micromachines

Article

A Physics-Informed Automatic Neural Network Generation
Framework for Emerging Device Modeling

Guangxin Guo

check for
updates

Citation: Guo, G.; You, H.; Li, C.;
Tang, Z.; Li, O. A Physics-Informed
Automatic Neural Network
Generation Framework for Emerging
Device Modeling. Micromachines
2023, 14, 1150. https://doi.org/
10.3390/mi14061150

Academic Editor: Carlos Sampedro

Received: 10 March 2023
Revised: 25 May 2023
Accepted: 26 May 2023
Published: 29 May 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Hailong You

, Cong Li *'/, Zhengguang Tang © and Ouwen Li

School of Microelectronics, Xidian University, Xi’an 710071, China
* Correspondence: licong@xidian.edu.cn

Abstract: With the rapid development of semiconductor technology, traditional equation-based
modeling faces challenges in accuracy and development time. To overcome these limitations, neural
network (NN)-based modeling methods have been proposed. However, the NN-based compact
model encounters two major issues. Firstly, it exhibits unphysical behaviors such as un-smoothness
and non-monotonicity, which hinder its practical use. Secondly, finding an appropriate NN structure
with high accuracy requires expertise and is time-consuming. In this paper, we propose an Automatic
Physical-Informed Neural Network (AutoPINN) generation framework to solve these challenges.
The framework consists of two parts: the Physics-Informed Neural Network (PINN) and the two-step
Automatic Neural Network (AutoNN). The PINN is introduced to resolve unphysical issues by
incorporating physical information. The AutoNN assists the PINN in automatically determining an
optimal structure without human involvement. We evaluate the proposed AutoPINN framework on
the gate-all-around transistor device. The results demonstrate that AutoPINN achieves an error of
less than 0.05%. The generalization of our NN is promising, as validated by the test error and the loss
landscape. The results demonstrate smoothness in high-order derivatives, and the monotonicity can
be well-preserved. We believe that this work has the potential to accelerate the development and
simulation process of emerging devices.

Keywords: emergingdevice modeling; neural network; physical informed; automated machine learning
(AutoML); compact model; semiconductor device; circuit simulation; field-effect transistor (FET)

1. Introduction

With the development of semiconductor technology, fabricating and evaluating new
transistors is time-consuming and expensive. Compact models serve as the bridge between
device process technology and electronic integrated circuit (IC) design. It is essential
to quickly complete transistor modeling accurately to save time and costs [1]. Standard
compact models of transistors (e.g., BSIM-CMG [2], GSIM-IMG [3], and PSP [4]) are widely
used in industry, but they have difficulty modeling new emerging devices. As transistors
are scaled, more new unideal effects and quantum mechanical effects appear. These new
challenges increase the difficulty of modeling new emerging devices for three reasons:
(a) the traditional standard FET models cannot well-capture the electrical characteristics of
emerging devices, (b) developing the physics-based model equation requires a long time
and expertise, and (c) for equation-based models, it is still challenging to fully automate
the model parameter extraction process while achieving a very high fitting accuracy [5]. In
the previous studies [6-16], Neural Networks (NN) show promising accuracy in emerging
device modeling. However, NN-based device modeling suffers from two main issues:
unphysical behaviors and needing NN expertise [5]. The unphysical issues, such as un-
smoothness, non-zero drain current (I;) at Vpg = 0, and lacking monotonic dependency,
are blocking the adoption of NN-based methods by the industry scene. The requirements
of expertise issue consumes lots of time to try out an appropriate NN with high accuracy
and lightweight.

Micromachines 2023, 14, 1150. https:/ /doi.org/10.3390/mi14061150

https://www.mdpi.com/journal /micromachines

https://doi.org/10.3390/mi14061150
https://doi.org/10.3390/mi14061150
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-9033-2129
https://orcid.org/0000-0003-3427-5320
https://orcid.org/0000-0001-6289-6680
https://orcid.org/0000-0002-5236-9745
https://orcid.org/0000-0001-7771-6611
https://doi.org/10.3390/mi14061150
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14061150?type=check_update&version=3

Micromachines 2023, 14, 1150

20f 15

Several approaches have been proposed to solve the unphysical issues of NN-based
modeling. For instance, Li et al. [6] used a two-portion NN with different activation
functions for V; and Vg, but it can only handle the terminal voltage and not other elec-
trical inputs such as gate length (Lg). Kao et al. [11] combined physics-based compact
models (e.g., BSIM [2]) with NN output, but it relies on established compact models and
is computationally complex. Wang et al. [5] used a symmetry transform function to
obtain a smooth curve, but it cannot handle an unsymmetrical source/drain scene [17].
Huang et al. [18] incorporated a physical-relation-neural-network to map between device
parameters and surface potential, then constructed I; by mathematical equations, which
may induce additional errors for emerging devices. Tung et al. [10] used a loss function to
smooth the output, but this approach only works on oversampled data. When the input
electrical parameters are increased, the oversample may result in an unacceptable data
size. Few works incorporate the monotonic dependence on the NN network, for instance,
drain/source current (I;) increases when Vg increases. When the data sample is less or the
variable relationship is not clear, it is necessary to set the monotonic dependency between
the input and output electrical parameters of the NN.

The commonly used method to obtain an appropriate NN structure is based on the
trial-and-error method. The issue of needing NN expertise has confused semiconductor
background researcher a lot. Wang et al. [5] used SPICE simulation turn-around time to
find an appropriate structure that balances accuracy and speed, which is less of a guidance
and time-consuming process. They increased the NN size when the accuracy was low
and reduced the NN size when the SPICE simulation time was high. This may lead to
a loop when there is no solution. Tung et al. [10] tested the relationship between nodes
number and speed using grid search. Additionally, they searched parameters using the
trial-and-error method.

To summarize, the primary challenges of NN-based device modeling include the
following: (1) Requiring expertise in neural networks to establish an appropriate structure.
(2) Addressing unphysical issues associated with NN-based modeling, including: (a) Ensuring
smooth differentiability of I; with respect to Vgs and Vj;,. (b) Establishing a monotonic I,
curve. (c) Ensuring that I; equals 0 when V;; equals 0. (d) Incorporating both symmetric and
asymmetric drain/source scenarios. (e) Leveraging existing device modeling knowledge.

In this paper, an Automatic Physical-Informed Neural Network (AutoPINN) gen-
eration framework is proposed, as shown in Figure 1. This framework is composed of
two parts: Automatic Neural Network (AutoNN) and Physics-Informed Neural Network
(PINN). Compared with other general NN methods, the PINN method has better physical
behavior because of taking the physical information of device modeling into consideration.
Compared with other general AutoNN methods, the AutoNN is optimized for our PINN
regarding device modeling. It can substantially decrease the search time during the NN
architecture optimization, according to the complexity of input device data.

This framework takes device data, semiconductor domain knowledge (e.g., monotonic
relationship between V; and I;;), and the optimization target as input. Then, it generates a
device modeling neural network, with optimal structure and physical information embed-
ded. The AutoNN assists PINN to find an optimal structure without human involvement.
It can solve the expertise issue mentioned before. To overcome the unphysical issues, the
PINN is introduced. The PINN embeds physical information with a few key technolo-
gies, such as Domain Transform, Smooth Loss Function, Monotonic Network Block, and
Knowledge Transfer. The Domain Transform makes I; smooth and differentiable to V,
by increasing the density near the V, = 0. The functions have the ability to handle both
symmetry and un-symmetry drain/source scene. It also transforms the optimization target
to a new one, which can ease the burden of NN fitting. The Smooth Loss Function takes
not only the optimization target, but also the derivatives and other factors into consid-
eration. It makes the total I; curve smooth and differentiable. The Monotonic Network
Block is used to obtain the monotonic behavior by constraining the weight of NN as non-
negative. The information from other devices can be transferred to new device modeling

Micromachines 2023, 14, 1150

30f15

by Knowledge Transfer. It can speed up the training convergence process and obtain better
physical behavior.

Semiconductor

Domain
Knowledge
Vo OnFN/
Smooth Loss Function Vd N/ "};f"
M X lg
Monotonic Network Block tox OPOTY
Device Data
(Simulation or Lgnw NNy
Real World) Knowledge Transfer
; Tnw
Physics-Informed Neural Network . Optimal Physics-
(PINN) ° Embedded Neural
Network Architecture
Assist
Target
{ Search in Optimal Region J
Criteria
(Error of
las/Vin/loft/lsat)
Predict Ti Optimal Search Range Generation J . .
{fai':n,',,": [& g Automatic Physical-Informed i
Automatic Neural Network Generation Neural Network :

(AutoNN) (AutoPINN)

Figure 1. Physical-Informed automatic neural network generation framework. The PINN is embed-
ded with physical information from device data and semiconductor knowledge. The AutoNN assists
PINN to find an optimal structure to meet the target.

The contributions of this paper are summarized as follows:

1. In this paper, a physics-informed neural network (PINN) is proposed, which can
embed physical device information into neural networks (NN) to overcome non-
physical behaviors and improve accuracy in compact modeling. The techniques
proposed include the Domain Transform functions, Smooth Loss Function, Transfer
Knowledge, and Monotonic Network Block. These techniques aim to make NN-based
modeling practical.

2. This paper proposes a two-step Automatic Neural Network (AutoNN) method for
optimizing PINN structure. The framework involves two steps: (a) generating a small
range of PINN parameters according to the complexity of electrical features, and
(b) finding the optimal PINN structure based on accuracy and speed. The AutoNN
assists PINN to improve accuracy without human involvement.

3. Evaluated on the TCAD-simulated gate-all-around transistor (GAAFET) device, this
framework can achieve an error of less than 0.05%. The framework outperforms an
ensemble learning result, achieving a 72.2% reduction in the error of the drain current
(1;) compared to the ensemble method.

The rest of this article is divided into the following sections. Section 2 presents several
key techniques to embed physical information into NN. In Section 3, the optimization of
PINN is described using a two-step AutoNN technique to find the optimal architecture
based on user-defined targets. Then, in Section 4, we present the experimental results of
our framework evaluated on the GAAFET data. Finally, in Section 5, we summarize our
key conclusions.

2. Physical-Informed Neural Network

Although the neural network (NN) has the power of universal approximation, there
are still some challenges to bringing NN-based device modeling methods to practical use.
The most important is the non-physical behaviors of the NN-based model. This section
focuses on the techniques proposed to embed physics information into NN to overcome the

Micromachines 2023, 14, 1150

40f15

barriers and improve the accuracy of device modeling. Physical behaviors play a crucial
role in making the results more reasonable and practical. Moreover, it can induce accuracy
improvement. The key techniques proposed, including the Domain Transform function,
Monotonic Network Block, Smooth Loss Function, and Transfer knowledge, are designed
to effectively integrate physical behaviors into NN-based device modeling methods.

2.1. Smooth Loss Function

The loss function is a critical factor in determining the accuracy of a neural network,
as it guides the direction of optimization. It is also an intuitive way to incorporate physical
information into the network. Therefore, it is essential to define an appropriate loss function
that takes into account both accuracy and physical behavior. The proposed loss function
for the PINN is defined in a smooth and accurate way in Equations (1) and (2).

Diff; Diff;

_ o Ytrue _ oY pred d .

Loss E?’V(]/true]/pred) +aXx Err(e er) +Bx Err(Difng) T Ei’i’(Difde) M
Err = RMSE @)

where «, B, v are the weight that controls the importance of each component in the loss
function. The first component aims to decrease the error in the logarithmic scale to accu-
rately model the sub-threshold region. To improve the accuracy of the saturated region,
the second component of Equation (1) considers the error in the original numerical scale.
Additionally, the smoothness of the current-voltage (I — V) curve is an important physical
behavior that can be integrated into the loss function by adding the derivative of I; with
respect to the input voltage (Vy and Vj) as the third and fourth components, respectively.
It is important to mention that TCAD simulations or hardware measurements produce
discrete numeric values, and therefore, a numerical approximation is employed to represent
the derivative of I; with respect to V, and V.

The Gummel Symmetry Test (GST) is a well-established method used to evaluate the
smoothness and symmetry of the current-voltage characteristics of a device. This method
was first introduced by Gummel [19], and it has since become widely adopted in the field.
Figure 2 shows a circuit with a GAAFET device, the GST involves setting a specific voltage
(Vi) on the gate and varying another voltage (Vx) to measure the current (I;) flowing
through the device. Then, the smoothness and symmetry of the current-voltage curve can
be assessed.

VX IdS

Vg

-VX

Figure 2. Gummel symmetry test setup circuit.

In the field of artificial neural networks, the use of the smooth loss function is beneficial
in encouraging the network to generate smooth and continuous predictions as the input
values vary. This is particularly important when the output is a function of multiple
inputs, as small changes in one input can lead to significant changes in the output. In
Figure 3, a comparison is made between two neural networks. Figure 3a shows the NN
without a smooth loss function. Figure 3b shows the NN with a smooth loss function. It

Micromachines 2023, 14, 1150

50f 15

lds

dl ggdVy

d2 4ddv2,

1.10E-5

0.00E+0+

-1.10E-5

2.0E-4+

15E-4¢

1OE-4¢

5.0E-5+

0.0E+0t

0.042

0.021+

0.000

-0.021+

-0.042¢

is observed that the network with the smooth loss function can produce a smooth and
relevant current-voltage curve, even for first-order derivatives with respect to V.

V=01V V=03V —— V=05V
@) (b) ©
1.50E-5 1.50E-5
0.00E+0} 0.00E+0}
-150E-5L— . . ‘ 1 150E5
1.08BE-4r 1.02E-4}
8.10E-5|
6.80E-5|
5.40E-5|
2.70E-5} 3.40E-5
0.00E+0} \ . : 0.00E+0}
0.00096 |
0.00048|
0.00000| 0.000}
-0.00048}
-0.00096|
02 01 00 01 02 02 01 00 01 02 02 01 00 01 02
V(V) V,(V) V,(V)

Figure 3. I, first, and second derivative with aspect to V. (a) NN without the smooth loss function.
(b) NN with the smooth loss function. (c) NN with smooth function and domain transform function.

However, a stripe is observed in the first-order and second-order derivatives of the
predicted curve when Vx is near zero. This issue is addressed in the next section using a
technique called Feature Domain Transform.

2.2. Domain Transform

The paper highlights that the most fundamental physical behavior of a device is zero
current. The drain current (I;) should be zero when the drain-source current (Vpg) is equal
to zero. Additionally, the I; in both the sub-threshold and saturation regions should achieve
high accuracy. However, the sub-threshold I; is too small to distinguish at the normal scale.
Klemme et al. [9] used two separate nets, which may introduce discontinuities and non-
smoothness near the connection. To address this issue, the paper proposes transforming I,
to the logarithmic scale. To ensure physical accuracy, the output of the NN (y) is defined in
a way that constrains I; to be zero when Vpg is zero, irrespective of the NN output. The
transforming function is as follows in Equation (3).

Ips
y=In(y) 3)
As mentioned earlier, the output of the NN is in the logarithmic scale, which is essential
for sub-threshold region modeling. However, the training data are discretely sampled from
TCAD simulation, and the change in I; becomes very sharp in the logarithmic scale when
Vp approaches zero, as shown in Figure 4. This poses a challenge for the NN as it tends to
treat sharp changes as outliers.

Micromachines 2023, 14, 1150

6 of 15

Log Scale

e 2 2 2 2 2 2 2 28 8 8 8 8

= i.oooooooooooo
6
7
=
8

0.1V

0.2V

, NN may identify ® 0.3V

_1 4 A
01 e them as outliers 0.5V
o 0.6V

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Vds

Figure 4. Drain current I; in the logarithmic scale. The points in the left bottom may be identified
as outliers.

To solve this problem, the paper proposes the Domain Transform function for Vs and
Vs, as shown in Equations (4) and (5), respectively.

Vdsfnew = Sign(Vds) X ((des + 72)1/2 _ ,)/)
v = Q1 (Range(Vys))

VgS_new = Vgs + (Vdsfnew - Vds)/ 2 @)

Here, y represents the first quartile (Q;) of the Vj;; range. This function squeezes V;;
in Q; to increase data sample density, which is beneficial for fitting the trend when Vj;
approaches zero. The sign(Vy;,) factor allows the function to handle both the symmetry of
I; with respect to V; and the unsymmetrical cases [11]. Moreover, to balance the effects of
Vs transformation, a bias is added to Vgs. As the GST results shown in Figure 3c, the I;
when Vj, near zero is pretty smooth, even for the second-order derivative.

In device modeling, there are several electrical targets that must be achieved. In this
paper, we evaluate the error for four targets: threshold voltage (V};), saturation drain
current (Iys,1), off-state current (I,f5), and drain current (Iz5). The metrics used to measure
the error are Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
Root Mean Square Percent Error (RMSPE), as shown in Equation (6).

4)

log Ids True, 1) log(lds Pred i)
RMSPE(I) =)2 6
ds Z log(IdS,True,i)) ()

where m is the total number of samples, i is the i-th sample, Ij; 1,4 is true I5 value of the
i-th test point and I pyeq; is the predicted Iy; value of the i-th test point.

The impact of the y parameter in Equation (4) on accuracy and complexity is presented
in Table 1. As the quartile increases, the errors of Vy;, and I, increase. However, if the
quartile is less than the second quartile, the error increase in all metrics is limited. The train-
ing time remains almost the same, taking into account the influence of running conditions.
The prediction time may slightly increase due to the transformation function used.

Micromachines 2023, 14, 1150 7 of 15
Table 1. Experimental results on different -y parameter.
Metrics No Transform First Quartile (Ours) Second Quartile Third Quartile

MAE (Vi) 0.6 09 23 27

MAPE (ILjsat) 0.37% 0.35% 0.65% 0.62%

MAPE (Ioff) 1.30% 1.22% 1.30% 1.28%
RMSPE (Iys) 0.05% 0.05% 0.06% 0.06

Training Time (s) 234.05 217.88 223.6 2314
Prediction Time (s) 0.71 0.85 0.8 0.83

2.3. Monotonic Network Block

The NN-based model lacks the ability to enforce the desired monotonic dependence
between input and output, which is commonly observed in device characteristics. For
instance, in a device, the drain current (I;) exhibits a monotonic relationship with the
gate voltage (Vy), and the on-state current (I,,) decreases as the gate length (L) increases.
To overcome this limitation, a Monotonic Block has been proposed to incorporate the
knowledge of monotonic device characteristics into NNs. The weights of the Monotonic
Block are non-negative, while the weights of the Normal Block range from negative infinity
to positive infinity. The non-negative constraint is enforced by squaring the weights, as
illustrated in Equation (7).

05- = (7(;:(W]lk)20,l:1 + 0 @)

where 0} is the the j-th output of the layer /, o is the active function, W}k is the j-th weight of

the layer ! connected to k-th weight of the previous layer, and the b’ is the bias of the layer I.

The overall NN architecture includes three input groups: None-Monotonic, Positive,
and Negative correlation features, which are combined by the Monotonic Block to produce
the output I, as shown in Figure 5. This architecture can constrain the correlation effectively
to ensure that physical behaviors are not broken, which is critical in device modeling.

None Monotonic
:Normal Block Monotonic Block :

Features P . :
Swnth Continuous (with Non-negative :
L Weights) Weights)
ld
Positive

Correlation Features

Negative
Correlation Features

Figure 5. The NN with monotonic block. The block with a gray line represents a normal NN block and
the block with a red line represents the monotonic block. The lines in red represent the non-negative
weights. The lines in gray represent the continuous values.

Micromachines 2023, 14, 1150

8 of 15

2.4. Knowledge Transfer

When a new device is designed, the NN-based compact model cannot leverage previ-
ous learning and must train from scratch. This can be time-consuming and the training
accuracy cannot be guaranteed. To solve this problem, transfer learning is processed here.
By transferring knowledge learned from previous device models to new ones, the training
process can be expedited, and the accuracy of the model can be improved. For instance,
the knowledge learned from modeling a Planar can be transferred to modeling a GAAFET.
Setting the initial weight accordingly can still improve the accuracy of the new model, re-
gardless of whether the NN architecture is the same as the previous one or if only a portion
of the architecture is shared. This improvement can be attributed to the shared similarities
in their physical behaviors. In Figure 6, transfer learning can significantly improve fitting
accuracy after 100 training epochs. To further improve the knowledge transfer quality,
some optimization techniques can be utilized, such as fine-turning a portion of layers and a
new learning rate scheduling method [20].

\ Predicting Data True Datal
2.108-5 |- (&) L (b)

1.68E-5

1.26E-5 °

8.40E-6

4.20E-6

0.00E+0 |- L d
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.0 01 02 03 04 05 0.6 0.7 0.0 01 02 03 04 05 0.6 0.7
Vds Vd

S

Figure 6. Prediction results of NN. (a) Results without knowledge transfer. (b) Results with knowl-
edge transfer. The lines represent the prediction results. The dots represent the simulation data.

3. Automatic Neural Network Generation Framework

The physical behavior of device modeling is guaranteed by the Physics-Informed
Neural Networks (PINN) proposed in Section 2. Another difficulty in NN-based device
modeling is achieving accuracy. Obtaining high accuracy often requires considerable
time and expertise in Machine Learning (ML), because the different NN parameters have
significant impacts on accuracy. To simplify the trial-and-error process, we propose a two-
step automatic NN generation flow to obtain an optimal architecture for PINN, as shown
in Figure 7. The Optimal Search Range Generation first gives a range of NN architecture that
is suitable for accuracy. Then, a search in the range with feedback will be performed to find
an optimal architecture.

Micromachines 2023, 14, 1150

9of 15

Decrease

Yes Neurons Number

§earch in Output NN
Optimal Region | Architecture

Increase
Neurons Number

Optimal Search Train NN with

Range “» Parameter Sampled
Generation : from Optimal Range

No

Figure 7. The automatic NN architecture generation flow.

3.1. Optimal Search Range Generation

To ensure high accuracy in device modeling, the complexity of the NN architecture
must match the complexity of the problem. If the NN is too powerful, it may overfit, while
if it is too simple, it may underfit. To reduce the search range and find an appropriate NN
architecture, we propose the Optimal Search Range Generation in Equation (8), inspired by
the Vapnik—Chervonenkis dimension, a neural network learnability metric [21].

m
N = [Jlog,(n; + b) x eV /s ®
i=1

Rangey = N £+ max(N x 0.2, Nyi,)

Here, N represents the center of search range result. m is the input feature number, n;
is the number of samples for feature i, and corr; is the correlation coefficient of the feature i.
The base factor is denoted by b and the scale factor by s, and we set 4 as the default. The
resulting range of layer one is denoted by Rangej;, while the range of layer two is half of
Rangep;. The N, is set to 8.

3.2. Search in Optimal Region

After determining the optimal search range for the NN architecture, the next step is to
find the optimal accuracy while taking into account constraints on prediction time and other
criteria. In this search process, meeting the desired prediction time is the primary condition.
If the NN achieves the desired accuracy within the given prediction time constraint, the
number of neurons is decreased to further reduce the prediction time. On the other hand, if
the desired accuracy is not achieved, the number of neurons is randomly increased within
the optimal search range in order to improve accuracy.

The error changes at the AutoNN procedure for GAAFET device modeling is shown
in Figure 8, where the red rectangle represents the optimal search range generated using
the proposed Equation (8). The final goal is to obtain an optimal architecture that balances
accuracy and lightweight. The results demonstrate that the Optimal Search Range can
provide a suitable NN architecture. Furthermore, it has been observed that having a low
number of neurons in the first layer of the NN hampers its ability to extract sufficient
information for achieving high accuracy. On the other hand, increasing the number of
neurons in the first layer can lead to overfitting, particularly when the NN’s representational
power becomes excessively high. Moreover, based on the distribution of loss, it is evident
that layer 1 of the NN has a greater influence compared to layer 2. This suggests that
the initial layer plays a crucial role in capturing and representing the essential features
and patterns in the data, while the subsequent layers may further refine and process
this information.

Micromachines 2023, 14, 1150

10 of 15

Log10(RMSPE)

-1.50

500

=175

—
,_8 e o o o o
E 4007 4 o o o o -2.00
=) e o o o o
Z
« e o o o o
=) —2.25
£ 300 ¢ ¢ ¢
=
[e o o o o
E e o o o o —2.50
B L] L] L]
<>3.\ 2007 L] L] L]
— -2.75
c Fieeen
100 . [gam 3 /Target .
° : .I’:r%
e .’ “... e . -3.25
07 L
0 100 200 300 400 500 -3.50

Layer 1 Neurons Number

Figure 8. The error changes at the automatic NN structure searching process. The rectangle in red is
generated by the Optimal Search Range Generation operation. The target is found by Search in Optimal
Region operation.

4. Experimental Results and Discussion
4.1. Environment Setup

Our framework was evaluated on the open-source GAAFET dataset [22]. The values
for V3 and V3, were 0.5 V and 0.1 V, respectively. Table 2 presents the boundaries and
sample number for each of the five input parameters. The dataset contained 98,175 samples,
which were split into 68,595 samples (70%) for training and 29,580 (30%) for testing.

Table 2. The electrical parameters boundaries and sample number of a GAAFET dataset.

Parameters Lower Boundary Upper Boundary Sample Number
Ignw 10 20 11
"nw 2 5 7
tox 0.5 1.5 5
Ve 0 0.7 15
Vv, 0 0.7 15

4.2. AutoPINN Physical Behaviors

To check the smoothness, Figure 3 exhibits the Gummel Symmetry Test results of
different NNs. The results of the default NN implemented in Pytorch targeting tabular
data [23] are shown in Figure 3a. This is a NN-based model without physical information
embedded. It is suffering unphysical behaviors: I; is not smooth and differentiable, and it
is not monotonic, meaning it does not consistently increase or decrease, and it reaches zero
at an early stage when V), is not zero. After some physical information is embedded, the
prior work [10] shows better results. However, it is also unsmooth near Vy; = 0, as shown
in Figure 3b. Ours shows promising physical behaviors as shown in Figure 3c.

To check the monotonic, Figure 9 shows the monotonic relationship between inputs
and output. After adding a negative constraint on I;; and Ly, the curve becomes monotonic
and smooth from Figure 9a,b. Figure 9¢c,d show the relationship between V;; and I
without and with monotonic block. The block obviously solves the no-monotonic at
saturation region.

Micromachines 2023, 14, 1150

110f15

le-5

22
1.8
14
1.0

—8—o¢
————e—3

0.6L° =4

0 12 T4Lg6 18 20

@)

Tle-5

3.0

e« e e e e

~Id

.0
T o 6 ¢ o o o

0.0

10 12 141476 18 20 o0 o1 02 03,04 05 06 07 00 01 02 03,04 05 06 07
(b) (0) (d)

Figure 9. Relationship between (a) I;s and L without monotonic block. (b) I;s and Lg with monotonic
block. (c) I;s and V5 without monotonic block. (d) Iz and Vj; with monotonic block. The index is a
randomly selected data sample number in the public dataset [22].

4.3. AutoPINN Accuracy

Our framework was compared with several existing models that specifically target
universal tabular data. These models include FastAl [24], Pytorch NN model [23], and
the ensemble learning model released by Autogluon [25]. Additionally, we compared our
framework with the prior work released by Tung et al. in 2022 [10]. Table 3 shows the
experimental results. Compared to the best-performing model among them, our AutoPINN
can reduce the MAE of V};, by 95%, and MAPE of I, and I, by 15% and 73%, respectively.
In addition, the total curve of I;; can be reduced by 72%, as shown in Figure 10.

\ FastAl NN_Pytorch | Ensemble| Prior‘

5%
100% -97%g,96% 9896 9%% 9705 9%% 969 8% i
~ 0% [(]
i = 82% 85% 82%
80% |- N 73%) 72947 76%

60% -_ 58%
40% -

20% - 1594

0% |

-28% & ! . ! . L . ! . | _-22%
MAE(V,,) MAPE(l 4)) MAPE(l) RMSPE(l o) Predict Time

Metrics

Reduced Percent (%)

Figure 10. The reduced percent compared to FastAl, NN proposed by Pytorch, and Ensemble learning.

Table 3. Experimental results compared to FastAl, NN proposed by Pytorch, and Ensemble learning.

Metrics FastAI [24] NN_Pytorch [23] Ensemble [25] Prior [10] Ours

Reduced Percent
Compared to Ensemble

MAE (Vy,) 0.0351 0.0118 0.0209 0.009 0.0009 95.6%
MAPE (Isat) 0.1487 0.2865 0.0041 0.02 0.0035 15.2%
MAPE (Ioff) 0.3542 0.9003 0.0454 0.08 0.0122 73.1%

)

RMSPE (I

Training Time (s) 38.23
Prediction Time (s) 3.61

1.48% 2.69% 0.19% 0.3% 0.05% 72.2%

301.30 476.10 124 217.88 54.2%
2.01 123.25 0.7 0.85 99.3%

The total I;; curve error can be substantially reduced to 0.05% by our AutoPINN.
It should be noted that other machine learning algorithms have a tendency to perform
un-physical behaviors that are not acceptable for real applications. The prior work [10] was
evaluated using their default settings. The accuracy of it is less than the ensemble learning.
It reflects that the AutoNN is necessary to obtain high accuracy.

Prediction time is also significantly improved. When evaluated on the 29,580 test data
samples with 116 calls, each call evaluating 255 samples, our AutoPINN only took 0.85 s to

Micromachines 2023, 14, 1150

12 0f 15

execute. Ours reduced the time by 99% compared to the ensemble learning model. The
multiple calls used here aim to account for the warm-up time of the model.

4.4. AutoPINN Generalization

The generalization refers to the ability to fit unseen data, i.e., test data. The generaliza-
tion problem arose from the training and testing data usually having different distributions.
There are two methods to evaluate the generalization of the NN. One is the NN accuracy
on test data, which is the most important metric. Another is the loss landscape. The NN
accuracy on test data is promising in Section 4.3. This section mainly talks about the loss
landscape to reveal the generalization of NN.

The loss landscape is an intuitive way to visualize the generalization. The NN with a
flat loss landscape has a better generalization than the sharp one [26,27]. To generate the
loss landscape, Equation (9) is a widely adopted method.

T(a, B;0%) = L(6" + ad + B1p) 9)

where 0* is the normalized weight of trained NN, and ¢ and 7 are two random directions
of the parameter 6*. The a and B are the factors applied in two directions. They control
how far away from original parameter §*. Varying « and 8 from —1 to 1 is used to obtain
the loss and draw the loss landscape.

Figure 11a presents the loss landscape of a not well-optimized Neural Network struc-
ture, i.e., (5,8,8,8,1). The minimum number of this loss landscape is ten while our well-
optimized NN only has one minimum, as shown in Figure 11b. The more local minimum
number in the loss landscape, the harder to achieve convergence in the training process.
Ours is also flatter than the not well-optimized NN. The good accuracy on test data and
the flat loss landscape shows that our NN model can achieve high generalization.

Loss landscape (RMSPE) Loss landscape (RMSPE)

1.00 T 1.00 0304
i o Local Optimal Point ¢ Local Optimal Point
; 0.945 0.448

0.75 0.75

0.840
0.50 0392

0.50

0.735 0336
0.25 0.630

0.280

@ 0,00 0.525
0.224
025 0420
0.168
0315
-0.50
0210 0.112
- -0.75
075 0.105 Io‘oss
1.00 L i 0.000 -1.00 — 0.000
-1.00 -0.75 -0.50 -0.250.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.250.00 0.25 0.50 0.75 1.00
a a
(a) (b)

Figure 11. Loss landscape visualization. The black dots represent local optimal points. (a) Loss
landscape of a not well-optimized Neural Network structure; (b) loss landscape of our well-optimized
Neural Network structure.

5. Conclusions

This paper presents a novel framework called AutoPINN for NN-based semiconductor
device modeling. AutoPINN solves two major challenges: unphysical behaviors and
the requirement for NN expertise. The framework consists of two components: PINN
and AutoNN.

PINN is introduced to tackle unphysical issues by incorporating physical information
using several key technologies. There are a few key technologies used here. The Domain
Transform ensures that the current-voltage relationship (I vs. Vgs and V) is smooth and
differentiable by transforming them with higher density near V;; = 0. This transformation
handles both symmetric and asymmetric drain/source scenarios. It also transforms the
optimization target to simplify NN fitting. The Smooth Loss Function considers not only the

Micromachines 2023, 14, 1150

13 of 15

optimization target, but also derivatives and other factors to ensure a smooth and differen-
tiable I; curve. The Monotonic Network Block enforces non-negativity constraints on the NN
weights to achieve monotonic behavior. Knowledge Transfer enables the transfer of modeling
information and training from other devices, facilitating faster training convergence and
improved physical behavior.

AutoNN assists PINN in finding an optimal structure without requiring human
expertise. It generates an optimal search range for the NN architecture and optimizes
accuracy while considering constraints such as prediction time and other criteria.

The effectiveness of the AutoPINN framework is demonstrated through experiments
on a GAAFET device. The results show high accuracy while maintaining a lightweight
model. To ensure generalization, validation results on sample data as well as the loss
landscape are utilized to confirm the approach’s ability to generalize well. The authors
believe that this work has the potential to accelerate the development and simulation
processes of emerging devices.

Author Contributions: Conceptualization, G.G.; funding acquisition, H.Y. and C.L.; investigation, G.G.,
Z.T. and O.L.; methodology, H.Y., C.L. and Z.T; project administration, H.Y. and C.L.; software, G.G.; su-
pervision, H.Y., C.L. and Z.T.; validation, O.L.; writing—original draft, G.G.; writing—review and editing,
G.G, HY, C.L. and Z.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the cooperation project between Xidian University and
Beijing Microelectronics Technology Institute, in part by the Project of Science and Technology on
Reliability Physics and Application Technology of Electronic Component Laboratory (under Grant
6142806210302), in part by the China National Key R&D Program (Grant No. 2022YFF0605800) in
part by the 111 Project of China (Grant No. 61574109), and in part by the National Natural Science
Foundation of China (Grant No. 62234010).

Data Availability Statement: The training and testing dataset is available on GitHub [22]. The other
data presented in this study are available on request from the corresponding author.

Acknowledgments: We would like to thank the reviewers for their thoughtful comments and efforts
towards improving our manuscript. It is important to acknowledge the contributions and support
of those who have helped in the research and preparation of the paper. We would like to express
our gratitude to the Integrated Circuit EDA Elite Challenge Contest and Primarius Technologies Co.,
Ltd. [28] for providing the TCAD simulation data. Special thanks to Xiaoxu Cheng from Primarius
Technologies Co., Ltd. for their assistance. We would also like to acknowledge the contributions of
Ruihua Xue for providing the beautiful pictures used in the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ML Machine Learning

ANN Artificial Neural Network

NN Neural Network

AutoNN Automatic Neural Network Generation

PINN Physical-Informed Neural Network

AutoPINN Automatic Physics-Informed Neural Network Generation
L Length of Gate

Tnw radius of nanwire

tox Thickness of oxide

Ve Gate Voltage

Vy Drain Voltage

Micromachines 2023, 14, 1150 14 of 15

References

1. Woo, S.; Jeong, H.; Choi,]J.; Cho, H.; Kong,].T.; Kim, S. Machine-Learning-Based Compact Modeling for Sub-3-nm-Node
Emerging Transistors. Electronics 2022, 11, 2761. [CrossRef]

2. Duarte,].P; Khandelwal, S.; Medury, A.; Hu, C.; Kushwaha, P.; Agarwal, H.; Dasgupta, A.; Chauhan, Y.S. BSIM-CMG: Standard
FinFET compact model for advanced circuit design. In Proceedings of the ESSCIRC Conference 2015—41st European Solid-State
Circuits Conference (ESSCIRC), Graz, Austria, 14-18 September 2015; pp. 196-201. [CrossRef]

3. Khandelwal, S.; Chauhan, Y.S.; Lu, D.D.; Venugopalan, S.; Ahosan Ul Karim, M.; Sachid, A.B.; Nguyen, B.Y.; Rozeau, O.; Faynot,
O.; Niknejad, A.M.; et al. BSIM-IMG: A Compact Model for Ultrathin-Body SOI MOSFETs With Back-Gate Control. IEEE Trans.
Electron Devices 2012, 59, 2019-2026. [CrossRef]

4. Gildenblat, G.; Li, X.; Wu, W.; Wang, H.; Jha, A.; Van Langevelde, R.; Smit, G.; Scholten, A.; Klaassen, D. PSP: An Advanced
Surface-Potential-Based MOSFET Model for Circuit Simulation. IEEE Trans. Electron Devices 2006, 53, 1979-1993. [CrossRef]

5. Wang, J.; Kim, Y.H.; Ryu, J.; Jeong, C.; Choi, W.; Kim, D. Artificial Neural Network-Based Compact Modeling Methodology for
Advanced Transistors. IEEE Trans. Electron Devices 2021, 68, 1318-1325. [CrossRef]

6. Li, M, Irsoy, O.; Cardie, C.; Xing, H.G. Physics-Inspired Neural Networks for Efficient Device Compact Modeling. IEEE J. Explor.
Solid-State Comput. Devices Circuits 2016, 2, 44—49. [CrossRef]

7. Zhang, L.; Chan, M. Artificial neural network design for compact modeling of generic transistors. |. Comput. Electron. 2017,
16, 825-832. [CrossRef]

8. Lei, Y;; Huo, X;; Yan, B. Deep Neural Network for Device Modeling. In Proceedings of the 2018 IEEE 2nd Electron Devices
Technology and Manufacturing Conference (EDTM), Kobe, Japan, 13-16 March 2018; pp. 154-156. [CrossRef]

9. Klemme, E; Prinz, J.; van Santen, V.M.; Henkel,].; Amrouch, H. Modeling Emerging Technologies using Machine Learning:
Challenges and Opportunities. In Proceedings of the 39th International Conference on Computer-Aided Design, Virtual, 2-5
November 2020; pp. 1-9.

10. Tung, C.T.; Kao, M.Y.; Hu, C. Neural Network-Based I-V and C-V Modeling With High Accuracy and Potential Model Speed.
IEEE Trans. Electron Devices 2022, 69, 6476—6479. [CrossRef]

11. Kao, M.Y.; Kam, H.; Hu, C. Deep-Learning-Assisted Physics-Driven MOSFET Current-Voltage Modeling. IEEE Electron Device
Lett. 2022, 43, 974-977. [CrossRef]

12. Butola, R; Li, Y,; Kola, S.R. A Machine Learning Approach to Modeling Intrinsic Parameter Fluctuation of Gate-All-Around Si
Nanosheet MOSFETs. IEEE Access 2022, 10, 71356-71369. [CrossRef]

13. Park, C; Vincent, P.; Chong, S.; Park, J.; Cha, Y.S.; Cho, H. Hierarchical Mixture-of-Experts approach for neural compact modeling
of MOSFETs. Solid-State Electron. 2023, 199, 108500. [CrossRef]

14. Jeong, H.; Woo, S.; Choi, J.; Cho, H.; Kim, Y.; Kong,].T.; Kim, S. Fast and Expandable ANN-Based Compact Model and Parameter
Extraction for Emerging Transistors. IEEE]. Electron Devices Soc. 2023, 11, 153-160. [CrossRef]

15. Yang, Q.; Qi, G.; Gan, W.; Wu, Z.; Yin, H.; Chen, T.; Hu, G.; Wan, J.; Yu, S.; Lu, Y. Transistor Compact Model Based on Multigradient
Neural Network and Its Application in SPICE Circuit Simulations for Gate-All-Around Si Cold Source FETs. IEEE Trans. Electron
Devices 2021, 68, 4181-4188. [CrossRef]

16. Myung, S;Kim, J; Jeon, Y, Jang, W.; Huh, I; Kim, J.; Han, S.; Baek, K.H.; Ryu, J.; Kim, Y.S;; et al. Real-Time TCAD: A new paradigm for
TCAD in the artificial intelligence era. In Proceedings of the 2020 International Conference on Simulation of Semiconductor Processes and
Devices (SISPAD), Kobe, Japan, 23 September—6 October 2020; pp. 347-350. [CrossRef]

17. Jagannathan, H.; Anderson, B.; Sohn, C.W.,; Tsutsui, G.; Strane,].; Xie, R.; Fan, S.; Kim, K.I; Song, S.; Sieg, S.; et al. Vertical-
Transport Nanosheet Technology for CMOS Scaling beyond Lateral-Transport Devices. In Proceedings of the 2021 IEEE
International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11-16 December 2021; pp. 26.1.1-26.1.4. [CrossRef]

18. Huang, S.; Wang, L. MOSFET Physics-Based Compact Model Mass-Produced: An Artificial Neural Network Approach.
Micromachines 2023, 14, 386. [CrossRef] [PubMed]

19. Mcandrew, C. Validation of MOSFET model Source-Drain Symmetry. IEEE Trans. Electron Devices 2006, 53, 2202-2206. [CrossRef]

20. Alqudah, A.M.; Alquraan, H.; Qasmieh, I.A. Segmented and Non-Segmented Skin Lesions Classification Using Transfer Learning
and Adaptive Moment Learning Rate Technique Using Pretrained Convolutional Neural Network. |. Biomim. Biomater. Biomed.
Eng. 2019, 42, 67-78. [CrossRef]

21. Blumer, A,; Ehrenfeucht, A.; Haussler, D.; Warmuth, M.K. Learnability and the Vapnik-Chervonenkis dimension. J. ACM 1989,
36, 929-965. [CrossRef]

22. AlforDeviceModeling. AlforDeviceModeling/Semiconductor_Device_Data. 2023. Available online: https://github.com/
AlforDeviceModeling /Semiconductor_Device_Data (accessed on 15 March 2023).

23. DPaszke, A.; Gross, S.; Massa, F; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024-8035.

24. Fastai. 2023. Available online: https:/ /github.com/fastai/fastai (accessed on 15 March 2023).

25. Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P; Li, M.; Smola, A. AutoGluon-Tabular: Robust and Accurate AutoML
for Structured Data. arXiv 2020, arXiv:2003.06505.

26. Li, H.; Xu, Z,; Taylor, G.; Studer, C.; Goldstein, T. Visualizing the Loss Landscape of Neural Nets. arXiv 2018, arXiv:1712.09913.

http://doi.org/10.3390/electronics11172761
http://dx.doi.org/10.1109/ESSCIRC.2015.7313862
http://dx.doi.org/10.1109/TED.2012.2198065
http://dx.doi.org/10.1109/TED.2005.881006
http://dx.doi.org/10.1109/TED.2020.3048918
http://dx.doi.org/10.1109/JXCDC.2016.2636161
http://dx.doi.org/10.1007/s10825-017-0984-9
http://dx.doi.org/10.1109/EDTM.2018.8421454
http://dx.doi.org/10.1109/TED.2022.3208514
http://dx.doi.org/10.1109/LED.2022.3168243
http://dx.doi.org/10.1109/ACCESS.2022.3188690
http://dx.doi.org/10.1016/j.sse.2022.108500
http://dx.doi.org/10.1109/JEDS.2023.3246477
http://dx.doi.org/10.1109/TED.2021.3093376
http://dx.doi.org/10.23919/SISPAD49475.2020.9241622
http://dx.doi.org/10.1109/IEDM19574.2021.9720561
http://dx.doi.org/10.3390/mi14020386
http://www.ncbi.nlm.nih.gov/pubmed/36838086
http://dx.doi.org/10.1109/TED.2006.881005
http://dx.doi.org/10.4028/www.scientific.net/JBBBE.42.67
http://dx.doi.org/10.1145/76359.76371
https://github.com/AIforDeviceModeling/Semiconductor_Device_Data
https://github.com/AIforDeviceModeling/Semiconductor_Device_Data
https://github.com/fastai/fastai

Micromachines 2023, 14, 1150 15 of 15

27. Keskar, N.S.; Mudigere, D.; Nocedal, J.; Smelyanskiy, M.; Tang, PT.P. On Large-Batch Training for Deep Learning: Generalization
Gap and Sharp Minima. arXiv 2017, arXiv:1609.04836.

28. Primarius Technologies Co., Ltd. Primarius, Memory EDA Leader. 2023. Available online: https://www.primarius-tech.com
(accessed on 15 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.primarius-tech.com

	Introduction
	Physical-Informed Neural Network
	Smooth Loss Function
	Domain Transform
	Monotonic Network Block
	Knowledge Transfer

	Automatic Neural Network Generation Framework
	Optimal Search Range Generation
	Search in Optimal Region

	Experimental Results and Discussion
	Environment Setup
	AutoPINN Physical Behaviors
	AutoPINN Accuracy
	AutoPINN Generalization

	Conclusions
	References

