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Abstract: Integrated circuit (IC) X-ray wire bonding image inspections are crucial for ensuring the
quality of packaged products. However, detecting defects in IC chips can be challenging due to
the slow defect detection speed and the high energy consumption of the available models. In this
paper, we propose a new convolutional neural network (CNN)-based framework for detecting wire
bonding defects in IC chip images. This framework incorporates a Spatial Convolution Attention
(SCA) module to integrate multi-scale features and assign adaptive weights to each feature source.
We also designed a lightweight network, called the Light and Mobile Network (LMNet), using
the SCA module to enhance the framework’s practicality in the industry. The experimental results
demonstrate that the LMNet achieves a satisfactory balance between performance and consumption.
Specifically, the network achieved a mean average precision (mAP50) of 99.2, with 1.5 giga floating-
point operations (GFLOPs) and 108.7 frames per second (FPS), in wire bonding defect detection.

Keywords: convolutional neural network; X-ray images; wire bonding defects; lightweight network

1. Introduction

Integrated circuits are an indispensable core component in electronic products such as
mobile phones, smart watches, computers, and intelligent robots [1–3]. Integrated circuit
design, packaging and testing are the three pillars of integrated circuit manufacturing, and
IC packaging is one of the important factors restricting the development of this field [4,5].
Packaging costs and precision directly determine the cost of IC product manufacturing,
and wire bonding [6–8] is one of the most important steps in IC packaging technology; it
uses ultrasonic, pressure, heat, and other energy forms to connect the internal pins of the
IC chip and the pins of the external substrate, or the pins between the lead frames, which
determines the quality and stability of power supply and signal transmission. However,
during the wire bonding process, various defects may occur due to certain problems, such
as depression of the solder joint, cracking and peeling of the bonding, etc., which lead to
the failure of the wire bonding. In addition, different factors, such as human error, material
selection, processing equipment, manufacturing process, etc., affect the bonding process,
making the determination of wire bonding defects challenging. In order to reduce the costs
of integrated circuit manufacturing and improve the yield of IC chips, it is very important
to accurately assess the quality of IC wire bonding after packaging. In today’s context of
the large-scale production of integrated circuits, fast, automatic, and accurate detection of
wire bond defects is highly desired in relation to integrated circuit quality and cost control.
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X-ray imaging is widely recognized as a cost-effective inspection method in industrial
defect detection [9,10], quality control, and safety inspection. For identifying defects hidden
inside the product that cannot be captured by cameras, non-destructive testing methods,
such as X-rays, are typically used. In the actual production of IC chips, wire bonding
defects shown by X-ray images are still manually inspected, which has low efficiency, is
prone to fatigue-related problems, and is subject to differences in perception and emotion,
making it unable to meet the current mass production requirements of IC chips. Moreover,
manual inspection is also costly. Therefore, to optimize the potential of image recognition,
and realize automatic IC image analysis and wire bonding defect detection, we aimed to
identify defect information via carrying out an object detection task.

Figure 1 shows a flowchart of the IC chip image detection system. To better understand
the acquisition and identification of IC chip wire bonding defects, we sought to obtain
images of the wire connections inside the chip using X-ray imaging. We built our X-ray
equipment to obtain inside images of IC chips. In the side view of the chip, two wires are
visible, and this is a direct reflection of the quality of the chip’s wire bonding. There are
typically five types of wire bonding defects: high loop, low loop, broken line, defect, and
vertical line. The appearance of these defects can affect the performance of the IC chip and
thus represented the target of model inspection.
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stage, a batch of IC chip images is collected and used to train our network. In the second stage, the
trained model is applied to the remaining IC chips for real-time defect detection.

In recent years, deep learning methods have undergone a surge in popularity, with
convolutional neural network (CNN)-based methods achieving exceptional results in
various imaging-related tasks [11–13]. Kyeong et al. [14] proposed building a classification
model for each hybrid defect model in the semiconductor manufacturing industry to detect
on-chip circles, rings, scratches, and regional defects. However, creating a separate model
for each defect increases computer power consumption. Mao et al. [15] proposed using a
convolutional neural network to analyze the IC dataset and optimize the VGG16 network
to detect IC defects. However, this method requires a large amount of data and involves a
long training time. Chen et al. [16] developed an adaptive deep learning framework for
fast marker recognition in IC chips, but this has limited adaptation capabilities and cannot
detect the same types of defects across large scale changes. Yang et al. [17] proposed using
the YOLOv3-based network to detect chip defects and fine-tune the network, resulting in
significant improvements in detection accuracy, with the mAP50 reaching 86.36. However,
this network requires much model calculation and has many parameters, which makes
it unsuitable for deployment in industrial computers or mobile devices. Chen et al. [18]
proposed a data-driven framework for detecting wire bonding defects in IC chips, but the
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method is highly reliant on environmental variables and may be adversely affected by
changes in lighting conditions and chip location area, leading to poor segmentation and
defect recognition. Zhou et al. [19] described the development history of wire bonding, and
the manufacturability and reliability of gold, copper, and silver wire bonding. They also
discussed the basic performance and gave a general comparison of applications among the
three types of wire bonds. Kao et al. [20] developed a deep-learning-based fault diagnosis
framework that can effectively detect improper bond head installation in wire bonding
equipment, enabling predictive maintenance and reducing costs. None of the previous
studies have found an optimal solution for detecting IC chip wire bonding defects, which
involves achieving a balance between inference speed and model energy consumption.
Therefore, further exploration in the field of deep learning is necessary for the detection of
IC chip wire bonding defects.

In this paper, we present a lightweight and efficient X-ray-image-based wire bond
defect detection framework for IC chips, which uses industrial CT equipment consisting of
an X-ray tube, a flat panel detector, a four-axis motion platform, and other components. Our
framework includes a lighter, and mobile, YOLO network (LMNet) for wire bond defect
identification, inspired by the efficient structure of YOLOv5n and EfficientNet [21]. We
propose a lighter LMNet based on a new Spatial Convolutional Attention (SCA) module,
which integrates multi-scale features and adaptively weights them according to their spatial
and channel contributions. Compared with previous studies, this proposed chip inspection
method aims to solve the problems of slow detection speed and high energy consumption
associated with identifying wire bonding defects in IC chips after packaging.

To validate the effectiveness of our framework, we conducted extensive experiments
on our dataset. The experimental results demonstrate that our framework is faster and
involves fewer parameters than the current state-of-the-art methods. The organization of
this paper is as follows: Section 2 describes the collected data and associated methods.
Section 3 presents our proposed method. Section 4 outlines the experimental results and
analyzes them.

In summary, this work makes the following contributions:

• Fully automatic industrial CT equipment was built for IC chip image recognition
and acquisition;

• A lightweight and precise frame LMNet was designed to realize automatic, fast and
high-performance IC chip wire bonding image recognition;

• We proposed to introduce an adaptive Spatial Convolutional Attention (SCA) module
into LMNet to achieve adaptive weighting of multi-scale features;

• The experimental results demonstrated that our method achieves fast and accurate
prediction compared to state-of-the-art models.

2. Related Works
2.1. Experimental Setup

Our experimental equipment for X-ray chip detection consisted of several components,
including an X-ray source system, a flat panel detector acquisition system, a four-axis
precision motion platform, a computer-aided system, and an X-ray protection device.
These hardware components were integrated and connected in series to the industrial
computer, which read the image collected by the flat panel detector through the data
acquisition card. The acquisition card and detector were connected via an AV signal,
while the industrial computer and acquisition card were connected via USB. The motion
controller was connected to the industrial computer via Ethernet, and the controller was
connected to the four-axis drive motor to enable the motion control of each axis. Finally,
the industrial computer was connected to the embedded control circuit via the RS485 serial
port to control the emission and power of the X-ray. Figure 2 shows the 3D structure and
gives a physical diagram of our experimental device.
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Figure 2. The 3D structure and a physical drawing of the experimental X-ray chip detection device.

2.2. Data Acquisition

We utilized self-built X-ray equipment for image acquisition and processing, compris-
ing an X-ray source, a flat panel detector, a motion control card, and a four-axis motion
platform, with parameters listed in detail in Table 1. Real-time defect detection was per-
formed using a portable notebook configured with an AMD R7-5800CPU, 16 G RAM,
and an Nvidia RTX3060 graphics card. To facilitate the use of the equipment by other
computers, automatic IC chip detection software was developed for the Windows platform,
with the acquisition of IC chip datasets. The integrated circuit product used in this paper is
shown in Figure 3; the X-ray image taken from the side view shows the two wires, shown
in Figure 3b. An example of a qualified IC chip is illustrated in Figure 3c, while the five
types of welding line defects shown in Figure 3d–h, namely, high loop line, low loop line,
broken line, defect, and vertical line, are the targets of the detection model in this paper.
We collected 800 IC chip images using our self-developed software, which were adjusted to
a size of 416 × 416 pixels for network training. Data augmentation was performed through
a combination of rotation, random cropping, color channel transformation, and Gaussian
blurring, with each image randomly enhanced twice, resulting in a total of 1600 images.
These images were randomly divided into a training set, a validation set, and a test set in a
ratio of 8:1:1. Table 2 shows the quantity distribution of the sample dataset in this paper.

Table 1. System parameters of X-ray device.

Tube Voltage (kV) 60–80 kV

Max tube current (mA) 0.5 mA
Focal spot size (mm) 0.5 mm

Resolution 640 × 640
Pixel size 92 µm (4.6l p/mm)

Power consumption 80 w
power supply 220 VAC
x-axis travel 120 mm
y-axis travel 120 mm
z-axis travel 60 mm

Repeatability 10 µ

Size 730 mm × 580 mm × 900 mm
Weight 45 kg

Control mode Ethernet
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Figure 3. (a) The targeted IC chip; (b) schematic diagram of the chip; (c–h) illustrative examples of IC
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wire; and (h) sagged wire.

Table 2. Table of dataset distribution.

Sample Dataset High Loop Wire Low Loop Wire Broken Wire Missing Wire Sagged Wire

training set 141 243 192 409 295
validation set 21 41 15 33 50

test set 16 25 37 16 66

2.3. Object Detection

To date, there are two main types of deep learning algorithms used for target detec-
tion: single-stage detectors based on regression analysis and two-stage detectors based
on region proposal. Traditional two-stage detectors, such as Rfi-CNN [22], first use selec-
tive searching to extract potential target regions, then employ a CNN to extract features
from these candidate regions after adjusting their size. This is followed by the use of
a support vector machine classifier to classify the region, and the location information
is obtained through fully connected neural network regression. However, the R-CNN
network has problems, such as the requirement of independent training at each stage, the
cumbersome nature of training, susceptibility to image distortion, high computational
power consumption, and slow detection speed. To address these issues, Faster R-CNN [23]
involves a region proposal network (RPN) to replace the selective search algorithm in
time-consuming candidate region extraction. The RPN in this network incorporates a
multi-reference window mechanism, which completes candidate region recommendation,
feature extraction, localization, and classification in the same network, greatly improving
training efficiency. However, due to the anchor mechanism, Faster R-CNN’s detection
accuracy with small targets is not ideal. Mask R-CNN incorporates the Mask branch, and
combines the image semantic segmentation and object detection network. By adding a
linear interpolation algorithm to prevent the feature map and original image from deviating
due to the integer quantization of the ROI pool, the features obtained from each receptive
field can be made to more effectively align with the original image’s receptive field area.
However, Mask R-CNN [24] has a larger computational overhead than Faster R-CNN due
to the segmentation branch. Libra R-CNN [25] includes IoU-balanced sampling, a balanced
feature pyramid structure, and a balanced L1 loss function, thus effectively solving the
problem of features disappearing after small samples pass through a multi-layer network.
However, the Libra R-CNN network is stacked, structurally redundant, and has a large
number of parameters, resulting in a slow detection speed. Although two-stage detectors
can usually obtain more accurate prediction results, they require more computing resources,
and their detection speed is not ideal.
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Single-stage detectors are better suited for tasks requiring fast inference, and their
main advantage over two-stage detectors is the absence of a candidate region recommenda-
tion stage, resulting in a simpler training process. In a single stage, the target category can
be directly determined and the position detection frame can be obtained. The YOLO [26]
algorithm was the first single-stage detector to be used in deep learning, and uses a single
neural network to divide the entire image into S × S network units, thus determining
whether the predicted target center falls within the network. The grid then determines the
prediction object category and corresponding confidence, followed by threshold screening
to remove windows with low target probability and an NMS to remove redundant win-
dows, improving inference speed. However, YOLO can only detect one bounding box with
the highest IoU output, resulting in only one detection for multiple small targets in a grid.
Additionally, YOLO does not address the multi-scale window problem, resulting in poor
small-target detection and inaccurate positioning compared to Faster R-CNN. SSD [27]
combines the advantages of the fast detection of YOLO and the accurate positioning of
Faster R-CNN, and introduces multi-reference and multi-resolution detection technology,
whereby the networks of different layers detect objects with different scales, which ef-
fectively improves the detection of small objects. However, the basic size and shape of
the pre-selection box in the network need to be manually set; the debugging process is
highly dependent on experience, the recognition effect of small targets is general, and the
feature extraction is insufficient. RetinaNet [28] achieves a further improvement in the
detection accuracy of integrated convolutional neural networks by introducing a focal loss
function that prioritizes difficult-to-classify samples during training to solve the problem
of unbalanced instance samples. However, single-stage detectors are less accurate than
two-stage detectors in most cases due to the lack of region proposals.

To improve the practicality of CNN, efficient methods can be developed to design new
network structures, such as lightweight convolutional neural network models. SqueezeNet [29]
includes a Fire Module, which comprises Squeeze and Expand layers that help to reduce
the dimension of the input feature channel and achieve feature extraction. MobileNet [30]
uses depthwise separable convolution to design basic building blocks, and can be easily
adjusted with two hyperparameters to reduce model complexity. ShuffleNet [31] represents
an improvement of ResNet’s residual unit, with grouped convolution and channel shuffling
to reduce the number of model parameters and enable information exchange between
different groups. GhostNet [32] introduces a Ghost Module that generates feature maps
inexpensively, thus effectively addressing feature map redundancy in convolutional neural
networks and reducing the number of parameters.

2.4. Multi-Scale Features Fusion

In the task of target detection, accurately identifying and precisely positioning targets
can be challenging due to the varying shapes and sizes of objects. Feature fusion has been
proven to be an effective strategy for achieving feature complementarity between different
layers of the CNN. However, early fusion methods, such as simply adding or concatenating
multi-scale features, may lead to significant losses of detailed features. To address this,
SSD [27] and MS-CNN [33] propose the separate detection of objects on feature maps of
different scales, and integrating them in the end, with shallow feature maps detecting
small objects and deep feature maps detecting large ones. However, these methods have
not significantly improved the detection accuracy of small targets. To tackle this issue,
FPN [34] combines the fine-grained spatial information of shallow feature maps and the
semantic information of deep feature maps to construct a top-down structure for multi-
scale targets. In recent years, it has been found that multi-scale fusion based on different
receptive fields can greatly improve CNN performance. For instance, the SPP module
proposed in SPP-Net [35] uses multi-scale blocks to convert feature maps of any size into
fixed-length feature vectors. Similarly, ASPP [36] builds a spatial 16 pyramid using atrous
convolution with different convolution coefficients, resulting in multiple sets of feature
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maps. However, contemporary feature fusion methods treat all scales equally, and cannot
adaptively consider which scale features are more important for the final prediction.

3. Method
3.1. Overview of YOLOv5

YOLOv5 consists of five models, namely, YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x. YOLOv5 adopts the C3 architecture, with SPPF as the backbone layer, PANet
as the neck layer, and a YOLO detection head, making it the fastest and most convenient
single-stage detector. As our baseline network, we chose YOLOv5 for its performance.
During training with the IC chip dataset, we observed that YOLOv5s yields similar results
compared to the other models in the series, with an AP difference of less than 0.2. Since
the YOLOv5s model incurs lower computational costs during training and inference, we
chose it as our recognition network so as to strike a balance between detection speed and
accuracy. Furthermore, we have proposed a new feature map fusion method called SCA to
enhance the multi-scale recognition ability of the recognition network.

3.2. LMNet for IC Defect Recognition

The LMNet framework, as shown in Figure 4, is a modified version of the original
YOLOv5 network that is compressed and optimized for our IC defect dataset. In this section,
we introduce two key components of the network—the Residual Ghost Convolution (RGC)
module and the Spatial Convolution Attention (SCA) module—and provide a detailed
description of the LMNet structure.
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Figure 4. The architecture of the IC bond wire identification framework, which consists of LMNet for
IC chip information identification. LMNet has two prediction heads that perform feature extraction
on images and identify defects on X-ray IC chip images.

RGC module: The Residual Ghost Convolution module is the basic module of a
deep learning network. Efficient representation encoding can make the model better at
its corresponding task. Furthermore, feature extraction operations are the main source
of parameters and computations. Therefore, the weight of the feature extraction module
determines the weight of the entire network. In this paper, we designed the RGC module as
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shown in Figure 5; this makes it lightweight, and it has high feature extraction capabilities
in relation to the representation learning of X-ray IC images.
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The RGC module consists of a 1 × 1 convolution, which increases the number of
channels of the input feature map to 2c. To more effectively extract feature information,
we needed to map the input data to higher-dimensional space in the intermediate stage.
However, this can increase the computational load and memory consumption of the
network. To address this issue, we have taken inspiration from GhostNet and introduced
Ghost Conv into the feature space expansion process. Ghost Conv helps us to obtain
more feature maps in an inexpensive way, thereby reducing memory consumption during
intermediate expansion. Additionally, we introduced residual connections in the RGC
module to ensure the effective extraction of feature information and improve the stability
of the network.

Residual connections can effectively solve a range of problems caused by increases in
the network depth, such as gradient disappearance, gradient explosion, and overfitting.
We added residual connections to the RGC module to prevent the overfitting caused by
the increase in the number of network layers, which effectively improved the stability
of the network. Residual connections can be expressed as a superposition of input and
nonlinear changes in the input. We defined the input and output of the lth layer as Xl and
Xl+1, respectively, and the nonlinear change of the input was defined as F(x, w), where w
represented the weight parameter of the function F. The residual connection calculation
formula is expressed as follows:

Xl+1 = Xl + F(xl + w) (1)

Ghost Conv can avoid the redundant computation and convolution filters generated
by similar intermediate feature maps, and can achieve a good balance between accuracy
and compression. We defined the input feature map as M ∈ Rh×w×c, where h, w, and c are
the height, width, and number of channels of the input feature, respectively. The feature
map of N could be generated through a convolution process:

N = M⊗ f (2)

where ⊗ represents the convolution operation, f ∈ Rc′×k×s×p represents the convolution
filter, and c′, k, s, and p are the number of output channels, kernel size, stride and padding
of filter f , respectively. The feature height, width, and number of channels of the output
feature map N ∈ Rh′×w′×c′ were h′, w′, and c′, respectively. To simplify the formula, we
omitted the bias value.

However, in Ghost Conv, intrinsic feature maps are first generated using traditional
convolution. Specifically, the intrinsic map N′ ∈ Rh′′×w′′×c′′ was generated using tradi-
tional convolution:

N′ = M⊗ f ′ (3)

where the convolution filter used is f ∈ Rc′′×k×s′×p′ . In order to keep the space size consis-
tent with Equation (2), the height value h′′ and the width value w′′ remained unchanged.
In order to obtain a feature map with the required number of channels c′, Ghost Conv
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performed a cheap linear operation on each intrinsic feature to generate the required s
ghost features, according to the following function:

nij = ξij
(
n′i
)
, ∀i = 1, 2 . . . , c′′ , j = 1, 2, . . . s (4)

where ni
′ is the ith intrinsic feature map of N′, and ξi,j is a linear operation to generate

the jth ghost feature map ni,j. Finally, we obtained c′′ = c′s. The output feature map was
N = [n11, n12, . . . , nc′′ s].

The intermediate expansion stage of the RGC module doubles the output channel
compared to the input channel, which effectively increases information retention through
higher-dimensional feature maps. However, this operation may consume a significant
amount of memory and require much computation. The introduction of Ghost Conv can
greatly reduce this burden. The final 1 × 1 convolution reduced the channel count back to
the original input dimension of 2c. To ensure network stability during training, we included
the input of the expansion operation and the output of the second 1 × 1 convolution unit as
a residual branch. This approach reduced network complexity while maintaining stability
during training.

SCA module: To better utilize multi-scale features, we propose a novel SCA module,
the structure of which is illustrated in Figure 6. SCA comprises two blocks, spatial scale
fusion and attention weighting, and the feature maps are sequentially processed through
these blocks. Spatial scale fusion was achieved using Spatial Pyramid Pooling (SPP), which
mainly focused on spatial information and consists of four parallel branches: three max-
pooling operations (with kernel sizes of 5 × 5, 9 × 9, and 13 × 13) and the input feature
map itself. SPP effectively addresses the problem of excessive object scale variation by
fusing local and global features. We used an improved version of SPP, called SPPF, based on
the author’s work on YOLOv5. SPPF achieved an efficiency improvement of nearly 277.8%
compared to SPP. The efficiency gain, ηc, was calculated using the following formula:

ηc =
[(

k2
1 + k2

2 + k2
3 + . . . + k2

i − i
)
−
(

k2
1 − 1

)
i
]
100% (5)

where ki is the kernel size of the i-th branch of max pooling in the SPPF module. Figure 7a,b
illustrate the structures of the SPP and SPPF modules, respectively.
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Figure 6. The internal structure of the proposed SCA module consists of a spatial fusion block and
channel and a spatial weighted block, which enabled us to process the image successively. The first
module is SPPF, which can quickly generate pooled pyramids for feature fusion. The second block is
CBAM, which can determine the importance of spatial information for each channel.
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Figure 7. The structures of the SPP and SPPF modules are shown in (a,b), respectively. The SPPF
module produced the same output as the SPP module, but with greater computational efficiency.

The SPPF module was utilized in the spatial scale fusion part of the SCA module,
while the attention mechanism module was used in the other part. The attention weighting
block acted as an adaptive regulator that learned the importance of each channel’s spatial
information, revealing which scale features are more prominent. Whereas multi-scale
information is essential to developing effective feature maps, different scales may contribute
differently to the results, especially when objects are of similar sizes. In such cases, only
one scale may be critical for final prediction. The scale distribution of chip information was
more consistent compared to other foreground contents. Therefore, the attention weighting
block adaptively weighed different scales during network learning, giving greater weight
to more meaningful scale features.

Currently, the most commonly used attention mechanisms are SE, CBAM, and CA
modules. Among them, SE is a channel attention module that consists of two operations:
squeezing and excitation. This module enables the network to focus on feature channels
with greater informative content, while ignoring those with less information. On the other
hand, CBAM is a spatial channel attention mechanism module that combines spatial and
channel attention. The CA module is a novel approach that addresses the loss of location
information caused by global pooling operations. By focusing on the width and height
dimensions separately, the spatial coordinate information of the input feature map can be
efficiently utilized. Figure 8 illustrates the structure of the SE, CBAM, and CA modules.

Overall, this paper proposes an SCA module, which integrates more information
sources and adaptively weights them based on their importance, thereby improving the
contextual representation ability of the feature map. Experimental comparisons show that
the CBAM module achieved better results in SCA, and the role of SCA is discussed in detail
in Section 4.1.

In terms of architecture, we drew inspiration from YOLOv5n and designed an IC chip
defect recognition network called LMNet, which is shown in detail in Table 3. Compared
with YOLOv5n, LMNet has fewer network layers and narrower models, resulting in
reduced parameters and failures. To obtain a smaller bandwidth backbone, we strictly
limited the number of channels in each layer, with almost all layers having fewer than
512 channels. This design strategy makes the network less computationally burdensome
for devices. We embedded the RGC module in the backbone for deeper representation
learning and efficient feature extraction, and the SCA module was positioned at the end of
the backbone to ensure that it processed more meaningful information and could bring the
enhanced features closer to the output layer for more accurate recognition results.



Micromachines 2023, 14, 1119 11 of 18

Micromachines 2023, 14, x FOR PEER REVIEW 11 of 19 
 

 

with greater informative content, while ignoring those with less information. On the 
other hand, CBAM is a spatial channel attention mechanism module that combines spa-
tial and channel attention. The CA module is a novel approach that addresses the loss of 
location information caused by global pooling operations. By focusing on the width and 
height dimensions separately, the spatial coordinate information of the input feature map 
can be efficiently utilized. Figure 8 illustrates the structure of the SE, CBAM, and CA 
modules. 

 
Figure 8. The structures of the three different attention modules. (a) The SE module, where the 
character “GAvgPool” means the global average pooling 2D layer, and the character “FC” means 
the fully connected layer. (b) The CABM module, where the character “Conv” means the ordinary 
convolution 2D layer. (c) The CA module, where the character “BN” means the batch normaliza-
tion layer. 

Overall, this paper proposes an SCA module, which integrates more information 
sources and adaptively weights them based on their importance, thereby improving the 
contextual representation ability of the feature map. Experimental comparisons show 
that the CBAM module achieved better results in SCA, and the role of SCA is discussed 
in detail in Section 4.1. 

In terms of architecture, we drew inspiration from YOLOv5n and designed an IC 
chip defect recognition network called LMNet, which is shown in detail in Table 3. 
Compared with YOLOv5n, LMNet has fewer network layers and narrower models, re-
sulting in reduced parameters and failures. To obtain a smaller bandwidth backbone, we 
strictly limited the number of channels in each layer, with almost all layers having fewer 
than 512 channels. This design strategy makes the network less computationally bur-
densome for devices. We embedded the RGC module in the backbone for deeper repre-
sentation learning and efficient feature extraction, and the SCA module was positioned at 
the end of the backbone to ensure that it processed more meaningful information and 
could bring the enhanced features closer to the output layer for more accurate recogni-
tion results. 

  

Figure 8. The structures of the three different attention modules. (a) The SE module, where the char-
acter “GAvgPool” means the global average pooling 2D layer, and the character “FC” means the fully
connected layer. (b) The CABM module, where the character “Conv” means the ordinary convolution
2D layer. (c) The CA module, where the character “BN” means the batch normalization layer.

Table 3. Detailed architecture of LMNet.

Layer Name Type Filters Size Stride Output Size

S0 Conv 16 3 1 416 × 416 × 16
S1 MaxPool / 3 2 208 × 208 × 16
S2 RGC 32 1 1 208 × 208 × 32
S3 MaxPool / 3 2 104 × 104 × 32
S4 RGC 64 1 1 104 × 104 × 64
S5 MaxPool / 3 2 52 × 52 × 64
S6 RGC 64 1 1 52 × 52 × 64
S7 MaxPool / 3 2 26 × 26 × 64
S8 RGC 128 1 1 26 × 26 × 128
S9 MaxPool / 3 2 13 × 13 × 128
S10 RGC 256 1 1 13 × 13 × 256
S11 MaxPool / 3 1 13 × 13 × 256
S12 RGC 512 1 1 13 × 13 × 512
S13 SCA 1024 5 / 13 × 13 × 1024
S14 Conv 512 1 1 13 × 13 × 512
S15 Conv 256 1 1 13 × 13 × 256
S16 Conv 255 1 1 13 × 13 × 255
S17 Conv 128 1 1 13 × 13 × 128
S18 Upsample / / / 26 × 26 × 128
S19 Concat / / / 26 × 26 × 256
S20 Conv 256 1 1 13 × 13 × 256
S21 Conv 255 1 1 13 × 13 × 255

To train the LMNet model using the specific argmax shown in Algorithm 1, the
resulting weights and features will be organized in .pt files. Subsequently, the LMNet
structure and weights can be deployed on the device through the network connectivity.
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Algorithm 1. Proposed Lightweight Framework (LMNET)

Input: Ix = X-ray image(input)
Parameters: m = model, tr = train, v = valid, te = test, a = argmax (minput-layer, maveragepooling2d, mflatten, mdense, fl = feature-layer,
α = learning-rate, es = early stopping, b = dataloader_batch, e = epoch), Ac= accuracy, image-shape = 640, class = Image-label.
Output: Pci [Pclass0, . . . , Pclass8] Predicted class index
Preprocessing:
if set == training_set:x
resize Ix to 512 × 512, crop and resize(Ix) to 640, flipping, normalize pixel to (0, 1), pixels /= 255.0
else: resize Ix to 640, normalize pixels to (0, 1), pixels /= 255.0
Models training:
for x = 1 to 300

[tr, v] = partition(tr, v)
for y = (tr/b, v/b)

if Acv < 99:
continue;
if Acv is not improving
for next 5 epochs, then
increase α = α x 0.1:

t(m, c, j) = train[m(c), a, tr(x), v(x)]
v(m, c, j) = valid[(m(c), a, x), v(x)]
unfreeze fl

else:
call es(m);

else:
break;

end y;
end x;
te(m(c), a) = [test(m(c), a, te)]
Pci[Pclass] = te(m(c), a

4. Experiments

In this section, we present experimental results and their analysis to illustrate the
superiority of our framework for use in IC chip defect identification. We first introduced
the experimental setup, including implementation details and evaluation metrics. Ablation
studies were then conducted to confirm the contributions of the RGC and SCA modules.
Specifically, the ablation study aimed to demonstrate the necessity of the modules and
visualize the weight values to demonstrate the weight distribution mechanism. Finally, for
the defect identification task, we compared our proposed method with other state-of-the-
art methods.

4.1. Experimental Setup

All models were implemented using the PyTorch deep learning framework. In the
detection experiments of this study, the hyperparameters of the network were fine-tuned
through a large number of experiments based on default parameters, and the optimal
hyperparameters obtained were as follows: 100 epochs were trained, Stochastic Gradient
Descent (SGD) was used as the optimizer, with a batch size of 16. A linear decay learning
rate scheduling strategy was adopted, with an initial learning rate of 0.01 and a final
learning rate of 0.001. The momentum parameter was set to 0.937 and the weight decay
to 0.0005.

As regards the evaluation metrics, we used mean average precision at 50% intersection
over union (mAP50), recall rate (Recall), floating point operations (FLOPs), parameters
(Params), and frames per second (FPS) to comprehensively evaluate the proposed network.
mAP50 and Recall were used to assess the detection performance, while the other metrics
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were used to evaluate computational complexity and speed. These metrics were defined
as follows:

Precision =
TP

(TP + FP)
(6)

recall =
TP

(TP + FN)
(7)

The terms TP, FP, and FN represent important concepts in object detection, and are
defined as follows:

• True Positives (TP)—The number of correctly detected objects;
• False Positives (FP)—The number of false detections, which include both absent and

misplaced predictions;
• False Negatives (FN)—The number of objects that were not successfully detected by

the model.

mAP50 is an evaluation metric used to measure the overall performance of object
detection across all categories. It is calculated as the average AP50 value for all categories,
where AP50 is the area under the precision–recall curve. To compare the computational
complexity of different networks, we used FLOPs to measure time complexity and Params
to measure space complexity. During the inference stage, FPS was used to represent the
speed of inference, which was calculated as the average of 160 test images. The loss
functions for the dataset and validation set during the experiment are shown in Figure 9.
In the data preparation stage, a confusion matrix was used to verify the classification
performance of the model. This matrix compares the actual category with the predicted
category, providing a more intuitive visualization of the model’s predictive performance.
The confusion matrix of the model is shown in Figure 10.
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4.2. Ablation Studies

Using LMNet as the base model, we conducted ablation studies on RGC and SCA
modules, providing the theoretical foundation for this research. Specifically, we performed
ablation studies on residual blocks and Ghost Conv in the RGC module. Table 4 shows
that the RGC module achieved the best trade-off. When the Ghost Conv was replaced
with the normal Conv, the mAP50 dropped to 99.0, which was 0.2 lower than the full
module. However, this design’s GFLOPs and Params were both higher than those of LMNet.
Our LMNet outperformed other combinations in terms of performance, computation,
and storage.

Table 4. Ablation study of RGC module.

Residual Ghost Conv mAP50 Params GFLOPs (G)

98.6 0.96 1.7
X 98.8 0.81 1.5

X 99.0 0.99 1.7
X X 99.2 0.81 1.5

SCA is composed of SPPF and an attention mechanism. As shown in Table 5, the SE
module within the attention mechanism had a greater impact on the GFLOPs and Params
of the model. The number of parameters and computational cost of the CBAM and CA
modules were not significantly different, but the mAP50 of CBAM was 0.1 higher than that
of CA. When the number of model parameters and the computational cost are comparable,
accuracy is given more importance. Therefore, the attention mechanism in our designed
SCA module utilizes CBAM.



Micromachines 2023, 14, 1119 15 of 18

Table 5. Effect comparison of different attention mechanisms in SCA module.

SE CBAM CA mAP50 Params GFLOPs (G)

X 98.5 1.34 1.7
X 99.2 0.81 1.5

X 98.8 0.78 1.5

4.3. Comparisons with the State of the Art

To evaluate the effectiveness of our proposed LMNet for IC chip defect detection,
we compared our method with several state-of-the-art models, including the two-level
networks Faster R-CNN and Dynamic R-CNN, and the one-level networks RetinaNet,
SSD300, VFNet, YOLOv3, and YOLOv5. Additionally, we also conducted experiments
by replacing the default backbone of YOLOv5s with lightweight backbones such as Mo-
bileNetV3, ShuffleNetv2, and GhostNet. The results of the quantitative comparison using
our IC chip dataset are presented in Table 6.

Table 6. The recognition results compared with state-of-the-art methods.

Method mAP50 FPS GFLOPs (G) Params (M) Size (MB)

Faster R-CNN-ResNet50 95.9 16 249.9 28.3 108
Dynamic R-CNN-ResNet50 96.4 15.8 248.5 28.7 106.9

RetinaNet-ResNet50 96.2 19.4 227.8 24.1 93.4
SSD300-VGG16 94.9 45.5 30.7 24.3 92.6

VFNet-ResNet50 95.1 15.5 224.5 26.8 98.3
YOLOv3 98.5 33.3 155.1 59.1 117
YOLOv5s 98.9 64.1 15.9 6.7 13.7

MobileNetv3-YOLOv5s 99.2 51.8 4.7 2.6 5.6
ShuffleNetv2-YOLOv5s- 98.4 66.2 1.1 0.3 0.9

GhostNet-YOLOv5s- 99.0 50.2 8.3 5.4 11.2
YOLOv5n 98.8 84.0 4.3 1.8 3.6

LMNet (ours) 99.2 108.7 1.5 0.8 1.7

To facilitate the observation of the experimental data, we visualized the data in Table 5,
which can be found in Figure 11. Our LMNet method achieved a mAP50 of 99.2, outper-
forming all other methods. Its complexity was much lower than all classical one-level and
two-level network models, with only 0.8 million parameters and 1.5 GFLOPs. Although
ShuffleNetv2-YOLOv5s had the lowest GFLOPs, its detection performance was unsatisfac-
tory, achieving only 98.4 mAP50. At the same time, our LMNet achieved the best results in
terms of detection speed, outperforming all lightweight networks, most first-level networks,
and some second-level networks. Our detection speed was 1.3 times faster than that of the
baseline YOLOv5n, 1.7 times faster than that of YOLOv5s, and 3.3 times faster than that
of YOLOv3. At the same time, the FPS of secondary networks such as Faster-RCNN and
Dynamic RCNN was less than 20, which is far from what is required for actual detection.
Furthermore, their parameters and model sizes are too great for common hardware. The
detection results of LMNet are shown in Figure 12. It can be seen that our LMNet could
process IC chip defect images under various type and lighting conditions.
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ducing hardware costs, and applying this model to embedded platforms such as FPGA 
and ARM. 
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Figure 12. Samples of detection results of IC chip defects. Our LMNet achieved outstanding
prediction on all defect classes. It shows that LMNet is capable of achieving satisfactory prediction by
combing powerful contextual information and local textural features.

5. Conclusions

This paper proposes a lightweight and high-performance framework for detecting
defects in IC chips using a target detection model based on convolutional neural networks.
The proposed LMNet model incorporates a novel SCA module that integrates multi-scale
features and adaptively assigns weights to different scales. The experimental results
demonstrate that the LMNet framework achieves high prediction accuracy with small
parameters and computational complexity. Specifically, LMNet achieved 99.2 mAP50, with
only a 1.7 MB model size and 1.5 GFLOPs, outperforming YOLO v5n by 0.4 points, and it
had an FPS of 108.7, which is 1.7 times and 1.3 times faster than YOLO v5s and YOLO v5n,
respectively. Future work will focus on optimizing the algorithm, reducing hardware costs,
and applying this model to embedded platforms such as FPGA and ARM.
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