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Abstract: Quantifying free-form surfaces using differential confocal microscopy can be challenging, as
it requires balancing accuracy and efficiency. When the axial scanning mechanism involves sloshing
and the measured surface has a finite slope, traditional linear fitting can introduce significant errors.
This study introduces a compensation strategy based on Pearson’s correlation coefficient to effectively
reduce measurement errors. Additionally, a fast-matching algorithm based on peak clustering was
proposed to meet real-time requirements for non-contact probes. To validate the effectiveness of
the compensation strategy and matching algorithm, detailed simulations and physical experiments
were conducted. The results showed that for a numerical aperture of 0.4 and a depth of slope < 12◦,
the measurement error was <10 nm, improving the speed of the traditional algorithm system by
83.37%. Furthermore, repeatability and anti-disturbance experiments demonstrated that the proposed
compensation strategy is simple, efficient, and robust. Overall, the proposed method has significant
potential for application in the realization of high-speed measurements of free-form surfaces.

Keywords: compensation strategy; differential confocal microscopy; stride length; peak clustering;
Pearson correlation coefficient

1. Introduction

Free-form surface elements have become increasingly prevalent in modern optical
research, industry, and commercial fields due to their high degrees of freedom that can
correct different aberrations, satisfy high performance requirements [1], and meet the
demands for lightweight and miniaturization in modern optical systems. Since there is
no contact between the optical probe and the measured part, there is no stress effect, and
the optical probe profiler can achieve higher measurement accuracy without scratching
the measured surface. The profilometer utilizes a probe-scanning method to directly test
the profile of the measured surface and obtain three-dimensional (3D) profile information
for each sampling point while estimating the profile error based on analysis, fitting, and
reconstruction. Reflection confocal microscopy is regarded as a mature optical probe due to
its simple structure, real-time visualization, rapid acquisition, and unique optical-slice char-
acteristics. It has been widely used in the field of 3D measurements. A confocal microscope
can determine the axial position of an object using a peak-search algorithm [2,3]. Compared
with traditional microscopes, confocal microscopes can isolate nonfocal light outside the
pinhole, known as the optical slice capability, allowing them to achieve submicron axial
resolution. The intensity change in the optical slice is characterized by the energy change
collected on the point detector at the imaging end. Overall, the use of free-form surfaces
and reflection confocal microscopy provides significant advantages for achieving higher
measurement accuracy in modern optical systems.
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However, confocal microscopes have certain limitations. They are susceptible to
power fluctuations from the light source, stray light from the environment, and common-
mode noise in the measuring circuit. Additionally, the axial resolution of the confocal
microscope can no longer satisfy the resolution requirement of the optical probe as the
measurement accuracy of the freeform surface increases. To address these limitations,
Wang et al. proposed an ideal noncontact probe structure in 2000, known as the differential
confocal microscope [4], which has absolute measurement and focus-tracking advantages
and improves the focusing sensitivity, sensor linearity, and signal-to-noise ratio. Most
importantly, differential confocal microscopy (DCM) increases both axial and radial resolu-
tions. They achieved a resolution of 2 nm within a measurement interval of 100 µm. In the
subsequent two decades, numerous scholars have made considerable efforts to improve
research on DCM and promote its development. For instance, Sun et al. proposed an axial
high-resolution differential confocal microscope (AHDCM), which divides the detection
optical path of a confocal system into three paths: the focal plane detection imaging optical,
pre-focus detection imaging optical, and post-focus detection imaging optical paths [5]. The
position information of the object to be measured was obtained by calculating the energy
curves of the three optical paths along the axial scanning position. Yun et al. learned from
the experience of Shepperd et al. [6] and extended it to the use of DCM, and they proposed
a new method of DCM with D-shaped pupils (DDCM) for high-resolution 3D imaging of
the surface microstructure of large-sized samples. Theoretical analysis and experimental
results showed that the axial resolution of DDCM can reach 5 nm at a working distance
of 3.1 mm, and the imaging speed can be increased by three times compared with that of
a conventional confocal system at the same resolution [7]. Zou et al. introduced radial
birefringent pupil filters into differential confocal systems and effectively improved the
lateral resolution of these systems [8]. Additionally, Wang et al. proposed a high-precision
differential confocal measurement method for filtering radially polarized light pupils,
which improved the lateral resolution of the differential system by using radially polarized
light and pupil filtering [9].

The popularization of differential confocal microscopy has enabled the transformation
of theory into practical applications. Scholars have increasingly focused on addressing prac-
tical problems encountered in real-world scenarios. Two core issues have been identified:
First, the measured object’s surface is often not a perfectly smooth plane perpendicular to
the main optical path [10–14]. Second, there is a trade-off between measurement accuracy
and single-point axial scanning efficiency when using DCM as the optical probe of the
profiler [15,16]. To achieve higher axial resolution with DCM, the system must use a high
numerical aperture (NA) objective [17] and improve its aperture utilization [18]. Reflective
DCM requires the beam to be perpendicular to the test surface. However, test surfaces often
have gradients, as illustrated in Figure 1. When the gradient exceeds a certain threshold,
some of the energy is lost because it cannot return to the main optical path. Figure 1
shows the cause of the “lost” energy of the object and the image sides. To increase the NA
utilization rate, the gradient threshold has been further reduced. This reduction has led to a
decrease in the axial resolution of the DCM, which significantly increases the measurement
uncertainty due to a decrease in energy and signal-to-noise ratio (SNR) (depending on the
system parameters). Moreover, the slope of the test surface affects the optical aberration
and artifacts of the microscopic objective and leads to a significant deviation between
the measured and actual results [12,13]. Mauch et al. conducted a detailed analysis and
verification of the focus shift phenomenon of a microscopic objective lens while measuring
a free-form surface [12].
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In our previous study, we proposed a slope measurement system structure and algo-
rithm based on double cylindrical mirrors [14]. This system realized a differential probe
that could simultaneously obtain the spatial position and slope of points on the tested
surface. In addition, some scholars also focus their work on slope measurement [19–21],
including Cacace’s 2009 research on slope measurements using position-sensitive detectors
(PSD) [19]. Unfortunately, these studies failed to consider the increased spatial position
measurement errors and decreased resolution caused by the larger slopes of the points
being measured.

In addition to the slope of the measured object, the efficiency of laser differential
confocal microscopy used for real-time measurements is also a major focus of research.
This type of microscope uses a high-precision scanning mechanism, such as piezoelectric
ceramics and voice coil motors, carrying a high NA objective for axial scanning of the
surface under test. However, a small axial scanning interval inevitably leads to a decrease in
the measurement efficiency of differential confocal microscopy. This creates a contradictory
relationship between measurement accuracy and efficiency, with accuracy decreasing as
the scanning step increases [15]. Moreover, the positioning error of the axial scanning
displacement mechanism cannot satisfy uniform sampling, resulting in a large error in
the linear fitting (LF) calculation at the zero-crossing. This issue further compromises the
accuracy of the measurement. To improve the efficiency and accuracy of laser differential
confocal microscopy, researchers must carefully consider the impact of the slope of the
measured object and the positioning error of the scanning mechanism.

To address the aforementioned issues, we propose a new strategy for computing
the Pearson correlation coefficient (PCC) based on the peak-clustering algorithm, which
we apply to an optical probe system using DCM. The flowchart of our proposed PCC
compensation strategy is shown in Figure 2. This strategy resolves the trade-off between
measurement accuracy and efficiency in DCM scanning by enlarging the sampling interval
and improving scanning efficiency while maintaining set accuracy. The scanning transmis-
sion mechanism is more tolerant of positioning errors, and the method compensates for the
problem of the surface slope not being perfectly perpendicular to the optical axis. These
improvements enhance the robustness of the DCM noncontact optical probe, improve the
overall accuracy of 3D measurements, and reduce the uncertainty of the system. In this
study, we present our new system structure and mathematical model, which combine the
Debye integral and Fresnel integral to account for the NA of the microscopic objective and
the image square focusing lenses. We introduce the PCC strategy in Section 3 and describe
a simulation experiment in Section 4. Physical experiments and discussions are presented
in Section 5, and we summarize our findings and draw conclusions in Section 6.
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2. Numerical Model

Figure 3 depicts the DCM system structure, which utilizes a high-quality, monochro-
matic Gaussian beam generated by a HeNe laser with good coherence. The beam is split by
the beam expander, and a plane wave is directed through the microscopic objective. The
focal point of the beam extension can be treated as a good point source, and the parallel
beam is focused on the surface of the object to be measured (SUT) via the high-NA objective.
The parallel beam is then split into two beams by splitter B after passing through the
focusing lens with a low NA, and it enters the corresponding detectors via pinholes A and
B, which are located behind and in front of the focus, respectively. As the piezoelectric
(PZT) moves the microscopic objective along the axis, the IA and IB curves are formed on
the two detectors. Due to the symmetry of the two pinholes concerning the focal points,
the energy curves of the two detectors should be symmetrical about the corresponding
axial positions of the focal points [4]. The axial light intensity response varies based on the
difference in reflectance of the tested surface, with lower reflectance leading to a lower peak
value. We address this issue by using a normalized, anti-reflectance, differential confocal,
axial light intensity response formula for data processing, which eliminates the influence of
surface reflectance and enables precise focus determination of the profile of the measured
surface with different reflectances. The mathematical model of the DCM typically starts
with Fresnel diffraction and deduces a scalar mathematical model using Fourier transform.
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The NA is a dimensionless quantity that describes the angular range of light collected
by a lens and reflects the optical system’s ability to converge light into a beam. Optical
systems with an NA greater than 0.7 are commonly referred to as strong focusing systems.
When the NA is less than 0.7, the scalar diffraction theory is often used to theoretically
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derive the diffraction focusing problem, according to most scholars. However, common
confocal microscopy imaging theories and techniques are based on paraxial approximation
conditions, using an objective lens with a lower NA, and ignoring the polarization effect
of the incident light of the objective lens. When the numerical aperture of the objective
lens is 0.7, the impact of these effects on the imaging characteristics of the system becomes
significant and must be considered in the imaging theory [22]. In addition, Tan et al.
(2016) verified, based on theoretical and experimental exploration for confocal microscopy
detection, that when the NA is higher than 0.4 [23], the change caused by polarization must
be considered. This is why the microscope’s NA is marked as 0.4 in the picture showing
the optical path structure. The existing literature shows that the NA should be ≥0.4 when
using the Debye integral. Otherwise, the distribution of the axial point spread function
(APSF) contains an error that increases with NA. Moreover, Tan proposed that an accurate
theoretical calculation of the APSF should be performed. The Debye integral can be used to
calculate the intensity distribution in nonparaxial imaging, replacing the original theoretical
model based on Fresnel scalar diffraction. For the probe system structure shown in Figure 3,
both a microscopic objective lens with a high NA and an image square focusing lens with a
low NA were used. Furthermore, the influence of the surface gradient was considered, and
a more practical mathematical model of the system was derived.

Figure 4 displays the unfolded model of a DCM. To simplify, pre-focal and post-focal
light-field distributions represent the pre-focal and post-focal situations, respectively. This
is due to the previously mentioned symmetry. The DCM optical paths can be divided into
illuminating and detecting optical paths, which are separated by the sample under test
reflection process.
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In this case, a practical lens is considered circularly symmetrical, and the pupil function
is only a function of the radial coordinates, that is, P(x, y) = P(r). Its pupil function is only a
function of the radial coordinates, that is, P(x, y) = P(r). The pinholes used in the study were
circular and symmetrical. Therefore, using the polar form in the formula derivation such as
U0(x0, y0) is equivalent to U0(r0, ψ0). First, when the light field of the point source is known,
the parallel light field U1(x1,y1) can be deduced using the Huygens–Fresnel diffraction
integral formula

U1(r1, ψ1)= m1 ×
∫ 2π

0

∫ ∞

0
U0(r0, ψ0)× exp

(
− ik

2 f 0

(
r0

2+r1
2 − 2r0r1 cos(ψ0− ψ1)

))
r0dr0dψ0, (1)

where m1 is a constant coefficient, k is 2π/λ, and r0 and ψ0, respectively, represent the polar
diameter and polar angle in the planar polar coordinate system of U0. When the distance
between SUT and the focus of the microscopic objective is u, based on obtaining parallel
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light fields, U2(r2, ψ2, u) of the light field formed on SUT can be obtained based on the
Debye diffraction integral formula and Hankel transformation [22,23],

U2(r2, ψ2, u)= m2 ×
i
λ

x

Ω
P(θd, ϕ2, U1) exp[−ikr2sin θd cos(ϕ2 − ψ2) − iku cos θd]sin θddθddϕ2, (2)

where P is the pupil function of the microscopic objective lens, m2 is the constant coefficient,
and Ω is the integral region, r1 and ψ1, respectively, represent the polar diameter and polar
angle in the planar polar coordinate system of U1. Additionally, θd represents the angle
between the incident ray and the optical axis (θd: 0 < θd < θdmax, θdmax = arcsin (NA/n)),
NA is the numerical aperture of the lens, n is the image square refractive index, ϕ is the
circular angle. The gradient of the SUT exists in a two-dimensional (2D) form. The gradient
was converted into polar coordinates as follows:

T(θx, ϕy) = T(αt, γt), (3)

As shown in Figure 5, the gradient was decomposed into the depth and direction of
the tilt. At the energy detection angle, the tilt direction does not affect the amount of energy
received by the image.

Micromachines 2023, 14, x FOR PEER REVIEW 6 of 21 
 

 

between SUT and the focus of the microscopic objective is u, based on obtaining parallel 
light fields, U2(r2, ψ2, u) of the light field formed on SUT can be obtained based on the 
Debye diffraction integral formula and Hankel transformation [22,23], 

U2�r2,ψ2,u� = m2 × i
λ∬ P�θd,φ2,U1�

 
Ω exp�-ikr2sinθdcos�φ2 - ψ2� - ikucosθd�sinθddθddφ2, (2) 

where P is the pupil function of the microscopic objective lens, m2 is the constant coeffi-
cient, and Ω is the integral region, r1 and ψ1, respectively, represent the polar diameter 
and polar angle in the planar polar coordinate system of U1. Additionally, θd represents 
the angle between the incident ray and the optical axis (θd: 0 <  θd < θdmax, θdmax = arcsin 
(NA/n)), NA is the numerical aperture of the lens, n is the image square refractive index, 
φ is the circular angle. The gradient of the SUT exists in a two-dimensional (2D) form. The 
gradient was converted into polar coordinates as follows: 

T(θx, φy) = T(αt, γt), (3) 

As shown in Figure 5, the gradient was decomposed into the depth and direction of 
the tilt. At the energy detection angle, the tilt direction does not affect the amount of en-
ergy received by the image. 

 
Figure 5. Diagram depicting the relationship between slope vector and depth. 

Simultaneously, because the SUTs obey the law of reflection, the optical axis of the 
returned beam changes by twice the depth of the gradient. Herein, we propose the simu-
lation of the generation of a tilt by adding a phase to the SUT reflection process to change 
the wavefront phase. The beam reflected by the SUT in the probe path can be regarded as 
an ideal point source, and the Debye diffraction integral formula is used to simulate the 
propagation process. The parallel optical field U3(r3, ψ3, u) restored through the micro-
scopic objective can be expressed as 

U3�r3, ψ3, u� = m3 × i
λ∬ P �θ3, φ3, U2 × exp�𝑖𝑖𝑖𝑖r2cosψ2tan2α�� × 

Ω exp�-ikr3sinθ3cos�φ3 - ψ3�- ikucosθ3�sinθ3dθ3dφ3, (4) 

where α is the “depth” of the current gradient of SUT, and m3 is the constant coefficient. 
U4(r4, ψ4, u, −um) and U5(r5, ψ5, u, +um) are the distribution of the front and rear optical fields, 
respectively, obtained by Fresnel’s diffraction integral formula, 

U4�r4, ψ4, u, -um� = m4 ×∫ ∫ U3�r3,ψ3,u�∞
0 ×2π

0 exp �- ikr3
2

2f2
� × exp�- ik

2f0-2um
�r3

2 + r4
2 - 2r3r4cos�ψ3 - ψ4��� r3dr3dψ3, (5) 

U5�r5, ψ5, u, +um� = m5 ×∫ ∫ U3�r3,ψ3,u�∞
0 ×2π

0 exp �- ikr3
2

2f2
� × exp�- ik

2f0+2um
�r3

2 + r5
2 - 2r3r5cos�ψ3 - ψ5��� r3dr3dψ3, (6) 

Figure 5. Diagram depicting the relationship between slope vector and depth.

Simultaneously, because the SUTs obey the law of reflection, the optical axis of the
returned beam changes by twice the depth of the gradient. Herein, we propose the simula-
tion of the generation of a tilt by adding a phase to the SUT reflection process to change the
wavefront phase. The beam reflected by the SUT in the probe path can be regarded as an
ideal point source, and the Debye diffraction integral formula is used to simulate the prop-
agation process. The parallel optical field U3(r3, ψ3, u) restored through the microscopic
objective can be expressed as

U3(r3, ψ3, u)= m3 ×
i
λ

x

Ω
P(θ3, ϕ3, U2 × exp(ikr2cos ψ2tan 2α))× exp[−ikr3sin θ3 cos(ϕ3 − ψ3)− iku cos θ3]sin θ3dθ3dϕ3, (4)

where α is the “depth” of the current gradient of SUT, and m3 is the constant coefficient.
U4(r4, ψ4, u, −um) and U5(r5, ψ5, u, +um) are the distribution of the front and rear optical
fields, respectively, obtained by Fresnel’s diffraction integral formula,

U4(r4, ψ4, u, −um)= m4 ×
∫ 2π

0

∫ ∞

0
U3(r3, ψ3, u)× exp

(
− ikr3

2

2 f 2

)
× exp

(
− ik

2 f 0−2um

(
r3

2+r4
2 − 2r3r4 cos(ψ3 − ψ4)

))
r3dr3dψ3, (5)

U5(r5, ψ5, u,+um)= m5 ×
∫ 2π

0

∫ ∞

0
U3(r3, ψ3, u)× exp

(
− ikr3

2

2 f 2

)
× exp

(
− ik

2 f 0+2um

(
r3

2+r5
2 − 2r3r5 cos(ψ3 − ψ5)

))
r3dr3dψ3, (6)



Micromachines 2023, 14, 1163 7 of 21

Among them, m4 and m5 are constant coefficients. The signal intensities from detectors
B and A can be expressed by Formulas (7) and (8), respectively, and the normalized focus
error signal (FES) can be expressed by Formula (9).

IB =
x

D f
U4(r4, ψ4, u, −um)r4dr4dψ4, (7)

IA =
x

Db
U5(r5, ψ5, u, −um)r5dr5dψ5, (8)

FES =
IB− IA
IB+IA

, (9)

Normalization aids in the elimination of common-mode noise, especially for changes
in the reflectivity of the measured object with great robustness, as shown in Figure 3. In
addition, it has a strong inhibitory effect on changes in the laser power, transmission noise
in the optical path, and responsiveness of the photodiode.

3. PCC Strategy

To solve the problem of the presence of a gradient, a large step length, and nonuniform
sampling on the SUT surface affecting the detection accuracy of the optical probe position
in a DCM and obtaining the slope of the measured point, we proposed a PCC strategy.

Figure 6 shows the mathematical model constructed above. When the micro-objective
is driven by the micro-objective driver with a small step length and negligible positioning
error, and by the linear motor with a long stride and a large amount of shaking, the data are
obtained from photodetector A, namely, the normalized energy relation curve with axial
displacement. Red represents ideal uniform data with a small step length, step size Ds, and
negligible positioning error. The blue data are the data with large and uneven positioning
errors, as shown in Figure 6. Dsc1 and Dsc2 are the sampling intervals when the positioning
accuracy of the transmission mechanism is insufficient. At the same signal-to-noise ratio,
the zero-crossing position obtained using the blue data yielded a large error. The PCC is
a common similarity measure that can handle multidimensional data clustering classes.
The minimum PCC value was −1 (opposite vector), and the maximum PCC value was +1
(same vector). Owing to its excellent recognition and matching abilities, we hope to use
this algorithm effectively to solve the existing problems in DCM systems.
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3.1. Data Processing Overview

The process for the accurate compensation of the zero-crossing position of the dif-
ferential confocal response signal was mainly divided into two parts: axial position ho-
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mogenization based on virtual interpolation and rapid matching recognition based on
peak clustering.

We define the distance from the nearest sampling point to the zero-crossing position
in the forward direction (FES > 0) of the uniform differential confocal response curve
as the zero-crossing sampling offset (ZCSO). In the calibration experiment, a small and
uniform step size was used to drive the objective lens driver to conduct axial scanning on
fixed measured points, and the differential confocal response signal data were recorded
at different slope intensities. The overall data were then grouped into different ZCSOs
according to large and uniform step sizes.

For real-time acquisition, the major-step response of the signal differential confocal
raw data, when it passes the zero crossing, depends on the symmetry principle, which is
the minimum value in the positive and negative directions of the data capture (N − 1)/2
(with zero tilt when the energy peak position of the two detectors is the boundary).

First, the interception of the N data was conducted in the axial location based on virtual
interpolation homogenization, achieving an equidistant differential confocal response
signal. Accurate compensation was then realized using the fast-matching recognition
algorithm, based on the peak clusters of the calibration experiment performed for different
slope strengths and the ZCSO using the PCC matching of the data access to the zero-crossing
position—the accurate position.

3.2. Axial Position Homogenization Based on Virtual Interpolation

Calculation of the PCC requires the same vector dimensions and position matching.
Simultaneously, it was assumed that the sloshing amount of the standard data could be
ignored as isometric data. Therefore, it is necessary to preprocess the measured data
obtained in real-time. The generalized expressions for these axial scan positions at unequal
intervals are as follows:

→
D = [D1, D2, D3 , . . . , DN−1, DN ] (10)

where N is the number of data points obtained by a single axial scan, that is, the vector
length. We define the generalized expression of virtual interpolation as

→
Dt= [D1 + ε, D1 + ε + 1 × ∆d, D1 + ε + 2 × ∆d, . . . , D1 + ε + (N − 2) × ∆d, D1 + ε + (N − 1) × ∆d] (11)

where ε is the defined virtual interpolation bias, and ∆d is the axial sampling interval when
the motor does not have a positioning slosh error set by the system. The selection of ε
determines the accuracy of the homogenization algorithm and then affects the accuracy

of the entire matching strategy. The selection principle of ε is to make
→
Dt as close to

non-equidistant actual data as possible; thus, we defined the following objective function:

f
(

ε) = argmin(∑N
i=1(min(abs(D1 + ε + (i − 1) × ∆d])− [D1, D2, D3 , . . . , DN−1, DN ]))

2 (12)

As the positioning accuracy of the calibration data is far less than that of the sampling
interval expected by the system, which is ∆d, the following approximation can be obtained,

min(abs((Di + ε + (i − 1) × ∆d])− [D1, D2, D3 , . . . , DN−1, DN ])) ≈ |D1 + ε + (i − 1) × ∆d − Di| (13)

Based on this approximation, the partial derivative of f (ε ) is calculated and set to
zero. Because the function has an obvious and unique minimum point, it can be solved
as follows:

∂( f (ε))
∂ε

=
∂
(

∑N
i=1(|D1 + ε + (i − 1) × ∆d − Di|)2

)
∂ε

= 2 ×
N

∑
i=1

(D1 + ε + (i − 1) × ∆ d − Di) (14)
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Based on the above formula, we can obtain

ε =
−∑N

i=1(D1 + ε + (i − 1) × ∆ d − Di)

N
(15)

The intensity sequence I→
Dt(i)

of the uniform data was then obtained based on

linear interpolation.

3.3. Rapid Matching Based on Peak Clustering

We aim to address the issue of uncertainty in the axial position measurement of the
differential confocal microscope by matching the similarity between the collected (actual)
and calibrated data. In signal processing, measuring the degree of correlation between
signals is often necessary for the statistical purposes of random variables or to determine
the degree of correlation between signals. The correlation coefficient is a widely used
quantitative index of the strength of statistical relationships in various fields, such as data
science, digital image processing, matching, and biomedical signal processing. The Pearson
product-moment correlation coefficient (PCC), also known as the Pearson correlation
coefficient, is extensively used due to its complete theoretical proof and simple application,
and it was proposed by Karl Pearson [24]. It measures the correlation between two variables
and is defined as the quotient of the covariance and standard deviation between the two
variables. The overall correlation coefficient can be expressed as:

Pearson(I→
Dt

, I→
Dp,q

) =

Cov(I→
Dt

, I→
Dp,q

)
√

V(I→
Dt

)
×
√

V( I→
Dp,q

) =

E[(I →
Dt
− µI→

D t

)( I→
Dp,q
− µ I D →p,q

)]√
V(I→

Dt

)
×
√

V( I→
Dp,q

) (16)

where Cov is the covariance,
√

V is the standard deviation, and E is the expectation. The
Pearson correlation coefficient for individual samples can be obtained through the following
formula [25]:

Pearson
(

I→
Dt

, I→
Dp,q

)
=

1
N ∑N

i=1

(
I→
Dt
(i)− I→

Dt

)
×
(

I→
Dp,q

(i)− I→
Dp,q

)
√

1
N ∑N

i=1

(
I→
Dt
(i)− I→

Dt

)2
×

√
1
N ∑N

i=1

(
I→
Dp,q

(i)− I→
Dp,q

)2
(17)

To obtain similarity for compensation, the enumeration method is commonly used to
calculate each group of measured and calibrated data. However, the calibration dataset is
usually large, and the enumeration method may result in a long calculation time, which
is unsuitable for real-time compensation systems. To address this, we propose a PCC
calculation method based on peak clustering. The proposed method is based on the
concept that the clustering vector always points in the direction of increasing probability
density [26,27], where the closer the displacement and tilt angle of the calibration data are
to the experimental data, the higher the PCC will be. The peak position of the PCC can be
extracted using the shortest path to avoid wasting data processing speed due to invalid
data operations. The proposed algorithm is presented in Algorithm 1.
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Algorithm 1 A fast Pearson correlation coefficient calculation method based on Meanshift

Input: Calibration data set: I→
Dp,q

,

Interpolated experimental data: I→
Dt

,

Iterative convergence threshold: ε

Minimum spatial scale: hmin
Output: The horizontal and vertical coordinates corresponding to the positions with
the highest similarity in the calibration data {Ph(n), Pv(n)}
1: Initialize Ph(n)←m/2,Pv(n)←n/2,n←0, search space radius h←min(m, n)/2
2: Repeat
3: k←k + 1
4: Create a circular Gaussian mask Gm×n with {Ph(k), Pv(k)} as the left and h as the radius,
and set the mask values in regions beyond the radius h to zero

5: Ph(k)←
∑m

i=1 ∑n
j=1 i × Pearson(I →

D t
, I→

D p,q
) × Gm×n(i, j)

∑m
i=1 ∑n

j=1 Pearson(I →
D t

, I→
D p,q

) × Gm×n(i, j) ,

Ph(k)←
∑m

i=1 ∑n
j=1 j × Pearson(I →

D t
, I→

D p,q
) × Gm×n(i, j)

∑m
i=1 ∑n

j=1 Pearson(I →
D t

, I→
D p,q

) × Gm×n(i, j)

6: h←hmin +
(

1− 2hmin
min(m,n)

)
×
√
(Ph(k)− Ph(k− 1))2 + (Pv(k)− Pv(k− 1))2

7: Until convergence:
√
(P h(k)− Ph(k − 1))2+(P v(k) − Pv(k− 1))2 ≤ ε

8: Ph(k)← round(P h(k)), Pv(k)← round(P v(k))

For the kernel function used in the clustering algorithm, the classical Gaussian kernel
function was selected, and the corresponding weights were assigned to different positions
in the computing space:

Gm×n(i, j) =

 1√
2πh

exp
(
−((i − Ph(k))

2+(j − Pv(k))
2)

2h2

)
, ( i − Ph(k))

2 + (j − Pv(k))
2< h2

0 , else
(18)

Using this method, the zero-crossing position corresponding to I→
DPh(k),Pv(k)

of the

calibration data with the highest PCC can be obtained, that is, the measured value of the
current front axial position after compensation. Using the number N/2 sampling points of
I→

DPh(k),Pv(k)
, the set of calibration data with the highest similarity, and their corresponding

small sampling interval difference signal zero-crossing distance, the number N/2 sampling
points of the measured data I→

Dt
, and distance from its zero-crossing distance can be obtained.

The method that uses Meanshift to extract the peak PCC avoids traversing the entire
calibration dataset and only needs to calculate the PCC of the calibration data contained
in the sliding window space in the Meanshift calculation process, thus greatly reducing
the number of required computations. This method not only improves the speed of data
processing and satisfies the real-time performance of the system, but also improves the
measurement accuracy of the system.

4. Simulations

In the second part, we consider the impact of high NA on the microscopic objective
lens used. The signal output responses at the two pinholes were deduced by combining the
Debye and Fresnel diffraction integrals, neglecting aberration effects, based on relevant
published studies. Simulations were then conducted to validate the proposed algorithm
using the mathematical model developed above. Specifically, a monochromatic laser with a
wavelength of 642 nm was used as the light source in the simulations, and a collimating
lens with NA = 0.2 was used to produce a parallel Gaussian beam with a diameter of
6.4 mm. The microscope had a focal length of 2 mm, NA = 0.7, and an image square lens
focal length of 0.2, with a focal length of 100 mm. The angular depth in the standard
dataset was 0.1◦ with a step length of 0−15◦, and the axial scanning step was 10 nm. The
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simulation physical experiment used a scanning step of 1 µm (±0.1), and a random matrix
was generated to simulate errors caused by motor positioning slosh during measurement.

The normalized energy-response curves of the detector behind the pinhole with a
defocusing distance of 650 µm behind the focus at different tilt angles are shown in Figure 7.
The curves represent six different dip depths in the range of 0–10◦. Figure 7 shows that as
the tilt angle increases, the peak energy value decreases gradually, but the axial position
corresponding to the peak position remains unchanged. It is important to note that the
variation in each energy curve at different tilting depths was not obtained based on the
response curve at time zero, which was reduced by the same multiple along with the
axial position.
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Figure 7. Energy response curve of the detector located behind the post-focal pinhole when the SUT
is tilted at depths in the range of 0–10◦ (red to blue in steps of 2◦).

The sensitivity of the DCM system, which determines its resolution and accuracy,
is represented by the slope of the linear interval near the zero-crossing of the FES curve.
Figure 7 shows that as the slope depth increases, the slope at the zero-crossing decreases,
resulting in a considerable decrease in resolution and accuracy. The slope continued to
decline but the change was not significant between 0–6◦, while at 8◦, the slope changed
significantly. The slope decreased as the angle increased, but the change was not linear.

The normalization operation of the FES eliminates the influence of the SUT reflectance
and reduces the effect of common-mode noise and light source fluctuations on the axial po-
sition measurement of differential confocal microscopy. However, simulation experiments
(as shown in Figures 7 and 8) have demonstrated that normalization alone cannot eliminate
the effect of the decline in the zero-crossing slope. At large tilt depths, the DCM system’s
accuracy must be corrected, as this can impact the measurement results of the surface being
measured. It is worth noting that the zero-crossing slopes of the FES curves with different
system parameters vary significantly at each dip depth, with the NA and focal length of
the microscope objective being the primary factors affecting this.

Figure 9a,b displays the change process trajectory of the data array calculated by the
PCC strategy and the peak clustering vector when ZCSO is 0.5 µm and the tilt angle is
5◦, and when ZCSO is 0.3 µm and the tilt angle is 6◦. When the enumeration method
is used for continuous surfaces, the current data and all the datasets of tilt depth and
ZCSO are used as the fitting surface for the similarity matching results. The blue-covered
area is the dataset lattice calculated using the PCC strategy, the purple square is the core
coordinate of the peak clustering vector during the calculation, and the arrow direction
indicates the direction of the calculation path change. It is important to note that the angle
between the two boundaries farthest from the center is chosen as the initial iteration point
to demonstrate the algorithm’s effectiveness, while typically the starting iteration point is
in the central region. Figure 9 clearly illustrates that the PCC strategy significantly reduces
the calculation of similarity processing, increases the processing speed, and guarantees the
system’s real-time target.
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Figure 9. Comparison of calculation processes between the Pearson correlation coefficient (PCC)
strategy and enumeration method: (a) 0.5 µm, 5◦; (b) 0.3 µm, 6◦.

The PCC error distribution was obtained through simulation experiments at all tilting
intensities and ZCSO conditions, as shown in Figure 10. The central lattice’s color represents
the error level, with one dimension remaining unchanged while the error curve changes
with the other shaft. The error level decreases and then increases as the tilt strength changes,
except near the zero-crossing, where the error level first decreases and then increases. After
multiple variable-parameter simulations, it was concluded that the error turning into a
larger tilt strength was related to the system parameters, but the overall trend remained
the same.

Micromachines 2023, 14, x FOR PEER REVIEW 12 of 21 
 

 

dataset lattice calculated using the PCC strategy, the purple square is the core coordinate 
of the peak clustering vector during the calculation, and the arrow direction indicates the 
direction of the calculation path change. It is important to note that the angle between the 
two boundaries farthest from the center is chosen as the initial iteration point to demon-
strate the algorithm’s effectiveness, while typically the starting iteration point is in the 
central region. Figure 9 clearly illustrates that the PCC strategy significantly reduces the 
calculation of similarity processing, increases the processing speed, and guarantees the 
system’s real-time target. 

  

Figure 9. Comparison of calculation processes between the Pearson correlation coefficient (PCC) 
strategy and enumeration method: (a) 0.5 µm, 5°; (b) 0.3 µm, 6°. 

The PCC error distribution was obtained through simulation experiments at all tilt-
ing intensities and ZCSO conditions, as shown in Figure 10. The central lattice’s color rep-
resents the error level, with one dimension remaining unchanged while the error curve 
changes with the other shaft. The error level decreases and then increases as the tilt 
strength changes, except near the zero-crossing, where the error level first decreases and 
then increases. After multiple variable-parameter simulations, it was concluded that the 
error turning into a larger tilt strength was related to the system parameters, but the over-
all trend remained the same. 

 
Figure 10. PCC error distribution. 

To further demonstrate the effectiveness of the proposed algorithm, we conducted 
simulation experiments. Firstly, we constructed a virtual 2D curve, represented by the 
solid green line in Figure 11a. The curve was composed of line segments at various oblique 
angles, with a radial length of 20 µm and a high-axial vector of 0.48 µm. The virtual probe 
continuously performed axial scanning of the measured points along the axis. To ensure 

Figure 10. PCC error distribution.



Micromachines 2023, 14, 1163 13 of 21

To further demonstrate the effectiveness of the proposed algorithm, we conducted
simulation experiments. Firstly, we constructed a virtual 2D curve, represented by the
solid green line in Figure 11a. The curve was composed of line segments at various oblique
angles, with a radial length of 20 µm and a high-axial vector of 0.48 µm. The virtual
probe continuously performed axial scanning of the measured points along the axis. To
ensure high confidence, we conducted 1000 simulations at each given measurement point
position. The system parameters were kept constant using a probe. The sampling steps
of the calibration dataset and simulation physical experiment were consistent with those
mentioned earlier, namely, 10 nm and 1 µm (±0.1), respectively, and the radial sampling
interval was 0.4 µm. To simulate the noise effect in the physical experiment, we set the
signal-to-noise ratio to 40 dB, and a random ZCSO was also set. The blue area in the figure
represents the range of the measured point positions obtained by the PCC during the
simulation’s physical experiment of the current signal-to-noise ratio, and the green area
represents the range of positions obtained by traditional linear fitting. The figure indicates
that the proposed compensation algorithm can significantly reduce the measured error
range at each measured position. Figure 11b illustrates the error distribution when the tilt
intensity is 10◦, where the horizontal axis represents the axial measurement position error,
and the vertical axis represents the distribution number of 1000 repeated measurement
points at different error values. It can be observed that the errors are distributed based on
the Gaussian distribution, the error distribution of the compensation algorithm proposed
in this study is more concentrated, and the number of points falling at zero is significantly
greater than that of the traditional zero-crossing fitting algorithm. Moreover, the zero-
crossing fitting method inherently contains errors. Therefore, the proposed compensation
strategy is proven to be effective in reducing the original error range and enhancing the
system’s robustness.
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In Figure 12, we selected four angles within the measurement range and a random
ZCSO to track a single point 2000 times repeatedly to obtain the absolute value of the
PCC compensation algorithm error (PCCAME), the absolute value of the linear fitting error
(LFAME), the PCC compensating algorithm standard deviation (PCCSD), and the linear
fitting standard deviation (LFSD). The bar chart demonstrates that the error generated by
the algorithm proposed in this study is significantly smaller than the error generated by
linear fitting, regardless of the absolute mean value of the error or standard deviation.
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5. Experimental Results and Discussion

To verify the effectiveness of the compensation strategy proposed in this study and the
PCC strategy, we constructed a noncontact optical probe structure for a differential confocal
sensor, as shown in Figure 13. A single-wavelength fiber laser (LP642PF20, 642 nm, 20 mW,
Thorlabs, Newton, NJ, USA) was used as the light source. To ensure imaging quality, the
probe system used a squirrel-cage structure. First, a collimator (F810FC-635, NA = 0.25,
f = 35.41 mm) was used to generate a Gaussian parallel optical field with a beam waist
radius of 3.2 mm at the exit of the pupil’s surface. The collimated beam passed through the
beam splitter, reached the microscopic objective lens (LMPLFLN 20×, NA = 0.4, f = 9 mm;
Olympus, Tokyo, Japan), and was focused on the measured object.
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After the parallel beam was focused using a plano-convex lens (LA1207-A, Ø1/2′′,
f= 100.0 mm, Thorlabs, Newton, NJ, USA), it was divided into pre- and post-focus mea-
surement beams using a beam splitter. A pinhole probe (SMO5PD1B, O = 20 µm, Thorlabs,
Newton, NJ, USA) with a defocus of ±650 µm was shot.

5.1. Standard Data Acquisition and Verification Experiment

The calibration experiment’s data acquisition was carried out using an ultrahigh-
precision objective positioner and a high-precision six-axis displacement platform, which
were responsible for axial scanning and angular tilt, respectively. The noncontact probe
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structure of the DCM was kept fixed, and a smooth aluminum sheet with 92% reflectivity
was used as the standard subject. As depicted in Figure 12, the microscopic objective was
controlled by the objective driver (P72.Z100S & E53.d, Harbin Harbin Core Tomorrow
Science & Technology, Harbin, Heilongjiang, China) and was used for axial scanning. The
objective lens driver’s axial resolution was less than 1 nm, and it can cycle and reciprocate
in the range of 100 µm at a frequency of 10 Hz, driven by sinusoidal or triangular waves.
This meets the system’s required response frequency and the required step size of ZCSO in
standard datasets. The six-axis displacement platform (H-811. I2, ±10, Physik Instrumente,
Karlsruhe, Germany) was used to construct the plane mirror. The platform’s rotation and
repeated positioning accuracy were 2.5 urad, making it an ideal tool for tilt angle calibration.

The axial scanning compensation was 10 nm and the scanning range was 80 µm
(<100 µm). The six-axis displacement platform controlled the plane mirror, achieving
a step size of 0.25◦ and a range of 0–10◦. ZCSO offset data were constructed for each
group of angles using 10 nm as the step size and 0–1 µm as the offset range to obtain
the standard dataset. To test the effectiveness of the compensation strategy proposed in
this study and the efficiency of the proposed algorithm, 1000 sets of data were randomly
selected as the test set for analysis to avoid contingencies. The test set was generated using
MATLAB (version 2020a, MathWorks, Natick, MA, USA) by analyzing the tilt angle in
the range of 0–10◦ and generating 1000 random 2D coordinates with offsets in the range
of 0–1 µm as the tilt intensity and ZCSO. Random soil slosh amounts (with values ≤ 0.2
µm) were added to 80 uniformly selected sampling locations in the axial scanning range of
10–90 µm to represent the actual slosh amounts of the linear motor. The rotation center of
the six-axis displacement platform was determined by the imaging device, and the center
of the working interval of the objective positioner was within the focal depth range of
the microscope. Finally, 1000 random data points were generated as the initial state of
scanning for data acquisition. Figure 14 shows that the compensation strategy significantly
improved accuracy in the entire test set, especially as the tilt angle increased. In the global
range, the average error of the Pearson similarity coefficient compensation strategy was less
than 10 nm, while the error of the traditional linear fitting was 25.7 nm. It is worth noting
that acquiring annotated datasets requires maintaining good environmental conditions,
such as vibration isolation and minimizing stray light, to maintain a high signal-to-noise
ratio. If the environmental conditions are not ideal, the accuracy compensation effect of the
compensation strategy will be reduced.
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Figure 14. Comparison of measurement errors between PCC and LF.

To verify the effectiveness of the rapid recognition algorithm based on the peak
clustering algorithm, a personal computer equipped with the ThinkBook 14 G4+ IAP and
the 12th Gen Intel(R) Core(TM) i5-12500H 2.50 was used. Figure 15a,b shows the computing
efficiencies of the traversal method and PCC-based algorithm at different tilt intensities
and offsets, respectively. It can be observed that the PCC algorithm has obvious efficiency
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advantages and satisfies the real-time requirements of the system. Over the entire range,
the average processing time of the PCC algorithm was 0.02606 s, and the average time of
the traversal method was 0.15677 s; this improved the efficiency by 83.37%.
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5.2. Repeatability Experiment and Antidisturbance Test

The constructed differential focal noncontact probe was fixed on the Z axis of the
precision 3D motion platform, as shown in Figure 16. To ensure accuracy, the feedback com-
ponent of the Z axis used a grating developed at the National Grating Manufacturing and
Application Engineering Technology Research Center in China. The maximum feedback
accuracy was 0.01 µm, and the positioning slope of the Z-axis motor was ±0.2 µm when
subjected to loading. The positioning sloshing of the XY axis was 0.1 µm. The measured
object was placed on the electric 2D rotating yaw motion platform to ensure that the initial
tilt bias did not affect the experimental results. The Z-axis motor was used to drive the
DCM with a step size of 1 µm for axial scanning of standard objects.
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Figure 16. Three-dimensional measurement experimental system.

To verify the repeated accuracy of the compensation strategy proposed in this study
and to avoid contingencies, 100 repeated measurements were conducted at each angle, and
the results were compared with those of the traditional LF method. The results are shown
in Figure 17a,b, where the upper half of Figure 17a shows the statistical diagram of the
probability distribution of errors, and Figure 17b shows the error distribution pairs. The
accuracy of the compensation strategy was higher than that of LF, the error distribution
under the compensation strategy was more concentrated, and the bias phenomenon of the
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error was less than that of LF. In addition, it can be observed that the distribution and error
level of LF tended to increase as a function of the tilt angle.
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In addition to the repeated-measurement verification experiments, we conducted an
anti-interference experiment to verify the anti-interference capability of the compensation
strategy. The Shenzhen direct current reduction motor (JGA25-370, Shenzhen, China) was
the power machine with adjustable interference noise used to simulate the disturbances
to which the optical probe may be subjected under working conditions. The experimental
results are listed in Table 1. Table 1 shows that when the SNR gradually decreases, the tra-
ditional LF method produces increasingly larger errors, while the use of the compensation
strategy reduces the error growth trend, which significantly improves the robustness of
the system.

Table 1. Variations of mean errors at different levels of noise.

Voltage Mean Error of Pearson’s Correlation Coefficient Mean Error of Linear Fitting

0 V 0.0104 µm 0.0155 µm
5 V 0.0103 µm 0.0155 µm
8 V 0.0109 µm 0.0167 µm

12 V 0.0126 µm 0.0244 µm

5.3. Grating Measurement Experiment

A large-grating engraving mechanism was used with quartz glass as the base and
aluminum as the film layer (92% reflectivity). The carving knife was positioned on the
surface of the film layer three times at different inclination angles; the waste material
was not removed, and the degrees of adjustment of the carving knife were 3◦, 6◦, and
9◦. The slot width ensured that the maximum spot size accommodated the defocusing
range required to form the DCM response curve. The atomic force microscope (Dimension
Icon, Bruker Corporation, MA, USA) has an axial resolution of 0.25 nm in Figure 18a;
thus, its measurements satisfy our requirement to use it as a truth value. The measured
results are shown in Figure 18b (the fitting results of only one grating are shown here
for a condensed expression). In addition, seven sampling data positions on a random
line on the three rasters were selected for measurement, registration, fitting, and analysis.
The measurement results for the six angles are shown in Figure 19. The measurement
error in the compensation strategy was significantly smaller than that of the traditional
LF method. The average error at the compensation strategy was 17.537 nm, whereas the
traditional LF error was 32.449 nm, which was slightly higher than the axial prediction error
during calibration. This was because the insufficient positioning accuracy in the horizontal
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direction of the three-coordinate displacement platform resulted in an error in the point
cloud registration, which affected the final measurement results.
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5.4. Discussion and Error Analysis

In this study, we verified the advantages of the PCC compensation strategy over
traditional LF and demonstrated the significance of the compensation strategy based on
simulations and physical experiments in the case of large step lengths. Our length experi-
mental results showed that the compensation strategy effectively corrects the bias problem
of LF measurement points caused by long-step sampling and reduces system noise caused
by increased angles and a decreased signal-to-noise ratio. The PCC compensation strategy
also exhibited good robustness. Furthermore, the proposed PCC algorithm satisfies the
real-time requirements of the system, providing feedback on the position of the measured
points within periods that are less than half the time required for a common high-speed
measurement cycle. Unlike traditional LF, which requires the determination of several
sampling points near the zero-crossing position, the PCC compensation strategy effectively
suppresses the bias problem of zero-crossing at large step lengths. However, it should
be noted that our experiments were conducted under highly controlled environmental
conditions with a good signal-to-noise ratio, thanks to the squirrel-cage structure and
air-floating platform. When the signal-to-noise ratio decreases and the tilt angle increases,
the effectiveness and significance of the PCC compensation strategy will be highlighted
further. However, there are some limitations in this study, which will be solved gradually
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in future research. Our physical experiments used a microscopic objective lens with an NA
of 0.4, which has good tolerance for angular tilt. However, if an objective lens with a larger
NA is used, the LF error increases considerably. Specifically,

(1) It should also be noted that our experiments and algorithms only addressed the
surface gradient and sampling problems for actual measurement conditions but
ignored the impact of surface curvature [12]. However, in actual working conditions,
the tested free surface may exhibit a phenomenon where the local curvature is too
large to be regarded as an ideal place in the airy spot range. This introduces additional
requirements for the speed and accuracy of similarity matching, which will be studied
further in the future.

(2) The accuracy of the compensation strategy is directly influenced by the establishment
of a standard dataset. In this study, the sampling step for the physical experiments
was 10 nm, which was chosen to satisfy the real-time requirements of the system.
However, this step length introduces inherent errors of several nanometers in the
axial position measurement, which is a significant source of error. To improve the
compensation accuracy, it may be necessary to use a smaller scan step or another
calibration method.

(3) The implementation of the compensation strategy requires precise installation and
adjustment of the axial scanning mechanism. Specifically, the direction of movement
of the scanning mechanism should be perpendicular to the initial plane to minimize
measurement errors. Moreover, the inconsistency between the Z-axis movement
direction used in this study and the normal direction of the datum plane, as well as
the misalignment of the system construction, can also contribute to measurement
inaccuracies [28].

(4) The data homogenization preprocessing methods proposed in this study to address
the axial scanning slosh can be further optimized to improve their effectiveness.

6. Conclusions

In conclusion, differential confocal optical probes are a promising option for noncontact
3D measurements of free-form surfaces. However, the low measurement speed of point-by-
point axial scanning poses a significant limitation. Additionally, traditional zero-crossing
methods face inherent errors when dealing with large step lengths and surface slopes. To
address these issues, we performed the following:

(1) We introduced a compensation strategy for zero-crossing position detection based on
the PCC, effectively reducing the error growth and enhancing the system’s robustness.

(2) To ensure real-time performance, we proposed a fast similarity-matching algorithm
based on peak clustering that achieves accurate position compensation within half a
cycle of high-speed scanning.

(3) We validated the proposed method through simulations and physical experiments
that demonstrated good repeatability and disturbance resistance. With an NA of 0.4,
the method achieved a slope repetition accuracy 10 nm better than that for slopes less
than 12◦.

Our approach is simple and efficient and has the potential to enable high-speed
measurements of free-form surfaces with adequate accuracy. Further research can explore
its practical applications in various industries, such as optical research, industry, and
commercial fields.
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