
Citation: Han, Z.; Li, X.; Wang, H.;

Yuan, J.; Wang, J.; Wang, M.; Yang, W.;

You, S.; Chang, J.; Zhang, J.; et al.

Investigating the Failure Mechanism

of p-GaN Gate HEMTs under High

Power Stress with a Transparent ITO

Gate. Micromachines 2023, 14, 940.

https://doi.org/10.3390/

mi14050940

Academic Editor: Stelios

K. Georgantzinos

Received: 13 April 2023

Revised: 21 April 2023

Accepted: 22 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Investigating the Failure Mechanism of p-GaN Gate HEMTs
under High Power Stress with a Transparent ITO Gate
Zhanfei Han 1 , Xiangdong Li 1,* , Hongyue Wang 2,*, Jiahui Yuan 1,2, Junbo Wang 1, Meng Wang 1,2,
Weitao Yang 1, Shuzhen You 1, Jingjing Chang 1,3 , Jincheng Zhang 1,3,* and Yue Hao 1,3

1 Guangzhou Wide Bandgap Semiconductor Innovation Center, Guangzhou Institute of Technology,
Xidian University, Guangzhou 510555, China; zfhan@stu.xidian.edu.cn (Z.H.); yuanjh1126@163.com (J.Y.);
wjb874085975@163.com (J.W.); mengm10612183@163.com (M.W.); yangweitao@xidian.edu.cn (W.Y.);
youshuzhen@xidian.edu.cn (S.Y.); jjingchang@xidian.edu.cn (J.C.); yhao@xidian.edu.cn (Y.H.)

2 China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China
3 Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics,

Xidian University, Xi’an 710071, China
* Correspondence: xdli@xidian.edu.cn (X.L.); wanghongyue@pku.edu.cn (H.W.); jchzhang@xidian.edu.cn (J.Z.)

Abstract: The channel temperature distribution and breakdown points are difficult to monitor for
the traditional p-GaN gate HEMTs under high power stress, because the metal gate blocks the light.
To solve this problem, we processed p-GaN gate HEMTs with transparent indium tin oxide (ITO) as
the gate terminal and successfully captured the information mentioned above, utilizing ultraviolet
reflectivity thermal imaging equipment. The fabricated ITO-gated HEMTs exhibited a saturation
drain current of 276 mA/mm and an on-resistance of 16.6 Ω·mm. During the test, the heat was
found to concentrate in the vicinity of the gate field in the access area, under the stress of VGS = 6 V
and VDS = 10/20/30 V. After 691 s high power stress, the device failed, and a hot spot appeared on
the p-GaN. After failure, luminescence was observed on the sidewall of the p-GaN while positively
biasing the gate, revealing the side wall is the weakest spot under high power stress. The findings of
this study provide a powerful tool for reliability analysis and also point to a way for improving the
reliability of the p-GaN gate HEMTs in the future.

Keywords: p-GaN gate HEMTs; transparent indium-tin-oxide; reliability; high power stress

1. Introduction

The field of power electronics has shown considerable interest in GaN material, owing
to its excellent properties including high mobility, high breakdown voltage, and wide
bandgap [1–11]. For the sake of the reliability of the power system, normally-off devices are
preferred in the application. E-mode devices can be realized by several distinct methods
including a p-GaN gate [12–15], recessed structures [16], and fluorine ion implantation [17],
where the p-GaN gate is a promising approach that has been adopted by the industry in
the fast charging field [18]. The traditional p-GaN gate stack can be modeled as two back-
to-back diodes. The Schottky metal/p-GaN junction is reversely biased under a positive
gate bias, which often induces to gate degradation and even irreversible failures [19]. To
tackle these problems, a PNJ-HEMT was proposed by Hua et al. to improve the gate
voltage swing range [20]. Liu et al. proposed an AlGaN/p-GaN/AlGaN/GaN structure to
block the carrier injection behavior [21]. GaN HEMTs working under high power stress
often suffer fatal failures. However, for the traditional thick gate metal, it is difficult to
precisely monitor the breakdown points and the temperature distribution when the devices
are stressed by high power, which hinders the research of the device’s reliability [22–24].
We note that Wu et al. suggested using indium tin oxide (ITO) instead of the traditional
Schottky metal to improve the breakdown voltage of the gate [25–27].
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Herein, we propose a transparent gate structure using ITO material, which has been
maturely applied in the industry field of GaN LEDs, as the gate of HEMTs. The ITO-gated
HEMTs were first successfully processed. Then, the temperature distribution in the channel
of the device under high power stress was recorded by ultraviolet reflectance thermography
equipment. Further, assisted by the luminescence test, the locations of breakdown points
were unambiguously determined.

2. Materials and Methods

A p-GaN/AlGaN/GaN heterostructure was grown on a 6-inch Si <111> substrate via
metal-organic chemical vapor deposition (MOCVD). The structure comprises a 4-µm thick
AlGaN buffer layer, an unintentionally-doped 200-nm GaN channel layer, a 0.7-nm AlN
layer, a 15-nm Al0.2Ga0.8N barrier layer, and a 70-nm p-GaN layer doped with a Mg doping
concentration of 3 × 1019 cm−3. The electron mobility extracted using Hall measurement at
room temperature was 1495 cm2/V·s.

The cross-sectional diagram of the ITO-gated p-GaN gate HEMTs is shown in Figure 1a,
where an FIB-SEM photograph of the gate stack as well as the gate field plate is shown in
Figure 1b. The device process flow is shown in Figure 2. This process highlights p-GaN
selective etching by using Cl2/Ar/O2-based inductively coupled plasma (ICP), with the
AlGaN barrier layer employed as a self-stopping layer. The surface roughness of the etched
area was measured to be 0.35 nm via atomic force microscope (AFM) scanning. The device’s
source and drain electrodes, Ti/Al/Ni/Au (22/140/50/40 nm), were deposited via electron
beam evaporation, and ohmic contacts were achieved by rapid annealing at 865 ◦C for 30 s
in the ambient of N2. The device’s passivation layer is a 200 nm SiO2 deposited by plasma-
enhanced chemical vapor deposition (PECVD). The active region of the device was defined
through multiple conditions of N ion implantation isolation to achieve an implantation
depth of 300 nm. Finally, the gate region opening was patterned by lithography and then
SiO2 etching. Afterwards, the ITO was deposited via evaporation as the gate material
and patterned by IBE etching. During the ITO deposition, the substrate temperature was
maintained at 350 ◦C. The fabricated devices have a gate length LG of 3 µm, a gate width
WG of 100 µm, a gate-to-source distance LGS of 1.5 µm, and a gate-to-drain distance LGD of
16 µm.
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Figure 1. (a) Cross-sectional diagram of a p-GaN gate HEMTs with an ITO gate. (b) FIB-SEM pho-
tograph of the device’s gate stack as well as the gate field plate above the SiO2 passivation layer. 
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Figure 2. Simplified fabrication process of the ITO-gated p-GaN gate HEMTs. 

3. Results 
Figure 3a displays the typical ID-VD characteristics of the ITO-gated device. At VDS = 

10 V and VGS = 6 V, the device exhibits a saturation drain current of 276 mA/mm and an 
on-state resistance of 16.6 Ω·mm. Figure 3b shows the ID-VG characteristics of the device, 
on which we can see the threshold voltage (VTH) is approximately 1.6 V under the crite-
rion of ID = 0.1 mA/mm. The prepared device has a gate breakdown performance similar 
to that of a traditional Schottky gate. 

Figure 1. (a) Cross-sectional diagram of a p-GaN gate HEMTs with an ITO gate. (b) FIB-SEM
photograph of the device’s gate stack as well as the gate field plate above the SiO2 passivation layer.
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Figure 2. Simplified fabrication process of the ITO-gated p-GaN gate HEMTs.

3. Results

Figure 3a displays the typical ID-VD characteristics of the ITO-gated device. At
VDS = 10 V and VGS = 6 V, the device exhibits a saturation drain current of 276 mA/mm
and an on-state resistance of 16.6 Ω·mm. Figure 3b shows the ID-VG characteristics of the
device, on which we can see the threshold voltage (VTH) is approximately 1.6 V under the
criterion of ID = 0.1 mA/mm. The prepared device has a gate breakdown performance
similar to that of a traditional Schottky gate.
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Figure 3. (a) Output and (b) transfer characteristics of the ITO-gated p-GaN gate HEMTs at room
temperature.

In order to monitor the temperature distribution of the device under high power stress,
thermal reflectivity imaging was used [28] and the test system setup is shown in Figure 4a.
In this work, a 365 nm ultraviolet light-emitting diode light source and a 50× lens were
equipped in the measurement system. Before the measurement, the reflectance is calibrated
with a thermocouple that needs to be pressed against the sample surface for high accuracy,
as shown in Figure 4b. Since the absorption wavelength of GaN material is 362 nm, the
365 nm light source that induces the photovoltaic effect will change the real voltage applied
on the ITO gate. To suppress this impact, the frame rate is set to the minimum value of one
when the reflectance is sampled.
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Figure 4. (a) The thermal reflectivity imaging system, including electrical measurement, heat mea-
surement, and reflectance calibration section. (b) The details of the system dotted box in (a).

Figure 5a illustrates the temperature distribution of the ITO-gated HEMTs along the
horizontal cutline as depicted on the inset figure, where the VGS = 6 V and VDS = 10/20/30 V.
We can unambiguously see that the heat is mainly concentrated in the center of the access
area between the gate and drain terminal, which is induced by the electric field peak in
the vicinity of the gate field plate edge, consistent with the conclusion reported in [29].
Figure 5b shows the temperature distribution of the ITO-gated HEMT along the vertical
cutline from the source terminal’s upper edge to the drain terminal’s bottom edge. It is
worthwhile noting that the temperature increase is not significant in the channel area under
the gate field plate, thanks to the electric field modulation by the gate field plate. After a
691 s continuous power stress at VGS = 6 V and VDS = 30 V, a failure took place and the
gate current saw a sudden jump, as shown in Figure 5c. We can clearly see a hot spot in the
inset figure, corresponding to the breakdown point. The cause is probably that, during the
p-GaN patterning, the ICP etching introduced enormous defect states on the sidewall of the
p-GaN. In addition, the crowding effect of the electric field could accelerate the wear-out
process on the sidewall and finally trigger the failure.

To further probe the failure mechanism of the device stressed by the high power shown
in Figure 5, gate luminescence was monitored. Figure 6 illustrates that when VDS = 0 V and
VGS vary at different voltages, luminescence can be observed from the failed p-GaN gate,
thanks to the transparent ITO. It means the p-GaN gate stack works as a light-emitting
diode (LED) after the gate failure. Normally, luminescence can be hardly observed because
the hole injection from the gate metal to the p-GaN is difficult. However, in our case, the
junction between the gate and p-GaN, as well as the p-GaN sidewalls, is quite vulnerable
to the high power stress. The most obvious luminescence spot is located on the p-GaN
sidewall in the central vicinity of the hottest area in Figure 6. It proves that the gate failure
is accelerated by the heat generated by the high power stress. After gate failure, as shown
in Figure 7, the Schottky barrier of the gate metal/p-GaN junction is destroyed, and the
hole potential barrier is thus lowered, which strongly boosts the hole injection from the
gate metal to the p-GaN layer. The abundant injected holes recombine with the electrons
from the channel and thus photons are generated and observed.
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and observed. 

Figure 5. (a) The temperature distribution of the ITO-gated HEMTs along the horizontal cutline as
depicted on the inset figure, under the stress of VGS = 6 V and VDS = 10/20/30 V. (b) The temperature
distribution of the ITO-gated HEMTs from the source terminal’s upper edge to the drain terminal’s
bottom edge, under the stress of VGS = 6 V and VDS = 30 V by tstress = 100 s. (c) The temperature
distribution of the ITO-gated HEMTs under the stress of VGS = 6 Vand VDS = 30 V by tstress = 691 s
until the failure took place.
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4. Conclusions

In summary, by applying transparent ITO as the gate terminal onto the p-GaN gate
HEMTs, the temperature distribution and luminescence of the devices under high power
stress were successfully and unambiguously observed by ultraviolet light reflectivity testing.
It was clearly concluded that the heat concentrated in the vicinity of the gate field plate
in the access area, under the stress of VGS = 6 V and VDS = 10/20/30 V. After a 691 s high
power stress, the device failed and the breakdown point was found to be located on the
p-GaN. After failure, gate luminescence was found to be distributed on the sidewall of the
p-GaN while positively biasing the gate, proving that the sidewall is the weakest spot of the
p-GaN gate HEMTs under high power stress. Further optimization of the device processing
is suggested to repair the processing damages on the sidewall. These findings above
illustrate that the transparent ITO gate is a powerful tool for the reliability characterization
of the p-GaN gate HEMTs. This tool can be also be applied in more complicated dynamic
reliability tests in the future, considering the ns-level temporal accuracy of the ultraviolet
light reflectivity testing system.
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