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Abstract: g-C3N4 and g-C3N4/TCNQ composites with different doping levels were prepared using
the copolymerization thermal method with melamine as a precursor. XRD, FT-IR, SEM, TEM,
DRS, PL, and I-T characterized them. The composites were successfully prepared in this study.
The photocatalytic degradation of pefloxacin (PEF), enrofloxacin (ciprofloxacin), and ciprofloxacin
(ciprofloxacin) under visible light (λ > 550 nm) showed that the composite material had the best
degradation effect on PEF. When TCNQ doping is 20 mg and catalyst dosage is 50 mg, the catalytic
effect is the best, and the degradation rate reaches 91.6%, k = 0.0111 min−1, which is four times that
of g-C3N4. Repeated experiments found that the cyclic stability of the g-C3N4/TCNQ composite was
good. The XRD images were almost unchanged after five reactions. The radical capture experiments
revealed that ·O2− was the main active species in the g-C3N4/TCNQ catalytic system, and h+ also
played a role in PEF degradation. And the possible mechanism for PEF degradation was speculated.

Keywords: TCNQ; graphite phase carbon nitride; pefloxacin; photocatalysis

1. Introduction

Antibiotics are a class of secondary metabolites produced by microorganisms or higher
animals and plants in life with anti-pathogen or other activities [1,2]. Antibiotics enter
the ecological environment because of their high-water solubility, lack of degradability,
and other characteristics; they accumulate in the environment, and seriously destroy the
balance of the ecological system [3,4]. Pharmaceutical wastewater in China has a large
output and a wide distribution range every year, among which antibiotic wastewater
accounts for the central part. Common antibiotics include quinolones, tetracycline, etc. [5].
Quinolone antibiotics are widely used, and their migration and transformation in the
environment have received significant attention. According to the differences in antibacte-
rial properties, the third-generation drugs represented by Pefloxacin (PEF), Norfloxacin
(NOF), ciprofloxacin (CIP), and Levofloxacin (LEVX) are the most commonly used [6,7].
Quinolones (4-Quinolones), also known as pyridyl or pyridyl acids, are synthetic antibacte-
rial drugs containing the basic structure of 4-quinolone. As broad-spectrum antibacterial
drugs, quinolone antibiotics are used to treat infectious diseases in humans and animals
due to their strong sterilization ability, good absorption by the body, and common adverse
reactions. In recent years, the abuse of antibiotics has been severe [8–10]. Such drugs cannot
be wholly metabolized after ingestion by organisms, and widely exist in pharmaceutical
industry wastewater, medical wastewater, animal husbandry wastewater [11,12], and even
surface water.

The semiconductor material g-C3N4 has excellent properties, such as high chemical
and thermal stability, a flexible electronic structure, and a moderate band gap (2.7 eV).
Due to its good biocompatibility and other characteristics, g-C3N4 has attracted significant
attention in the industry and is widely used in photocatalysis [13,14], electrochemical sens-
ing [15], bioimaging [16], drug delivery [17], and environmental monitoring, etc. [18–20].
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Briefly speaking, photocatalytic technology refers to converting light energy into chemical
energy by semiconductor materials under ultraviolet and visible light radiation, and the
quick degradation or mineralization of pollutants. Organic pollutants harm the natural
environment and can rapidly decompose into tiny, harmless molecular substances. The photo-
catalytic efficiency of pure g-C3N4 is often limited due to its high exciton binding energy, insuf-
ficient solar absorption, low surface area, and the tendency of photogenerated electron/hole
pairs to rapidly complex [21,22]. Therefore, the modification of g-C3N4 is significant.

Wu et al. [23] showed that carbon dot-modified hollow porous g-C3N4 nanospheres
have excellent photocatalytic degradation of naproxen under natural sunlight irradiation
due to the excellent upconversion properties of carbon dots that can absorb and convert
low-energy photons. Xiao et al. [24] developed a simple and cost-effective strategy to
anchor copper single atoms to tubular g-C3N4 by inserting sodium chlorophyll copper into
supramolecular precursors and subjecting them to heat treatment. The Cu atoms can be
coordinated with three in-plane N atoms or four N atoms residing between two adjacent
g-C3N4 layers to establish Cu-Nx charge transport channels, thus significantly facilitating
the transfer of photogenerated carriers between the in-plane and interlayer. Ding et al. [25]
showed that the rate of photocatalytic degradation of 2-chlorodibenzo-p-dioxin by g-C3N4
modified with palladium nanoparticles was 3.7 times higher than that of g-C3N4. This
is because the Schottky barrier appears between Pd nanoparticles and g-C3N4, which
expands the light absorption of g-C3N4 and hinders the complexation of photogenerated
electron-hole pairs.

Research has shown that 7,7,8,8-tetracyano-p-phenyldiquinone methane (TCNQ) is
an excellent organic electron acceptor, and it can form relatively stable charge transfer
complexes with many transition metals, alkali metals, and other materials with electron
donors [26]. These metal–organic complexes have good electrical, magnetic, and optical
properties [27,28]. There has been much research on the compounds involved in the
formation of TCNQ. One is the synthesis and characteristics of “organometallic” charge
transfer salts formed by TCNQ and other organic compounds. Another is the synthesis
and properties of organometallic compounds formed by TCNQ and metal ions [29,30].

Xie’s group [31] successfully synthesized AgI @ TCNQ composites for the photocat-
alytic degradation of methylene blue (MB) and found that the degradation rate of the
composites was 1.8 times higher than that of AgI.

This paper synthesized a g-C3N4/TCNQ composite, studied its photocatalytic perfor-
mance, and applied it to the degradation of quinolone antibiotic PEF. This paper discusses
the catalytic effect of different doping amounts and catalyst amounts and expounds on
the active species, potential degradation mechanism, and cycle stability of g-C3N4/TCNQ
composite samples. It provides an advanced and green method for degrading antibiotics
in wastewater, which is of great significance for improving the environment polluted by
antibiotic wastewater.

2. Materials and Methods
2.1. Reagents and Instruments

The 7,7,8,8-Tetracyano-p-benzoquinone methane (TCNQ) was purchased from
Aladdin Co., LTD. (Beijing, China), the melamine was purchased from Aladdin Industries
(Beijing, China), the Pefloxacin (PEF) was purchased from Shanghai Jining Industrial Co.,
LTD. (Shanghai, China) the anhydrous ethanol was purchased from Tianjin Kaitong Chemi-
cal Reagent Co., LTD. (Tianjin, China), and the acetone was purchased from Tianjin Kaitong
Chemical Reagent Co., LTD. (Tianjin, China).

Muffle Furnace (KSY-6D-16), Shenyang Energy-saving Electric Furnace Factory;
Ultraviolet Spectrophotometer (UV-2550), Shimadzu Company, Guangzhou, China; X-ray
diffractometer (3DMAX-IIIC), Nippon Shinosu Co., LTD., Kyoto, Japan; Fourier Transform
Infrared Spectrometer (NEXUS-670), Thermo Fisher Scientific, New York, NY, USA.



Micromachines 2023, 14, 941 3 of 14

2.2. Synthesis of g-C3N4

Synthesis of g-C3N4: The preparation of g-C3N4 was carried out by a thermal con-
densation method using melamine as a precursor. After being thoroughly ground down,
4 g melamine was put into the crucible, with a cover loosely on it. Then it was placed
in a Muffle furnace. Under atmospheric conditions, the heating rate was controlled at
20 ◦C/min, and the temperature was heated to 550 ◦C for 4 h. When the temperature
cooled naturally to room temperature, it was removed from the Muffle furnace to obtain
the light-yellow solid g-C3N4, which was ground into a powder for later use.

2.3. Preparation of g-C3N4 Copolymerized by TCNQ

Preparation of TCNQ doped g-C3N4: 4 g melamine and a certain amount of TCNQ
were mixed up and evenly ground down, and then collected in the crucible, with a cover
loosely on it. Then it was placed in a Muffle furnace. Under atmospheric conditions, the
heating rate was controlled at 20 ◦C/min. It heated the temperature to 550 ◦C for four h.
After cooling to room temperature, the obtained g-C3N4/TCNQ-X samples were taken
out of the Muffle furnace and ground into a powder for later use, where x represented the
added amount of TCNQ (x = 10 mg, 20 mg, 30 mg).

2.4. Photocatalytic Degradation of Pefloxacin in g-C3N4/TCNQ Composites

A 50 mg g-C3N4/TCNQ complex with different doping ratios was accurately weighed
and dispersed in a 50 mL 10 mg/L PEF solution. The samples were dispersed under
ultrasonic waves for 30 min to achieve the dispersion uniform and were placed in a dark en-
vironment for 30 min and magnetic stirring was used to achieve an adsorption–desorption
equilibrium. Then, the xenon lamp (300 W) was set up to simulate the photocatalytic
degradation experiment. Every 30 min, about 5 mL of the reaction liquid was taken for
centrifuging twice. The absorbance of the supernatant was measured at 276 nm using an
ultraviolet-visible spectrophotometer. The water circulation temperature had to be kept at
about 20 ◦C to avoid the influence of temperature on the experiment.

3. Results and Discussion
3.1. XRD Analysis

An X-ray diffractometer can be used to determine the crystal structure diagram.
Figure 1 shows the XRD patterns of the g-C3N4 and g-C3N4/TCNQ samples. It can be seen
from the figure that distinct diffraction peaks appear at 13.1◦ and 27.4◦, where the peak at
27.4◦ is the (002) peak of g-C3N4, reflecting the interlayer stacking structure of the aromatic
triazine ring with an interlayer distance of d = 0.326 nm; the peak at 13.1◦ corresponds to
the (100) peak of g-C3N4 s (100) peak, reflecting the in-plane structure of the triazine unit
with an in-plane distance of d = 0.676 nm. The characteristic peak of the g-C3N4 material
standard card (JCPDS-87-1526) is consistent [32]. The characteristic peaks of g-C3N4 did not
shift significantly with the doping of TCNQ, which means that the g-C3N4/TCNQ samples
can maintain the graphene-like in-plane and interlayer characteristics of g-C3N4, indicating
that the graphene-like structure of g-C3N4 was prepared by simple thermal copolymerization.



Micromachines 2023, 14, 941 4 of 14

Micromachines 2023, 14, x FOR PEER REVIEW 4 of 15 
 

 

 

Figure 1. XRD patterns of g-C3N4 and g-C3N4/TCNQ. 

3.2. FT-IR Analysis 

Infrared spectroscopy is used to analyze the functional groups of the sample and 

further possible chemical structures. Figure 2 shows the FT-IR images of g-C3N4 and 

g-C3N4/TCNQ samples. It can be seen from the figure that the characteristic spectra of all 

samples are similar. The absorption band located in the 1200–1700 cm−1 region is the 

characteristic resonance peak of the aromatic C-N heterocyclic repeating unit. In this 

range, peaks at 1240, 1318, and 1573 cm−1 correspond to C-NH-C, C-N and C=N keys in 

g-C3N4, respectively [33,34]. The absorption peak at 810 cm−1 corresponds to the structure 

of the 3-s-triazine ring (C3N3) [35]. In addition, the peak in the range of 3000–3500 cm−1 is 

an N-H bond [36]. The FT-IR results showed that TCNQ copolymerization did not 

change the chemical structure of g-C3N4. Because the doping amount is too low, no other 

response can be detected in g-C3N4 after TCNQ doping. 

 

Figure 2. FT−IR images of g-C3N4 and gC3N4/TCNQ samples. 

Figure 1. XRD patterns of g-C3N4 and g-C3N4/TCNQ.

3.2. FT-IR Analysis

Infrared spectroscopy is used to analyze the functional groups of the sample and
further possible chemical structures. Figure 2 shows the FT-IR images of g-C3N4 and
g-C3N4/TCNQ samples. It can be seen from the figure that the characteristic spectra of
all samples are similar. The absorption band located in the 1200–1700 cm−1 region is the
characteristic resonance peak of the aromatic C-N heterocyclic repeating unit. In this range,
peaks at 1240, 1318, and 1573 cm−1 correspond to C-NH-C, C-N and C=N keys in g-C3N4,
respectively [33,34]. The absorption peak at 810 cm−1 corresponds to the structure of the
3-s-triazine ring (C3N3) [35]. In addition, the peak in the range of 3000–3500 cm−1 is an
N-H bond [36]. The FT-IR results showed that TCNQ copolymerization did not change the
chemical structure of g-C3N4. Because the doping amount is too low, no other response can
be detected in g-C3N4 after TCNQ doping.
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3.3. SEM Analysis

A scanning electron microscope (SEM) was used to observe the surface morphology
of the samples. Figure 3 shows the SEM of the g-C3N4 and g-C3N4/TCNQ-20 samples.
The figure shows that g-C3N4 has a large size sheet structure, and the size and thickness of
g-C3N4/TCNQ flake structures decreased, indicating that the copolymerization of TCNQ
can significantly change the surface morphology of g-C3N4.
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3.4. TEM Analysis

Transmission electron microscopy (TEM) is used to observe the samples’ further
morphology and structural characteristics. Figure 4 shows the TEM images of g-C3N4 and
g-C3N4/TCNQ-20, from which it can be observed that the samples are all two-dimensional
nanomaterials. The original g-C3N4 two-dimensional sheet nanosheet has a large size,
smooth surface, and integrity. With the addition of TCNQ doping, the g-C3N4 nanosheet
size reduces and more pore structures emerge on the surface, indicating that the process of
TCNQ copolymerization can lead to the fragmentation of nanosheets and thus produce
pores on the surface of g-C3N4. This result is consistent with the results of the XRD analysis.
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3.5. DRS Analysis

UV-vis diffuse reflectance spectroscopy (DRS) was used to study the light absorption
of prepared samples. Figure 5 shows the DRS diagram of the g-C3N4 and g-C3N4/TCNQ
samples. It can be seen from the figure that the absorption threshold of g-C3N4 samples
occurs at 462 nm, and the corresponding bandgap width is 2.68 eV, which is consistent with
the reported bandgap width of 2.7 eV [37]. The absorption thresholds of g-C3N4/TCNQ-10,
g-C3N4/TCNQ-20, and g-C3N4/TCNQ-30 are 478 nm, 497 nm, and 491 nm, respectively,
and the corresponding bandgap widths are 2.59 eV, 2.49 eV, and 2.52 eV, respectively. The
corresponding band gap width also decreases. The absorption threshold of the sample is
red-shifted, which may be caused by the nitrogen defect. The absence of an amino group
will generate excess electrons in g-C3N4, making the carbon initially connected to g-C3N4
become C3+ and enter the conduction band, thus reducing the band gap width [38]. This
indicates that TCNQ copolymerization can effectively narrow the band gap, increase the
absorption of the visible light region, and increase the g-C3N4/TCNQ samples’ photoexci-
tation effectiveness and their photocatalytic activity, to a certain extent.
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3.6. PL Analysis

The recombination of photogenerated electron–hole pairs generates fluorescence (PL)
spectra, so measuring the intensity of PL spectra can help us better understand the photo-
generated carriers’ transmission and the recombination process in semiconductors. Figure 6
shows the photoluminescence spectra of g-C3N4 and g-C3N4/TCNQ samples. It can be
seen from the figure that in the visible light wave region, all samples can generate fluores-
cent signals, indicating that electron–hole pairs can be generated when the material absorbs
photons. This electron–hole pair is an essential step in inducing photoluminescence. With
the increase of TCNQ doping, the intensity of the luminescence signal decreases gradually,
and a photogenerated charge carrier recombination is prevented, which indicates that
TCNQ doping can reduce the recombination rate of a photogenerated electron–hole and
improve the separation efficiency. In general, the intensity of the fluorescence of the sample
reflects the probability of a recombination of the generated electron–hole pair during the
occurrence of a photocatalytic reaction. The higher the separation efficiency of the photogener-
ated electron–hole pair, the lower the recombination rate of the corresponding photogenerated
charge carrier, the more conducive it is to the reaction of the electron–hole with the organic
compound, and the higher the activity of the photocatalyst may be [39,40]. Moreover, when
the doping amount of TCNQ increases, the PL peak position also shifts, consistent with the
narrowness of the energy gap and the absorption redshift in the DRS spectrum.
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3.7. Photocurrent Test

The photocatalyst’s instantaneous photocurrent was measured using a standard three-
electrode system with a prepared catalytic film as the working electrode, a platinum plate
as the reactive electrode, mercuric chloride as the reference electrode, and 0.1 M sodium
sulfate as the electrolyte. The photoelectric properties of the prepared photocatalytic
materials were obtained by measuring the photocurrent under visible light. The transient
photocurrent responses (I-T) g-C3N4 and g-C3N4/TCNQ prepared composite samples were
measured. Figure 7 shows the I-T diagram of the two samples, from which it is apparent
that when the light source is turned on, the current of both samples reaches the peak. When
the light source is turned off, the photogenerated current decreases rapidly, indicating
that the photogenerated electron holes in the material cause the current generation. The
photogenerated current intensity of g-C3N4/TCNQ is much stronger than that of g-C3N4,
indicating that TCNQ copolymer doping is beneficial to separate photogenerated electrons
and holes, and can generate more charge carriers, which is conducive to the improvement
of photocatalytic activity [41].
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3.8. UV Absorption Spectroscopy

UV absorption spectra of PEF degradation by g-C3N4/TCNQ composites showed that
(Figure 8) the positions of the absorption peaks of the initial sample and the full-wavelength
scan of the sample in the dark reaction stage remained the same. Only the intensity was
slightly reduced, indicating that the adsorption process does not change the original state of
the substance but only absorbs the pollutant molecules to the surface of the photocatalyst.
After the adsorption equilibrium, visible light was added. The position of the original
strong absorption peak changed with the increase in time. The peak intensity gradually
decreased, and the peak intensity still decreased in the case of almost no adsorption. This
indicates that the photocatalytic process destroyed the structure of antibiotics and generated
other substances. The absorption of PEF at 272 nm decreased with the increase in light
time, and it can also be seen that the maximum wavelength of absorption increased with
the increase in light time The absorption of PEF at 272 nm decreased with increasing light
time, and it was also observed that the maximum wavelength of absorption decreased with
increasing light time and showed a significant blue shift.
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3.9. Influence of Different Drugs on Catalytic Effect

Figure 9a shows that: the g-C3N4/TCNQ-20 complex was taken and dispersed in PEF,
ENR, and CIP drug solutions, and the samples were dispersed under ultrasonic waves for
30 min, and then dispersed uniformly in a dark environment with magnetic stirring for
30 min, called the dark reaction, and the dark reaction was finished and the light reaction
was set to 0 points at the beginning.
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Figure 9. (a) Catalytic degradation of the different drug pairs by the g−C3N4/TCNQ composite
(b) The kinetic curves of the first-order reaction for the different photocatalysts.

After 180 min of photocatalytic reaction, DPEF = 91.6%, DENR = 62.7% and DCIP = 67.3%.
The experimental results showed that compared with ENR and CIP, the sample has the
highest degradation rate of PEF and the best catalytic activity. This paper discusses the
photocatalytic degradation kinetics of PEF, ENR, and CIP and adopts the first-order kinetic
method to fit them [42]. The expression is: ln(C0/Ct) = kt, where C0 and Ct are the
concentrations of PEF, ENR, and CIP at time 0 and t, and k is the first-order velocity
constant. Figure 9b shows an excellent linear relationship between ln(C0/Ct) and the
photocatalytic reaction time t for each drug.

3.10. Influence of Different Copolymer Doping Amounts on the Catalytic Effect of PEF

As can be seen from Figure 10, the dark reaction was performed for 30 min first, and
g-C3N4 had a deficient photocatalytic activity with a DPEF = 36.8% as the time increased.
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While g-C3N4 can effectively absorb visible light, the e−-h+ pair’s recombination rate is very
high, inhibiting its photocatalytic activity. The DPEF of g-C3N4/TCNQ-10 is 84.8%, the DPEF
of g-C3N4/TCNQ-20 is 91.6%, and the DPEF of g-C3N4/TCNQ-30 is 73.4% after doping
different qualities of TCNQ. The results showed that adding TCNQ could effectively inhibit
the recombination of h+ and e−, enhancing the photocatalytic activity of g-C3N4/TCNQ.
In the g-C3N4/TCNQ-20 sample, the degradation rate of PEF can reach 91.6%, and the
catalytic activity is the best.
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3.11. Influence of Catalyst Dosage on Catalytic Effect of PEF

Figure 11 shows the photocatalytic effect diagram of samples with different masses of
g-C3N4/TCNQ-20 at a PEF of 10 mg/L. 10 mg DPEF = 44.16%, 20 mg DPEF = 64.31%, 30 mg
DPEF = 80.69%, 40 mg DPEF = 85.73%, 50 mg DPEF = 90.07%, 60 mg DPEF = 91.32%. As can
be seen from the figure, the best addition was 60 mg and the worst addition was 10 mg
as the amount of g-C3N4/TCNQ-20 samples added decreased. This change is because the
more significant the amount of g-C3N4/TCNQ-20 that is used under the same illumination,
the more photogenerated electron holes are generated. That is, more active substances
are generated. Therefore, with the increase in the dosage, its degradation effect will also
be enhanced. However, when the amount of catalyst is large, the increased value of the
catalytic reaction speed is low. When the amount of catalyst is increased from 50 mg to
60 mg, the catalytic reaction speed is not significantly improved. Because the amount of
g-C3N4/TCNQ-20 is too large, it will obviously scatter and reflect visible light, reduce the
absorption of visible light, and then reduce the utilization rate of visible light, resulting in a
decrease in the ability of photocatalytic degradation. Therefore, 50 mg of g-C3N4/TCNQ-20
is the optimal dosage.
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3.12. Kinetic Evaluation of the Photocatalytic Process of Catalyst PEF Degradation

Figure 12 shows the photocatalytic degradation kinetics of PEF, which was fitted using
the first-order kinetic method. The composite sample was exposed to a dark reaction in PEF
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for 30 min to reach the adsorption–desorption equilibrium. The end time of the reaction in
the dark and the start time of the reaction in the light was set to zero, and the kinetics of
the photocatalytic reaction were studied. The conclusion is that the relationship between
ln(C0/Ct) and the photocatalytic reaction time t is linear for each sample.
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Figure 12. First-order reaction constants of g−C3N4/TCNQ−mediated degradation of PEF.

As shown in Table 1, the k value of g-C3N4/TCNQ-20 is greater, k = 0.0111 min−1, and
has the highest degree of PEF degradation, which is about four times that of g-C3N4. The
R2 of each g-C3N4/TCNQ composite sample is greater than 0.9, thus concluding that each
sample satisfies the match between the DPEF and the first-order reaction kinetic equation.

Table 1. Linear fitting data of photocatalytic degradation kinetics of PEF in g-C3N4/TCNQ
composite samples.

Sample Name Regression Equation k R2

g-C3N4 y = 0.0021x + 0.0885 0.0021 0.9888
g-C3N4/TCNQ-10 y = 0.0083x + 0.1862 0.0083 0.9523
g-C3N4/TCNQ-20 y = 0.0111x + 0.2471 0.0111 0.9800
g-C3N4/TCNQ-30 y = 0.0055x + 0.2143 0.0055 0.9578

3.13. Analysis of Experimental Results for Reuse of PEF Degradation

Figure 13 shows the catalyst stable cycle diagram, where the used g-C3N4/TCNQ-20
photocatalyst was collected by centrifugation and washed three times with water and
alcohol. After drying in an oven at 60 ◦C, an equal amount of dry powder was used as
a photocatalyst for the next cycle run. After repeating the experiment four times, the
first degradation effect was the best, and then the degradation rate each time decreased.
However, the change was insignificant, and the catalyst still had a high degradation rate of
about 80%. The results show that the catalyst has good stability, renewable performance,
and can be reused. Furthermore, the XRD spectra of the reused catalysts (Figure 14) showed
no significant changes in their crystal properties, which indicated the comparative stability
of the prepared catalysts. The results indicate that g-C3N4/TCNQ is an efficient and stable
visible-light-driven photocatalyst for the degradation of quinolones.
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3.14. Analysis of Free Radical Capture Experimental Results of PEF Degradation by Catalyst

Free radical trapping experiments can analyze the main active components in photo-
catalysis, and the possible mechanism is discussed. In this study, three different trapping
agents, 1,4-benzoquinone (BQ), tert-butyl alcohol (TBA), ethylenediamine tetraacetate
sodium (EDTA-2Na), were used to capture superoxide radical (·O2−), hydroxyl radical
(·OH), and hole (h+), respectively. The experimental results are shown in Figure 15. It can
be seen from the figure that when no capture agent is added, the degradation rate of PEF by
g-C3N4/TCNQ-20 can still reach 90.8%. When the capture agents BQ, TBA, and EDTA are
added, the degradation rate drops to 26.8%, 85.2%, and 67.2%, respectively. When BQ was
added to the system to remove superoxide radicals, the photocatalytic degradation rate was
significantly inhibited, indicating that superoxide radicals were the main active substances.
At the same time, adding EDTA can also reduce the speed of the photocatalytic reaction,
indicating that h+ also plays a vital role in the photocatalytic reaction. After the addition of
TBA, the rate of its catalytic degradation did not decrease significantly compared with that
without the addition of the capture agent, which indicated that the elimination of ·OH did
not significantly influence the photocatalytic reaction. Therefore, ·O2− and h+ are the main
active species in the g-C3N4/TCNQ catalytic system. Among them, ·O2− is more critical
for PEF degradation.
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3.15. Photocatalytic Mechanism Analysis

It can be seen from the above results that the photocatalytic activity of the g-C3N4/TCNQ
composite sample is higher than that of the g-C3N4. On this basis, it is hypothesized
how the g-C3N4/TCNQ composite sample photo-catalytically degrades PEF. Since the
g-C3N4/TCNQ sample with a lower gap width than g-C3N4 is more likely to accept lower
photon energy intensity, the electrons on VB (e−) jump into CB through the gap and form a
photogenerated carrier hole (e−-h+). The photogenerated electrons on CB are transferred
to VB on the material’s surface, e− reacts with O2 in solution to generate·O2−, and·O2−

reacts with PEF to generate intermediate substances and then generates small molecular
substances. On the other hand, h+ on VB directly reacts with PEF, and then catalyzes
PEF degradation to increase the composite sample’s capacity for photocatalysis. Figure 16
shows the possible mechanism for PEF degradation.
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4. Conclusions

In this paper, a g-C3N4, g-C3N4/TCNQ complex was successfully prepared using
the coprothermal method, and characterized by XRD, FT-IR, SEM, TEM, DRS, PL, and
I-T. PEF was employed as a degradation product to assess the catalyst’s photocatalytic
properties, and PEF was broken down under visible light (>550 nm) to examine the pho-
tocatalytic activity. When the doping amount of g-C3N4/TCNQ-20 was 50 mg, the DPEF
was 91.6%. All of the sample pairs of DPEF conformed to the first-order kinetic equation
when combined with the kinetic analysis of the photocatalytic reaction, four times more
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than g-C3N4 alone. After five cycles, the photodegradation activity of the g-C3N4/TCNQ
composite sample was still as high as 80%. The free radical capture experiments found that
·O2− was the main active species of the g-C3N4/TCNQ catalytic system, h+ also plays a
role in the degradation of PEF. This study provides an advanced and green method for the
degradation of antibiotics in wastewater and provides a theoretical basis for improving the
pollution of antibiotic wastewater.
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