness.
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We can describe those details to some approximation by introducing an additional
spring constant kcontact that describes the contact between the actuator assembly and the
ballistic sphere. To obtain this spring constant, we assumed that the acceleration of the
sphere is balanced by a force that is orthogonal to the surface at all three contact points,
resulting in a horizontal force of the zirconia contact spheres acting on their titanium mount,
and the glue as shown in Figure 5b,c. For this purpose, we consider the displacement of the
center of the ballistic sphere, δz, if we apply a force F to it to first order using straightforward
but careful geometry. In particular, we consider the spring constants kh describing the
horizontal deformation or displacement of the contact spheres and krs and krp describing the
radial deformation of the contact spheres and the ballistic spheres, respectively. 1

kcontact
= δz

F
becomes, then, for overall three contact points

1
kcontact

=
3

cos2θ

(
1

krp
+

1
krs

)
+

sin2θ

cos2θ

3
kh

. (1)

The first term results from the radial compression of the two spheres, and we see that
this term is in a purely vertical load (θ = 0) just the spring constant of the ballistic sphere
and the contact spheres, and as θ approaches 90◦, the overall spring constant vanishes, as
on the one hand the radial component of the radial force diverges, and on the other hand
the vertical displacement resulting from a radial compression diverges, too. The second
term representing the horizontal displacement of the contact spheres in addition vanishes
at (θ = 0), where there is obviously no horizontal displacement of the contact spheres
resulting from a vertical load. Splitting the deformation of the contact spheres and the
ballistic spheres allows us to take into account the different deformations of the ballistic
spheres, assuming, e.g., proportionality to the hardness of the material. We then further
assume that the initial speed of the ballistic sphere is described by the slowest mode of the
combined spring-mass system of me f f with displacement ze f f that is coupled via ke f f to
an external constraint and via kcontact to m with displacement z. This is described by the
differential equation for coupled oscillators me f f

..
ze f f + ke f f ze f f +

(
ze f f − z

)
kcontact = 0,

m
..
z +

(
z − ze f f

)
kcontact = 0 with the solutions for the resonance frequency

ω2 =
kcontactme f f + ke f f

(
m + me f f

)
±
√(

kcontactme f f + ke f f

(
m + me f f

))2
− 4ke f f kcontactm me f f

2m me f f
(2)

of which we chose the negative sign to obtain the slower one of the two modes.

3. Measurements and Discussion

We demonstrated our setup using ballistic spheres of tungsten carbide, zirconia, and
hardened and non-hardened stainless steel, summarized in Table 1, with diameters of 3, 4,
and 5 mm.

Table 1. Summary of the materials.

Material Density 1 Y-Modulus Hardness

Zirconia (ZrO2) 6090 kg/m3 205 GPa 4 1200–1400 HV 2, 78 HRC 3

1.4034 hardened steel 7710 kg/m3 215 GPa 5 54–60 HRC 2, 60 HRC 3

1.4401 untreated steel 7990 kg/m3 200 GPa 6 25–39 HRC 2,3

Tungsten carbide TC2 14,800 kg/m3 669–696 GPa 7 1400–1600 HV 2, 78 HRC 3

1 Measured, 2 supplier data [18], 3 supplier data [19], 4 supplier data [20], 5 supplier data [21], 6 supplier data [22],
7 Matweb [23].
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3.1. Measurement Protocol

We measured the acceleration of each sphere over a sequence of input voltages from
20 to 100 V. For each combination, we measured a total of 441 events with a continuous
trigger of 1 Hz on a 21 × 21 grid on 200 × 200 µm around the center of the sphere, again
using the CL4 chromatic confocal sensor at a sampling rate of 2 kHz. To exclude effects
from friction on the sidewalls of the guidance structure, surface defects in combination
with different orientations of the ballistic spheres, dust particles, rotation of the sphere or
improper contact with the actuator assembly, we placed several filters on the data of each
shot, excluding data with:

• >0.5 ms deviation of the actual flight time from the expected flight time obtained from
the maximum height;

• >1% or 2 µm/ms deviation of the initial speed from kinematic expectation;
• >4% deviation from the gravitational acceleration;
• A horizontal speed (obtained from the measured acceleration and sphere diameter)

greater than 20 µm/ms or 15% of the vertical speed.

To be more robust against possible further errors, we then took the median value
rather than the mean value of the remaining measurements. Hence, our results do not
conclude how well all movements follow Newtonian kinematics, but they give the results
of the median flight height for those that appeared to have a sufficiently vertical flight path
with standard kinematics without friction.

To reference the flight height or the resulting initial speed to the piezo displacement,
we measured the near-asymptotic displacement of the actuator as a function of the voltage.
As in Section 2.2, we used our LK-H022K triangulation sensor, now at 20 kHz which is less
noisy than the 200 kHz and only on an 8 × 8 grid over 200 × 200 µm. As it was difficult
to measure on the ceramics spheres, we measured near the edge of the titanium plate,
which may have a slightly different overall displacement. Using the same 1 Hz actuation
frequency as for the acceleration of the spheres, we used averages over each of the last half
of the rest state and displaced state to obtain the displacement. Finally, we fitted a 4th-order
polynomial (without constant) into the voltage-dependent displacement.

3.2. Measurement Results

In Figure 6a, we show the median initial speed of the different ballistic spheres as a
function of the piezo step height, obtained from the maximum flight height as measuring
the speed is comparatively noisy. We find a very linear dependence of the initial velocity on
the piezo displacement, as we expect from the spring-mass model, with slower velocities
for the heavier spheres. In particular, for the smaller projectiles, we could not obtain data
at all voltages; as for high voltages, some exceeded the measurements range of the sensor
and the measurements became overall less reliable, probably due to a higher likelihood
of friction with the guidance structure. In Figure 6b, we show the corresponding angular
velocity as a function of the sphere mass for the different materials. As expected, we see a
decreasing angular frequency with increasing mass and a convergence roughly towards
the regime of the angular frequency that we measured for the unloaded actuator assembly
in Section 2.2.

Fitting our model from Equations (1) and (2) to the data gives a reasonably good
description of the behavior, but still with some deviations. It turned out that taking krp in
the model proportional to the hardness resembles the data much better than using Young’s
modulus. There is, however little difference in which of the hardness values we use in the
range in Table 1, and whether we use the given HRC values or the HV values (and convert
the values for the steel spheres). Additionally, small modifications to the geometric model
do not change the quality of the fit. One also has to take into account, however, that this is
a 5-parameter model fitted to just 9 measurement values. Yet, the qualitative fit turns out

to be much better than the simple spring-mass system with just ω =

√
ke f f /

(
m + me f f

)
,

even if we introduce an additional linear dependence of me f f and 1/ke f f on the hardness.
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Our fit predicts a rather low effective mass of just 16 mg and an effective spring constant
of 0.11 N/µm compared to the mass of just the piezo of approx. 200 mg and 200 N/µm
(typical values, [24]). Yet, those values correspond to a resonance frequency around 80 kHz,
not far from the 100 to 130 kHz of the bare actuator assembly (see Figure 3c), so they are
consistent and suggest that most of the deformation takes place near the top of the assembly.
The value of kh is 0.27 or 0.33 N/µm depending on which hardness values we use, which
makes sense given that the spheres are horizontally fixated by a glue layer. krs and krp
combine to between 0.24 and 0.49 or 0.51 N/µm for the different materials.

Micromachines 2023, 14, x 8 of 11 
 

 

• >1% or 2 µm/ms deviation of the initial speed from kinematic expectation; 
• >4% deviation from the gravitational acceleration; 
• A horizontal speed (obtained from the measured acceleration and sphere diameter) 

greater than 20 µm/ms or 15% of the vertical speed. 
To be more robust against possible further errors, we then took the median value 

rather than the mean value of the remaining measurements. Hence, our results do not 
conclude how well all movements follow Newtonian kinematics, but they give the results 
of the median flight height for those that appeared to have a sufficiently vertical flight 
path with standard kinematics without friction. 

To reference the flight height or the resulting initial speed to the piezo displacement, 
we measured the near-asymptotic displacement of the actuator as a function of the volt-
age. As in Section 2.2, we used our LK-H022K triangulation sensor, now at 20 kHz which 
is less noisy than the 200 kHz and only on an 8 × 8 grid over 200 × 200 µm. As it was 
difficult to measure on the ceramics spheres, we measured near the edge of the titanium 
plate, which may have a slightly different overall displacement. Using the same 1 Hz ac-
tuation frequency as for the acceleration of the spheres, we used averages over each of the 
last half of the rest state and displaced state to obtain the displacement. Finally, we fitted 
a 4th-order polynomial (without constant) into the voltage-dependent displacement. 

3.2. Measurement Results 
In Figure 6a, we show the median initial speed of the different ballistic spheres as a 

function of the piezo step height, obtained from the maximum flight height as measuring 
the speed is comparatively noisy. We find a very linear dependence of the initial velocity 
on the piezo displacement, as we expect from the spring-mass model, with slower veloci-
ties for the heavier spheres. In particular, for the smaller projectiles, we could not obtain 
data at all voltages; as for high voltages, some exceeded the measurements range of the 
sensor and the measurements became overall less reliable, probably due to a higher like-
lihood of friction with the guidance structure. In Figure 6b, we show the corresponding 
angular velocity as a function of the sphere mass for the different materials. As expected, 
we see a decreasing angular frequency with increasing mass and a convergence roughly 
towards the regime of the angular frequency that we measured for the unloaded actuator 
assembly in Section 2.2. 

  
(a) (b) 

Figure 6. (a) Initial speed of the different projectiles as a function of the displacement of the piezo 
actuator. (b) Corresponding angular frequency of the spring-mass model as a function of the ballis-
tic sphere mass. In both figures, the colors denote different materials and the shapes of symbols and 
dashings of lines denote the diameter of the spheres. 

Fitting our model from Equations (1) and (2) to the data gives a reasonably good de-
scription of the behavior, but still with some deviations. It turned out that taking krp in the 
model proportional to the hardness resembles the data much better than using Young�s 
modulus. There is, however little difference in which of the hardness values we use in the 

Figure 6. (a) Initial speed of the different projectiles as a function of the displacement of the piezo
actuator. (b) Corresponding angular frequency of the spring-mass model as a function of the ballistic
sphere mass. In both figures, the colors denote different materials and the shapes of symbols and
dashings of lines denote the diameter of the spheres.

In Figure 7a, we show the quality factor of the first bounce of the ballistic spheres, i.e.,
the ratio of the sphere energy in the initial acceleration phase and the first bounce obtained
from the fit parameter ω. While the data is not perfect, we find by comparing ballistic
spheres with similar mass, that tungsten carbide has the best energy recovery, followed by
hardened steel, zirconia, and unhardened steel. This suggests that the energy recovery does
depend on the material of the spheres, with a higher quality factor the harder the material
and a higher quality factor for metals than ceramics, as zirconia has a similar hardness as
tungsten carbide. Overall, this quality factor is hard to predict and depends on several
factors that we ignored in our model: direct damping of the spring-mass model, friction
between the ballistic spheres and the contact spheres due to horizontal displacement of the
contact spheres during impact, and also the simply off-axis impact of the ballistic sphere.
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To finally demonstrate how effectively our setup uses the possible strength of the
actuator, we look in Figure 7b at the ratio of the energy of the spheres to the square of the
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actuator displacement, given by 1
2 mω2. We see that the highest value is achieved for the

5 mm zirconia and 4 mm tungsten carbide spheres, with about 0.6 N/µm. Comparing this
to the energy 1

2 k that can be stored in the spring, we find that this value is, on the one hand,
much larger than the fitted value for ke f f , casting a little doubt on our spring-mass system.
The other values between 0.2 and 0.5 N/µm are not far off from the values of kh, krs, and
krp. On the other hand, all of those values are still much smaller than the spring constant of
a bare piezo, suggesting that our setup is not the most effective way to accelerate a sphere
with a piezo actuator.

4. Conclusions

We have demonstrated a ballistic actuator based on a compact 3 × 3 × 2 mm3 piezo
stack actuator, accelerating spheres with 3 to 5 mm diameter and different materials:
untreated and hardened steel, ceramics (zirconia), and hard metal (tungsten carbide). To
avoid effects due to uneven surfaces or dirt particles, we designed a contact structure
consisting of three 1 mm zirconia spheres, mounted in a thin titanium structure. We found
that this system can be reasonably well described by a spring-mass system describing
the spring and mass of the lower part of the actuator assembly coupled to a spring of
just the contact points and the mass of the ballistic sphere. Overall, this spring-mass
model is generic to such setups if one adapts the spring constant of the contact points
accordingly. According to our model, most of the elastic deformation takes place in the
upper actuator assembly. This stresses that the design and fabrication of a contact structure
that provides a well-defined contact but at the same time as little deformation as possible is
the key to achieving a large momentum transfer to the spheres. Obviously, the height of
the trajectories was larger, the lighter and harder the spheres; with the smallest zirconia
spheres, we exceeded the 4 mm range of our measurement sensor.

The highest energy of the sphere per actuator displacement squared was approx.
0.6 N/µm, a factor of 130 smaller than what could be achieved with an ideal piezo actuator.
Our results demonstrate that, while they allow for tightly packed arrays, these short-
stroke actuators may not be the most effective approach to piezo ballistic actuators. For
single actuators, it may be a more sensible approach to use bending or buckling actuators,
such as [25,26], that potentially accelerate the spheres with a slower but larger stroke and
are hence less sensitive to deformations of the contact points, but come at the price of a
wider footprint. In fact, our results demonstrate that using chip actuators with an even
smaller footprint is likely to provide results similar to our 3 mm actuators as the strength
of the actuator itself is not the limiting factor, making the integration into arrays even
more straightforward.
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