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Abstract: With the advancement of intelligent medical robot technology, machine touch utilizing
flexible sensors has emerged as a prominent research area. In this study, a flexible resistive pressure
sensor was designed incorporating a microcrack structure with air pores and a composite conductive
mechanism of silver/carbon. The aim was to achieve enhanced stability and sensitivity with the
inclusion of macro through-holes (1–3 mm) to expand the sensitive range. This technology solution
was specifically applied to the machine touch system of the B-ultrasound robot. Through meticu-
lous experimentation, it was determined that the optimal approach involved uniformly blending
ecoflex and nano carbon powder at a mass ratio of 5:1, and subsequently combining the mixture
with an ethanol solution of silver nanowires (AgNWs) at a mass ratio of 6:1. This combination of
components resulted in the fabrication of a pressure sensor with optimal performance. Under the
pressure testing condition of 5 kPa, a comparison of the resistance change rate was conducted among
samples using the optimal formulation from the three processes. It was evident that the sample of
ecoflex-C-AgNWs/ethanol solution exhibited the highest sensitivity. Its sensitivity was increased by
19.5% compared to the sample (ecoflex-C) and by 11.3% compared to the sample (ecoflex-C-ethanol).
The sample (ecoflex-C-AgNWs/ethanol solution), which only incorporated internal air pore microc-
racks without through-holes, exhibited sensitive response to pressures below 5 N. However, with
the addition of through-holes, the measurement range of its sensitive response increased to 20 N,
representing a 400% increase in the measurement range.

Keywords: flexible electronics; pressure sensor; machine touch; medical robot; force feedback

1. Introduction

The human body heavily relies on tactile perception to comprehend the surrounding
environment, encompassing stimuli such as pressure [1,2], strain [3,4], torsion [5,6], shear
force [7,8], and touch [9,10]. Among these, pressure plays a vital role in tactile perception,
as mechano-receptors on the skin detect stress and provide insights into the well-being
of different body parts [11–15]. With the emergence of wearable devices and the Internet
of Things, flexible pressure sensors have gained significant traction in various fields,
including electronic skin [16,17], human–machine interfaces [18,19], prosthetics [20,21],
soft robots [22,23], and medical equipment [24,25]. Extensive research has been conducted
to explore the potential of pressure sensors in converting external pressure into electrical
signals. These sensors hold promise in detecting pressure changes and converting them
into measurable electrical signals for diverse applications.

Flexible pressure sensors play a crucial role in converting external pressure stimuli
into electrical signals. However, existing sensors encounter limitations in balancing high
sensitivity and a wide measurement range. These sensors can be categorized into three
conduction mechanisms: resistive [26–30], capacitive [31–35], and piezoelectric [36–38].
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When aiming to achieve the lowest detection limit and resolution, striking a balance
between sensitivity and range becomes challenging.

To address this challenge, this paper proposes a novel approach by combining porous
microcracks and macro through-hole structures. This innovative design aims to explore
new methods for achieving both high sensitivity and an extended measurement range. By
incorporating these structures, the flexible pressure sensor can better cater to the tactile
sensing requirements of ultrasound robots (as shown in Figure 1). This enables the utiliza-
tion of a wide range and sensitive flexible pressure sensor to replicate the tactile function of
a human hand in robotic applications. Furthermore, with the future integration of machine
vision to replace the visual judgment of doctors, it can lead to the realization of a true
B-ultrasound AI-robotic medical application.
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Figure 1. Schematic diagram of the medical robotic system. (a) Logical relationship diagram depicting
the interplay between machine touch and machine vision, replacing the functions of a doctor’s hands
for operation and their eyes for observation. (b) System configuration of the experiment, with the
flexible sensor enabling machine touch and the computer program facilitating image recognition for
machine vision. The devices depicted from left to right are the computer, robotic arm with the sensor,
and B-ultrasound equipment. (c) Industrial design diagram of an AI-enabled B-ultrasound robot
product.

The primary focus of this study lies in the application scenario of B-ultrasound intel-
ligent robots. To overcome the limitations, a flexible resistive pressure sensor based on a
polymer composite structure is proposed. This sensor incorporates a microcrack structure
and composite conductive mechanism to enhance sensitivity and reliability. It is crucial to
carefully consider the chemical composition, physical structure, and graphical distribution
at the contact area with the probe of the flexible pressure sensor, ensuring that it does not
interfere with the B-mode ultrasound signal.

In the context of B-ultrasound detection, specific application scenarios, such as the
presence of plaques in blood vessels (as shown in Figure 2), necessitate precise control of
mechanical pressure and motion amplitude. Excessive pressure can result in the detachment
of blood vessel plaques, posing life-threatening risks. Conversely, insufficient amplitude can
lead to unclear imaging and poor detection performance. To achieve optimal performance,
the mechanical arm must operate within a reasonable range, ensuring that the feedback
force remains within safe limits when in contact with the human body. This objective can
be accomplished by utilizing an intelligent force feedback control system programmed
using a computer or a single-chip microcomputer.

The outcomes of this research hold wide-ranging applications in medical robotics,
smart healthcare, remote healthcare, and assisting individuals with disabilities by providing
realistic force feedback to the human brain. Additionally, it can assist workers wearing
heavy protective clothing in obtaining real-world force feedback.
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Figure 2. Illustration depicting the force transmission during the detection of plaques and blood clots
in blood vessels by the B-ultrasound robot. The image also demonstrates spatial strategies for the
arrangement of flexible sensors in different sections. (a) Stress state analysis of blood vessels during
the descent process of the probe. (b) Force testing method design for pressure sensors at different
positions on the front and side of the handle. The yellow portion represents the sample of the flexible
sensor, and the blue portion represents the fixture that secures the sensor to the probe.

2. Materials and Methods
2.1. Materials

Ag nanowire solution (diameter: 45 nm, length: 25 µm, concentration: 1 wt%) was
purchased from Kechuang New Material Co., Ltd. (Luoyang, China). Ecoflex, a type of
polymer, was purchased from SMOOTH ON, INC. (Macungie, PA, USA). Conductive
carbon black (diameter: 30–45 nm) was purchased from XFNANO, INC. (Nanjing, China).
PVA (polyvinyl alcohol) was purchased from Shanghai Shifeng Science and Technology
Co., Ltd. (Shanghai, China). The nano adhesive used in the experiment was purchased
from Shenzhen Nade Adhesive Technology Co., Ltd. (Shenzhen, China). Latex gloves with
a thickness of 0.12 mm were purchased from AMMEX Co., Ltd. (Kent, WA, USA).

2.2. Methods

Plan A: Ecoflex and conductive nano carbon powder were mixed uniformly at different
mass ratios (3:1, 4:1, 5:1, 6:1, 7:1, and 8:1). The mixture was then poured into a stainless
steel mold with dimensions of 10 mm × 10 mm × 2 mm. The mold was heated and cured
at 60 ◦C for 1 h. Copper foil electrodes were sealed on both sides of the mold to create a
pressure sensor. Various performance indicators were subsequently tested.

Plan B: The optimal mass ratio obtained from Plan A was selected for ecoflex and
conductive nano carbon powder. They were mixed uniformly according to this ratio. The
resulting mixture was then blended with AgNWs (ethanol dispersion) at different weight
ratios (4:1, 6:1, 8:1, 10:1, 12.5:1, 25:1, and 50:1) until fully homogeneous. The mixture was
poured into a stainless steel mold with internal dimensions of 10 mm × 10 mm × 2 mm.
The mold was heated and cured at 60 ◦C for 1 h. Copper foil electrodes were sealed on
both sides to fabricate the pressure sensor. Various performance indicators were tested.

The resistance change rates of sample pressure sensors from both Plan A and Plan B
were measured under a 2 N pressure to determine the optimal formulation.

Plan C: Similar to Plan B, except that AgNWs (ethanol dispersion) was replaced with
pure ethanol solution (without AgNWs). All other details remained the same.

Ecoflex is a platinum-catalyzed silicone rubber. It was prepared by mixing A and B
gels in a 1:1 ratio and crosslinking them at a specific temperature to obtain a transparent
elastic material with defined elasticity. By adding a certain amount of conductive material,
resistive pressure sensors could be fabricated. To ensure the performance of the pressure
sensor and facilitate resistance measurement, a “sandwich” packaging structure (shown in
Figure 3) was designed. It consisted of conductive electrodes on the top and bottom layers,
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with the elastic material wrapped around the pressure sensor in the middle layer. This
structure enhanced the accuracy and precision of pressure sensor testing.
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Figure 3. Sensor assembly process and structure, featuring the sandwich packaging structure and the
square crack opening structure.

To increase the measurement range, a square through-hole was machined at the center
of each sensor, enhancing the sensor’s sensitivity. The hole’s center coincided with the
symmetrical center of the elastomeric layer of the sensor. The dimensions of the square
through-hole were 1 mm × 1 mm, 2 mm × 2 mm, and 3 mm × 3 mm.

Pressure response was evaluated under different scenarios, and fatigue resistance
testing was conducted on selected devices. SEM microscopic structure analysis and EDS
spectral analysis were performed on the samples to better understand the relationship
between device structure and performance. The pressure sensor was positioned as indicated
in Figure 2: at the front end of the handle probe and on the side of the handle to measure the
actual pressure load on the probe and the force exerted on the handle side due to friction.
During testing, the sensitivity of the antenna’s front end was assessed in various working
environments while wearing latex gloves of varying thickness to make the machine’s tactile
sensing more akin to human tactile sensing.

3. Results

As shown in Figure 4, resistance change rate tests were conducted on samples with
different ratios, and the following conclusions can be drawn based on the peak values of
the curves. The optimal composition of the pressure sensor in this process was as follows:

• (ecoflex + carbon powder) to AgNWs (ethanol solution) = 6:1 (mass ratio)
• ecoflex to carbon powder = 5:1 (mass ratio).
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The most sensitive sample in terms of resistance change rate was subjected to 10,000 cy-
cles of fatigue testing, as shown in Figure 5. The sample exhibited good performance.
Moreover, it can be observed that after more than 8000 cycles of aging treatment, the
performance of the sample is expected to become more stable in future use.
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After preparation, the pressure sensors were tested, and the following line graph was
obtained. The changes in porous structures were observed in sensors with high and low
doping levels.

As shown in Figure 6a–e, the scanning electron microscope images were obtained by
scanning samples of ecoflex + carbon powder at a magnification of 10,000 times. Panels
a, b, c, d, and e correspond to ecoflex to carbon powder ratios of 3:1, 4:1, 5:1, 6:1, and 7:1,
respectively. From the scanning results, it can be observed that carbon black and ecoflex
tend to aggregate when mixed, forming a pressure sensor.

As shown in Figure 6f–j, the morphology images obtained at 10,000× and 5000×
magnifications are shown for samples with a ratio of (ecoflex + carbon powder): AgNWs
ethanol solution = 6:1. Samples f, g, h, i, and j correspond to ratios of (ecoflex + carbon
powder): AgNWs ethanol solution of 4:1, 6:1, 8:1, 10:1, and 25:1, respectively. In sample
a, slender silver nanowires can be clearly observed, which are uniformly distributed and
responsible for the decrease in resistance and increase in stability of the pressure sensor.

As shown in Figure 6k–o, the yellow, blue, green, and red elements represent elemental
silver, elemental tin, elemental oxygen, and elemental carbon, respectively. The scanning
results of the silver nanowires are consistent with the distribution of the bright thin lines in
the image, indicating that these bright thin lines are indeed silver nanowires.

To investigate the role of ethanol in the ecoflex + carbon powder system, five samples
with different ratios of ecoflex + carbon powder to ethanol (C2H5OH) were prepared. As
shown in Figure 6p–t, panels p, q, r, s, and t represent ratios of ecoflex + carbon powder to
ethanol of 4:1, 5:1, 6:1, 7:1, and 8:1, respectively. The addition of ethanol resulted in varying
degrees of pore structure in the samples.

Under the pressure testing condition of 5 kPa, a comparison of the resistance change
rate was conducted among samples using the optimal formulation from the three processes.
It was evident that the sample of ecoflex-C-AgNWs/ethanol solution exhibited the highest
sensitivity. Its sensitivity increased by 19.5% compared to the sample (ecoflex-C) and by
11.3% compared to the sample (ecoflex-C-ethanol). The sample (ecoflex-C-AgNWs/ethanol
solution), which only incorporated internal air pore microcracks without through-holes, ex-
hibited sensitive responses to pressures below 5 N. However, with the addition of through-
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holes, the measurement range of its sensitive response increased to 20 N, representing a
400% increase in the measurement range.
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Figure 6. SEM and energy-dispersive X-ray spectroscopy (EDS) elemental distribution map of the
samples. (a–e) SEM images, where (a–e) correspond to five different sample formulations with
ecoflex: carbon powder ratios of 3:1, 4:1, 5:1, 6:1, and 7:1 (mass ratio). (f–j) SEM images, where (f–j)
correspond to five different sample formulations with (ecoflex + carbon powder): AgNWs (ethanol
solution) ratios of 4:1, 6:1, 8:1, 10:1, and 25:1 (mass ratio). (k–o) SEM and energy-dispersive X-ray
spectroscopy (EDS) elemental distribution maps of AgNWs in Plan B samples, where the yellow
color indicates the presence of silver element, blue indicates silicon element, green indicates oxygen
element, and red indicates carbon element. (p–t) SEM images, where (p–t) respectively represent five
different formulations of samples with (ecoflex + carbon powder): ethanol ratios of 4:1, 5:1, 6:1, 7:1,
and 8:1 (mass ratio).

4. Discussion

To verify the role of ethanol in the (ecoflex + carbon powder) system, samples with
five ratios of (ecoflex + carbon powder): C2H5OH were prepared. As shown in Figure 6p–t
represent (ecoflex + carbon powder): C2H5OH ratios of 4:1, 5:1, 6:1, 7:1, and 8:1, respectively.
After adding ethanol, the samples showed different degrees of porous structures, indicating
that the addition of ethanol could cause pores to form in the colloid of (ecoflex + carbon
powder), thus improving the sensitivity of the sensor.

Through the analysis of the ratio-dependent changes in resistance of the pressure
sensors under a 2 N load for 1 s, we observed that the pressure sensor exhibited optimal
performance when the ratio of ecoflex to carbon powder was approximately 5:1. This
finding can be attributed to the following reasons.

When the ratio of (ecoflex + carbon powder) is excessively large, the conductivity of
the sensor decreases due to the low content of conductive material. This reduction in con-
ductivity hinders the effective transmission of electrical signals, leading to the suboptimal
performance of the pressure sensor. On the other hand, when the ratio of (ecoflex + carbon
powder) is excessively small, the content of elastic material becomes insufficient, resulting
in limited deformation of the pressure sensor under applied pressure. Consequently, the
sensitivity and performance of the sensor are compromised.

Therefore, the balanced ratio of ecoflex to carbon powder at approximately 5:1 ensures
an optimal combination of conductivity and elasticity, thereby enabling the pressure sensor
to achieve the best performance in terms of sensitivity and reliability.
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Based on our understanding of the crosslinking mechanism of ecoflex, we found that
the crosslinking process involved condensation reactions between silane-functionalized
polymers and crosslinkers, resulting in the formation of an elastic material. In order to
enhance the sensitivity of the sensor, it was necessary to introduce porous microstructures,
which could be achieved through physical or chemical means.

Since crosslinking reactions primarily occur with diols, the addition of an appropriate
amount of ethanol to the elastic system can interrupt certain crosslinking reactions and
promote the formation of porous structures. However, it should be noted that the addition
of ethanol alone would significantly increase the resistance of the sensor. To address this
issue, an ethanol solution containing dispersed silver nanowires was introduced. This
not only facilitated the creation of porous structures but also ensured stable changes in
resistance within the sensor.

By combining the benefits of ethanol-induced porosity and the conductive properties
of silver nanowires, we were able to achieve both enhanced sensitivity and consistent
resistance changes in the sensor. This approach allowed us to strike a balance between
structural modifications and electrical performance, ultimately improving the overall
functionality of the pressure sensor.

The microcrack structure and composite conductive mechanism played a significant
role in the performance of the pressure sensor. The inclusion of silver nanowires served
to enhance conductivity and address issues related to loose and unconsolidated porous
structures through the “anchoring effect”. Comparative analysis reveals that sensors
incorporating silver nanowires exhibit heightened sensitivity and a wider range of resis-
tance variation, thereby improving the overall capabilities and performance of the sensors,
particularly in practical applications.

Based on the observations from the working image in Figure 6, we chose the (ecoflex
+ carbon powder) ratio of 5:1 as the baseline for our pressure sensor. In order to further
investigate the effect of incorporating the ethanol solution of silver nanowires, we explored
different component ratios of the pressure sensor by varying the (ecoflex + carbon powder)
to AgNW ethanol solution ratio. Specifically, we considered ratios of 4:1, 6:1, 8:1, 10:1,
12.5:1, 25:1, and 50:1, all based on the ecoflex:C ratio of 5:1.

While the pressure sensor demonstrated good performance around the (ecoflex +
carbon powder) ratio of 5:1, it exhibited relatively high resistance and small fluctuations
during measurement. To assess the impact of incorporating the ethanol solution of silver
nanowires, we examined various ratios to identify the optimal configuration for the pressure
sensor. This comprehensive investigation allowed us to determine the most suitable (ecoflex
+ carbon powder) to AgNW ethanol solution ratio, considering both the sensitivity and
stability of the sensor.

Based on the analysis of Figure 4, it is evident that the addition of a 1 wt% silver
nanowire ethanol solution had a notable positive impact within a specific range. The
pressure sensor exhibited its best performance when the ratio of (ecoflex + carbon powder)
to AgNWs (ethanol solution) was approximately 6:1. This observation can be attributed to
several factors. Firstly, the inclusion of the silver nanowire ethanol solution significantly
reduced the resistance of the pressure sensor compared to the configuration without silver
nanowires, leading to improved stability of resistance values. Secondly, the presence of
ethanol contributed to the formation of a more pronounced pore structure within the sensor.
Figure 4 depicts the bottom morphology of (ecoflex + carbon powder) to AgNWs (ethanol
solution) at ratios of 4:1 and 50:1, highlighting the variation in pore structures. As the ratio
of AgNWs ethanol solution increased, a greater number of pore structures were formed,
while lower ratios resulted in fewer pore structures. However, excessive pore structures
can compromise the shape integrity of the produced sensor. Therefore, the selection of
an appropriate ratio is crucial to ensure optimal performance. For our fatigue testing, we
chose the pressure sensor with an (ecoflex + carbon powder) ratio of 6:1, which exhibited a
highly stable curve throughout ten thousand fatigue tests, as depicted in Figure 5.
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Observations from the samples with different ratios revealed the clustering of ecoflex
gel around the AgNWs, which contributed to the reduction of resistance and enhancement
of sensor stability. Additionally, the presence of ethanol induced the formation of porous
structures within the ecoflex gel, thereby increasing the sensitivity of the pressure sensor.
Another factor influencing the decrease in resistance and stability is the uniform distribution
of silver nanowires in the colloid.

Upon the addition of ethanol, the samples exhibited varying degrees of pore structure,
indicating that ethanol promoted the formation of pores in the ecoflex + carbon powder
colloid, consequently improving sensor sensitivity.

When lateral pressure was applied, a certain level of pressure was required to maintain
the relative stability of the sensor and probe, as depicted in Figure 7. Consequently,
the resistance under positive pressure, added to the baseline resistance value, generally
exceeded the resistance under lateral pressure.
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Figure 7. Performance testing of composite porous structure sensors fabricated by ethanol chemical
etching and artificial physical pore formation methods. Lateral grip handle force testing with different
physical pore size: (a) 1 mm × 1 mm; (b) 2 mm × 2 mm; and (c) 3 mm × 3 mm. Forward force testing
of the front end of a probe with different physical pore size: (d) 1 mm × 1 mm; (e) 2 mm × 2 mm; and
(f) 3 mm × 3 mm. Encapsulation of pressure sensors through 1–5 layers of latex gloves (thickness
range: 0.12, 0.24, 0.36, 0.48, 0.60 mm) to mimic the impact of gloves on the operator’s tactile sensation.
Performance testing of composite porous structure sensors fabricated by ethanol chemical etching and
artificial physical pore formation methods. The presence of AgNWs in the sample provides mesoscale
conductivity mechanisms and enhances the strength of the porous structure with toughening effects.
Lateral grip handle force testing with different physical pore size: (g) 1 mm × 1 mm; (h) 2 mm ×
2 mm. Forward force testing of the front end of a probe with different physical pore size: (i) 1 mm
× 1 mm; (j) 2 mm × 2 mm. Encapsulation of pressure sensors through 1–5 layers of latex gloves
(thickness range: 0.12 mm, 0.24 mm, 0.36 mm, 0.48 mm, 0.60 mm) to mimic the impact of gloves on
the operator’s tactile sensation.

In terms of sensitivity, the pressure sensor demonstrated its highest sensitivity at low
pressures, specifically within the range of 0–1 N. However, the baseline fixed pressure
resulting from lateral pressure exceeded 1 N, leading to lower sensitivity during the initial
stage of lateral pressure measurement compared to positive pressure. Nonetheless, in the
later stage of applying pressure, the sensitivity of lateral pressure surpassed that of positive
pressure.

Figure 7 illustrates that, compared to sensors without AgNWs, sensors with AgNWs
exhibited higher sensitivity and a wider range of resistance variation. This improvement
effectively expanded the range of the sensor and yielded better performance in practical
applications.
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5. Conclusions

This sample ((ecoflex + carbon powder):AgNWs ethanol solution = 6:1) demonstrated
excellent pressure sensing performance and is suitable for applications such as simulating
the human hand feel of a handheld handle for B-ultrasound medical robots and researching
machine tactile sensing at the probe tip. The introduction of pores enhanced the sensitivity
of the sensor, while the incorporation of square-shaped through-holes increased the mea-
surement range, making the flexible sensor samples highly suitable for the machine touch
system of B-ultrasound robots. The sensitive and precise measurement results, combined
with computer control programs or microcontrollers and image recognition technology,
can effectively control the intelligent diagnostic actions of B-ultrasound medical robots,
ensuring not only convenience but also safety by accurately controlling the force. Based on
the experimental results presented in this paper, these findings can potentially be replicated
in other medical robotic applications.
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