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Abstract: This paper presents a miniature robot designed for monitoring its surroundings and
exploring small and complex environments by skating on the surface of water. The robot is mainly
made of extruded polystyrene insulation (XPS) and Teflon tubes and is propelled by acoustic bubble-
induced microstreaming flows generated by gaseous bubbles trapped in the Teflon tubes. The robot’s
linear motion, velocity, and rotational motion are tested and measured at different frequencies and
voltages. The results show that the propulsion velocity is proportional to the applied voltage but
highly depends on the applied frequency. The maximum velocity occurs between the resonant
frequencies for two bubbles trapped in Teflon tubes of different lengths. The robot’s maneuvering
capability is demonstrated by selective bubble excitation based on the concept of different resonant
frequencies for bubbles of different volumes. The proposed water skating robot can perform linear
propulsion, rotation, and 2D navigation on the water surface, making it suitable for exploring small
and complex water environments.

Keywords: cavitational microstreaming; micropropulsion; environment monitoring

1. Introduction

Recently, interest in research on microrobots has increased with the advanced minia-
turization technology of sensors and actuators [1,2]. Accordingly, the development of
microrobots that can be used in biomedical and other industrial fields is being carried
out [3,4]. These microrobots can be used for not only biomedical microsurgery and targeted
drug delivery [5,6] but also for the exploration of small and complex environments [7,8].

The most important issue in the development of microrobots is micropropulsion [9,10].
The micropropulsion method should be different from general macroscale robots because
of the low Reynolds number, which is a dimensionless number representing the ratio of the
viscous force to the inertial force in each environment [11]. The propulsion method based
on the movement of mechanical parts, such as propellers and motors, is not effective in the
low Reynolds number environment at the macroscale, where the viscous force is dominant
compared to the inertial force [12,13]. Hence, new creative micropropulsion methods at the
microscale have been studied.

One of the micropropulsion methods is based on mimicking the motion of tiny living
insects and animals. Biomimetic propulsion often utilizes mechanical motion, Marangoni
effects, and capillary forces [14]. The propulsion that is induced by mechanical rowing
and the walking motion was inspired by the movement of water striders on the water
surface. Hu et al. investigated the locomotion of small water insects by high-speed images
and flow visualization [15]. Additionally, some research groups developed artificial water
striders floating on the water surface using hydrophobic coated legs and demonstrated
their mechanical-motion-induced propulsion using electric motors [16,17].

On the other hand, the Marangoni propulsion generated by the surfactant-induced
surface tension gradient was inspired by the movement of small aquatic insects, such as
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Microvelia and Velia [18]. Burton et al. investigated the Marangoni propulsion mechanism,
developed a cocktail boat with mimicking the movement of Microvelia and Velia, and
demonstrated the boat propulsion on the water surface [19,20].

Capillary propulsion induced by the modification of the surface material property and
shape was inspired by the movement of leaf beetle larvae. Hu et al. analyzed the locomotion
of meniscus-climbing insects [21]. Additionally, Yu et al. conducted capillary propulsion
using a hydrophobic wall and a bent copper sheet [22]. Later, Chung et al. developed
an electrowetting on dielectric (EWOD)-driven miniature boat capable of propelling and
steering [23,24]. Yuan et al. demonstrated the manipulation of water-floating objects
by controlling the surface wettability, and thus, the capillary interaction with EWOD
actuation [25]. However, the EWOD-driven capillary propulsion requires wiring connection
to supply electric power. Although wireless power transmission was tested, the working
distance between the transmitter and the receiver was limited to a few millimeters [26,27].
As alternatives, a new wireless propulsion approach based on cavitational microstreaming
flows generated from acoustically excited bubbles has been proposed.

Dijkink et al. presented a bubble-powered actuator and experimentally demonstrated
the rotational operation of the proposed acoustic windmill consisting of tubes partially filled
with gas at a speed of a few radians per second [28]. Since then, the bubble-powered actua-
tor has been applied to various miniature robots for their propulsion. In 2011, Won et al.
proposed a miniature water-floating boat propelled by acoustic bubbles and demonstrated
its linear and rotational motions and two-dimensional (2D) maneuvers [29]. They intro-
duced selective bubble excitation based on the concept of different resonant frequencies for
bubbles of different volumes, which enable miniature robots to maneuver in 2D and 3D
space. In 2016, Feng et al. showed 2D underwater propulsion using an acoustic bubble-
powered microswimmer with microtubes filled with bubbles [30]. Recently, Liu et al. also
reported a 3D swimming micro-drone powered by acoustic bubbles using microtubes of
different lengths in 2021 [31]. Additionally, Jeong et al. presented an acoustic bubble-
powered microrobot for targeted drug delivery based on the same principle of selective
bubble excitation [6]. This paper proposes a water skating robot using acoustic bubbles.
Figure 1 is a schematic diagram of the proposed water skating robot with a two-dimensional
(2D) maneuvering capability. The robot is powered by cavitational microstreaming flows
generated from each bubble filled in two Teflon tubes of different lengths and volumes, as
seen in Figure 2. When bubbles are acoustically excited by acoustic waves around their
resonant frequencies, they oscillate and simultaneously generate microstreaming flows
used for propelling the water skating robot, mainly consisting of XPS and Teflon tubes. The
XPS with supporters is used for floating the robot on water. Additionally, two Teflon tubes
submerged with legs are applied to power the robot based on acoustic-bubble-induced
cavitational microstreaming flows. The robot can perform linear propulsion, rotation, and
2D navigation on the water surface.
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Figure 1. Schematic diagram of the 2D manipulation of a water walking robot actuated by acoustically
oscillating bubbles: (a) Linear motion; (b) Rotational motion; and (c) 2D navigation.
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Figure 2. Schematic design and prototype of the proposed water walking robot: (a) Schematic water
walking robot consisting of extruded polystyrene insulation (XPS), supporters, legs, Teflon tubes;
(b) Size comparison of the prototype of the water walking robot with a single match.

2. Working Principle

When a gaseous bubble is excited by an acoustic wave around the resonant frequency, it
oscillates (expands and shrinks) due to its compressibility [32,33]. Additionally, the acoustic
bubble generates a quasi-steady cavitational microstreaming flow around it because of the
oscillating motion of the bubble–water interface [34]. The acoustically oscillating bubble
filled in a miniature tube closed at one end also generates a unidirectional flow and a
propulsion force is simultaneously exerted on the tube [35]. The propulsion force (F)
generated by the acoustically oscillating bubble-induced cavitational microstreaming flow
is given as [28]

F ' 6ρ f 2SA2 (1)
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where ρ is the liquid density, f is the acoustic frequency, S is the area of cross section of
the microtube, and A is the oscillation amplitude of the bubble. The propulsion force is
proportional to the acoustic frequency and the bubble oscillation amplitude.

The cavitational microstreaming flows generated from each bubble trapped in two
Teflon tubes with the same diameter (0.7 mm) and different lengths (1 mm and 3 mm) are
visualized using polymer particles (15 µm), as shown in Figure 3. When acoustic waves
generated from a disk-shaped piezoactuator (13.5 mm dia.) attach themselves on the side
of a water chamber (12.5 (L) × 12.5 (W) × 4 (H) cm), they propagate bubbles in the tubes;
the bubbles are acoustically excited and the bubble–water interfaces oscillate in harmony
with the applied frequencies. Note that acoustic waves at 3.275 kHz and 1.8 kHz are used
for acoustic excitation for each bubble trapped in tubes with 1 mm and 3 mm in length,
respectively. The oscillation of the bubble–water interface induces a unidirectional flow
with a net momentum used for the propulsion of the proposed water skating robot. The
velocity of the flow at 1 mm apart from the inlet is measured in different frequencies using
high-speed images, as shown in Figure 4. The result shows that the maximum velocity
occurs at each bubble’s resonant frequency. The maximum velocity (17 mm/s) of a 3 mm
long tube is about 12% larger than the one of a 1 mm long tube. The measured velocity of
each acoustic-bubble-induced cavitational microstreaming flow is used for controlling the
linear and rotational motion of the water skating robot.
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Figure 3. Cavitational microstreaming flows generated from acoustic bubbles trapped in Teflon tubes
of different lengths: (a) 1 mm long tube; (b) 3 mm long tube.

The experimental setups mainly consist of electrical and optical systems. As a volt-age
source for the operation of a piezoactuator (KPR-3020-450, Daeyoung electric, Co., Ltd.,
Seoul, Republic of Korea), a sinusoidal voltage is generated by a function generator (33210A,
Agilent Technologies, Santa Clara, CA, USA) and amplified by a voltage amplifier (PZD700,
Trek Inc., New York, NY, USA). All experimental images are captured by a charge-coupled
device camera (EO-1312C, Edmund Optics, Barrington, NJ, USA) and a high-speed cam-
era (Phantom Miro eX4, Vision Research, Wayne, NJ, USA) integrated with a zoom lens
(VZMTM 450i eo, Edmund Optics, Barrington, NJ, USA) and saved on a personal com-
puter. Particle image velocimetry (PIV) is used for measuring the instantaneous velocity
of the tracer polymer particles seeded in the surrounding medium to obtain the flow ve-
locity, along with commercial software (Insight 4GTM, ver.11.0.1.0, TSI Inc., Shoreview,
MN, USA).
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Figure 4. Measurement of the velocity of microstreaming flows generated from acoustically oscillating
bubbles filled in Teflon tubes (1 mm and 3 mm lengths) in different frequencies.

3. Experiment Results and Discussions

The propulsion of the proposed acoustic-bubble-powered water skating robot on the
water surface is investigated, as shown in Figure 5. When a piezoactuator (13.5 mm dia.)
acoustically excites gaseous bubbles trapped inside two submerged Teflon tubes with the same
diameter (0.7 mm) and different lengths (1 mm and 3 mm) at 2.235 kHz, both bubbles simulta-
neously respond to the applied wave and generate acoustic-bubble-induced microstreaming
flows. As a result, the robot propelled in the opposite direction from the microstreaming flows
linearly moves to the right by about 20 mm, as shown in Figure 5. However, the linear motion
of the robot stops immediately when the piezoactuator is turned off. It confirms that the robot
is powered by the acoustic-bubble-induced microstreaming flow.
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Figure 5. Sequential snapshots of the linear motion of a water walking robot: (a) When a piezoactuator
is turned on (2.235 kHz), both bubbles trapped in tubes with 1 mm and 3 mm in length generate
microstreaming flows, resulting in the robot being linearly propelled in the opposite direction from
the flows; (b) When the piezoactuator is turned off, the linear motion of the robot stops. Note that the
acc wave is applied for approximately 7 s for the motion. Video S1 in the Supplementary Material
shows the linear motion of the robot.

The linear motion velocity of the water skating robot is measured for different fre-
quencies and voltages, as shown in Figure 6. For the frequency, the maximum velocity
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occurs at 2.235 kHz; that is, between the resonant frequencies for two bubbles trapped in
Teflon tubes of different lengths. For the voltage, the motion velocity is proportional to
the applied voltage at a fixed frequency (2.235 kHz) with a Pearson correlation coefficient
(Benesty et al., 2009) of 0.91 [36].
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Figure 6. Measurement of the linear motion velocity of a water walking robot actuated by acoustic-
bubble-induced microstreaming flows: (a) Motion velocities in different frequencies at 100 V;
(b) Motion velocities in different voltages at 2.235 kHz.

The rotational motion of the water skating robot is realized by selective bubble excita-
tion based on the concept of different resonant frequencies for bubbles of different volumes.
When an acoustic wave (3.275 kHz) generated by the piezoactuator propagates to the
bubbles trapped in Teflon tubes of different lengths (1 mm and 3 mm), the bubble trapped
in the 1 mm long tube actively respond to the wave and generate the microstreaming flow.
On the other hand, the bubble trapped in the 3 mm long tube does not respond to the wave
and stays calm because the frequency of the acoustic wave is far away from the resonant
frequency of the bubble. Hence, the microstreaming flow from the 3 mm long tube is much
stronger than the flow from the 1 mm long tube. As a result, the water skating robot can be
rotated in a clockwise direction, as shown in Figure 7.
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Figure 7. Sequential snapshots of rotational motion of a water walking robot: (a) When the piezo
actuator is turned on (3.275 kHz), a bubble trapped in a 1 mm tube generates a microstreaming flow,
resulting in the robot being rotated in a clockwise direction; (b) When the piezo actuator is turned off,
the robot stops rotating. Video S2 in the Supplementary Material shows the rotation of the robot.

As proof of concept, the maneuvering capability of the proposed water skating
robot is demonstrated. The robot is initially located in the lower left corner, as shown
in Figure 8a. When the piezoactuator acoustically excites the bubbles trapped in Teflon
tubes at 2.235 kHz, the microstreaming flows generated from both bubbles linearly propel
the robot in an upward direction, as shown in Figure 8b. When the applied frequency
of the wave is changed from 2.235 kHz to 3.275 kHz, the microstreaming flow from the
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bubble trapped in the 1 mm long tube is still strong enough to propel the robot. However,
the microstreaming flow from the bubble trapped in the 3 mm long tube becomes weak.
Hence, the robot rotates in a clockwise direction, as shown in Figure 8c. It shows the high
2D maneuvering capability of the proposed water skating robot.
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4. Conclusions

This paper presents a water skating robot powered by acoustic-bubble-induced mi-
crostreaming flows. First, microstreaming flows generated from acoustically excited bub-
bles trapped in Teflon tubes with the same diameter (0.7 mm) and different lengths (1 mm
and 3 mm) were visualized using polymer particles (15 µm) and measured in different
frequencies. The maximum velocity occurs at each bubble’s resonant frequency, and the
maximum velocity (20 mm/s) of a 3 mm long tube is about 33% larger than the one of a
1 mm long tube. Second, the propulsion of the robot powered by acoustic-bubble-induced
microstreaming flows is conducted, and the propulsion velocities are measured in different
frequencies and voltages. For the frequency, the maximum velocity occurs at 2.235 kHz,
that is between the resonant frequencies of two bubbles trapped in Teflon tubes of different
lengths. For the voltage, the motion velocity is proportional to the applied voltage at a
fixed frequency (2.235 kHz). Third, the rotational motion of the water skating robot is also
realized by selective bubble excitation. Lastly, the maneuvering capability of the proposed
water skating robot is demonstrated, along with performing linear propulsion, rotation,
and 2D navigation on the water surface. The proposed water skating miniature robot
may be used for applications, such as cell manipulation, drug delivery, microsurgery, and
environment monitoring systems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi14050999/s1, Video S1: Linear propulsion; Video S2: Rotation.
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