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Abstract: In this paper, the viability of MEMS accelerometers is investigated to measure vibration
parameters related to different locations of a vehicle with respect to the automotive dynamic functions.
The data is collected to compare the accelerometer performances in different locations on the vehicle,
including on the hood above the engine, on the hood above the radiator fan, over the exhaust pipe, and
on the dashboard. The power spectral density (PSD), together with the time and frequency domain
results, confirm the strength and frequencies of the sources of vehicle dynamics. The frequencies
obtained from the vibrations of the hood above the engine and radiator fan are approximately
44.18 Hz and 38 Hz, respectively. In terms of the vibration amplitude, the measured amplitudes are
between 0.5 g and 2.5 g in both cases. Furthermore, the time domain data collected on the dashboard
during driving mode reflects the road condition. Overall, the knowledge obtained from the various
tests conducted in this paper can be advantageous for further control and development of vehicle
diagnostics, safety, and comfort.

Keywords: MEMS accelerometer; MEMS IMUs; data processors; automotive applications; road test;
vehicle dynamics; vibration sensors

1. Introduction

MEMS (Microelectromechanical Systems) accelerometers are widely used in many
fields, such as aerospace, automotive, industrial, biomedical, and consumer products [1],
where they are required to sense acceleration. MEMS accelerometers are established
components used in high volumes due to their unique features: low cost, wafer-scale
fabrication, small size, and low power consumption. As a vibration sensor or structural
health monitoring tool, a MEMS accelerometer collects acceleration data from regular or
disturbed dynamic energy sources for reliability evaluation, operation, and fault diagnosis.
For example, to detect the induced vibration from machine tools in the manufacturing
industry, low-cost integrated MEMS accelerometers have been used [2]. Experiments have
been performed to measure DC motor-induced vibrations from three commercial MEMS
accelerometers [3]. Time and frequency domain data, along with wavelet transform, co-
herence, and power spectral density (PSD), were used for comparison with conventional
piezoelectric accelerometers [3]. The performance of three different MEMS accelerometer
was investigated in industrial CNC (Computer Numerical Control) machines, and the
results were obtained from sinusoidal, impulse, and random excitation forces showed
good agreement with the conventional piezo-type accelerometer results [4]. In another
experiment, wireless MEMS accelerometers were attached to a hollow rotor, and subse-
quently, the vibration of the rotating frame was synchronously sensed and measured in
industrial applications [5,6]. A MEMS-based accelerometer with a wireless board was used
as a sensor for measuring vibrations on a pedestrian deck-stiffened arch bridge, providing
results very similar to those of experimental studies [7]. In another study, low-cost MEMS
accelerometers with an Arduino module were utilized to address the noise density and syn-
chronization problem and then used to remotely monitor the structural health of bridges [8].

Micromachines 2023, 14, 923. https://doi.org/10.3390/mi14050923 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14050923
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-0238-4998
https://orcid.org/0000-0002-3346-6187
https://doi.org/10.3390/mi14050923
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14050923?type=check_update&version=2


Micromachines 2023, 14, 923 2 of 20

Apart from vibration monitoring of machines discussed above, MEMS accelerometers are
also used to monitor vibrations in automotives.

Utilizing diverse types of sensors and actuators, including accelerometers, in the auto-
mobile industry is common, as vehicles need smooth controllability, high safety, balanced
stability, and visual monitoring. For many years, piezoelectric sensors have been used for
different purposes, such as improving engine performance, tire pressure sensing, vehicle
safety, and emission control for environmental protection. The size, cost, performance, and
accuracy of sensors must be considered constantly so that they are desired in the competitive
automotive industry. MEMS sensors have emerged as the preferred solution for addressing
various inertial sensing application because of their accuracy, reliability, smaller size, and
cost-effectiveness [9,10]. MEMS sensors are being used in the auto industry as single-
purpose or multipurpose sensors, including pressure, temperature, speed, position, and
flow measurement sensors [11]. Among the mentioned sensors, the MEMS accelerometer is
more prevalent in the auto industry for different purposes due to its promising functioning
characteristics. For passenger comfort and seating dynamics research, a compact system
of commercial MEMS accelerometers was used to store the experimental vibration time
domain data for seat improvement and performance evaluation [12]. It is also used to study
vehicle interior vibration, vehicle characteristics, speed, and traffic conditions [13]. Driving
control systems of autonomous vehicles or self-driving cars are recent concepts of advanced
car designs that include MEMS accelerometers [14]. For many years, a wide range of MEMS
sensors and actuators have been utilized to achieve specific objectives, such as electronic
stability control (ESC), rollover and skidding detection, engine component management,
pressure monitoring, and security, among others [15]. In the 1990s, the application of
g-switches in the airbags of vehicles became common to provide protection from the impact
force of a sudden accident. However, there were concerns regarding the size, weight, and
cost of g-switches. Shortly thereafter, MEMS accelerometers hit the market as alternatives
to g-switches. MEMS accelerometers can sense and coordinate with electronic stability
control (ESC) systems for a quick and accurate airbag response. They are very common in
automotive airbag applications due to their easy manufacturability, accuracy, and low cost.
In addition to their application in airbags, MEMS-based accelerometers have been used
for crash detection and multiple airbag deployments for an impact force ranging from 6 g
to 18 g [16]. A capacitive signal from the MEMS accelerometer’s output is sent to the ESC,
which coordinates the airbag deployment during an accident. In addition, security and
antitheft systems can use MEMS accelerometers to detect impacts, vehicle body tilt, and
movement [17]. MEMS accelerometers can track the vehicle noise to check if the engine is
running or idle, measure the impact intensity on the vehicle body, measure the acceleration
or deceleration from braking, and measure the inclination of the vehicle body. The ESC and
anti-lock braking systems use acceleration measurements to offer reliable safety in the driv-
ing experience. By filtering the MEMS accelerometer’s unprocessed data from multiple-axis
acceleration measurements with random noise, the position of the vehicle and longitudinal
velocity can be obtained [18]. Vehicle accident monitoring is possible by triggering pulses
from the MEMS accelerometer at regular intervals to the controller utilizing the Global
System for Mobile (GSM) communication, GPS (Global Positioning System) modem, and
Subscriber Identity Module (SIM) mounted on vehicles. This process can help track the
vehicle constantly in any adverse environment [19]. The application of GPS, GSM, and
the MEMS accelerometer for air gravity lock recognition systems was developed for next
generation smart vehicles that can detect and prevent auto theft [20]. MEMS accelerometers,
together with GPS, can be used for a nonspecific user gesture recognition system, which
can be used as an auto theft prevention system for smart car development [21]. To increase
the safety and security of modern smart cars, MEMS accelerometers and ultrasonic sensors
have been used for vehicle tracking, vehicle monitoring, accident alerts, and antitheft pre-
vention [22]. The effectiveness of accelerometers and gyroscopes for unbalanced detection
purposes has been investigated [23]. Measuring the pavement roughness with the help
of vehicle-mounted MEMS accelerometers is efficiently possible because of their accuracy.
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An integrated and wireless transfer-based system with GPS was developed to collect data
from a MEMS accelerometer, which can be used to obtain the pavement roughness in-
dex [24]. Pavement irregularity was measured by spectral data analysis of vehicle vibration
response data [25]. The efficacy of an electronic data acquisition system comprising an
Arduino board, a low-cost microcontroller, which effectively collected data from MEMS
accelerometers used for measuring automobile dynamics, was demonstrated in [26]. A
mechanism was developed in [27] to obtain the concurrent kinematic state of a vehicle by
using the accelerometer data from a smartphone mounted on the vehicle. A low-cost data
acquisition system, including a Raspberry Pi and MPU6050 IMU accelerometer was used to
collect data from soft/cruising and hard/accelerating, hydraulic-brake, and engine-brake
behaviors [28] Vehicle powertrain mounting system vibration and noise were improved
by performing a multi-excitation test and analyzing stiffness optimization [25,29]. A self-
balancing platform for smart vehicles was developed using MEMS accelerometers and
other navigation parameters [30]. Although MEMS accelerometers and navigation data
can be obtained and analyzed for various purposes, the data are not noise-free or free
from temperature impact. An error compensation method for MEMS accelerometers was
presented for vehicle navigation and testing system data collection [31]. The trustworthy
Advanced Driver-Assistance Systems (ADAS) and Automated Vehicles (AV) systems were
linked to the accuracy and reliability of MEMS sensors, including MEMS accelerometers.
A digital 3D gyroscope integrated into a commercial multisensory MEMS system was
developed and tested with dynamic reference acceleration [32]. To compensate for the high-
temperature frequency stability of silicon, MEMS doping can be used to make the MEMS
sensor more temperature stable and suitable for harsh environments in automotives [33,34].
Numerous other applications of MEMS accelerometers have been presented for automotive
applications [35]. However, MEMS accelerometers can also be used to capture various other
dynamic vibration conditions, including seat, steering wheel, dashboard, radiator, exhaust,
etc., and for operation, diagnostics, comfort, control, and safety as shown in Figure 1.
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Figure 1. Deployment of MEMS sensors in potential smart vehicles.

An adequate amount of measurement data is needed from different spots on the
vehicle to provide information about safety, comfort, and reliability. Concisely, many
researchers have studied, designed, tested, and analyzed data obtained from different
laboratory and commercial MEMS accelerometers. Despite the importance of improving
and developing smart vehicles equipped with various accelerometers, a comparative study
between different MEMS accelerometers has not been conducted to analyze dynamic test
results in automotive applications. Such a study could provide valuable insights and
a range of dynamic data. In this study, the dynamic test results of an in-house MEMS
accelerometer and three commercial IMU accelerometers are presented. The in-house
accelerometer sensor is a MEMS capacitive, single-mass, classical resonating accelerometer
device. The device is fabricated by a commercial double SOI (silicon on insulator) wafer-
based fabrication process known as the MicraGEM-Si process. The details of the SOI-based
fabrication process are available in [36,37]. Its measurement range is ±8 g with an excitation
voltage of 5 V. The in-house sensor output, which demonstrates the signal sensed from the
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vibrations, is obtained from the vehicle using lab-built circuitry. In Section 2, information
about the commercial IMU MEMS accelerometers and microcontrollers used in this paper
is provided. Moreover, the experimental setup, test plan, and data acquisition process
are briefly described in Section 3. Section 4 includes the results of the data analysis in
detail. Next, in Section 5, the MEMS accelerometer and its role in modern auto industry
applications are discussed. Finally, the conclusion is presented to summarize the most
interesting findings of this paper.

2. Sensors and Test Setup

The MEMS accelerometers used in the current experiment and their basic scheme,
together with standard reference accelerometer specifications, are displayed in Figure 2
and Table 1.
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Table 1. Accelerometer Sensor Specifications.

Accelerometer
Specifications

MEMS ADXL335EB
Sensor

MEMS MPU6050
Sensor

MEMS LSM9DS1
Sensor

MEMS
in House

Sensor

Piezoelectric
Reference

Standard 8305

Measurement Range ±3 g ±8 g ±8 g ±8 g ±100 g

Power Consumption 150 µA (typical) 3.9 mA (max.) 4.5 mA (typical) 5 mA NA

Specified Voltage 3 V +3 V to +5 V 1.9 V to 3.6 V 5 V NA

Temperature Range −40 to 85 ◦C −40 to 85 ◦C −40 to +85 ◦C −40 to +85 ◦C −74 to +200 ◦C

The sensors are compared to the reference standard 8305 piezoelectric accelerometer.
The measurement and temperature range are higher in 8305. These advantages come with
the downside of non-customizability. Choosing silicon in MEMS accelerometers over quartz
in piezoelectric sensors provides survival against shock and vibration. Correspondingly,
the higher failure rate of quartz versus silicon can add to the costs for root-cause analysis,
repairs, and replacements.

The commercial microcontrollers used in this experiment are displayed in Figure 3
and are used for data collection from the sensors. Their technical data are provided in
Tables 2 and 3.
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Table 2. Arduino UNO technical data information.

Manufacturer Arduino

Microcontroller ATMega328p

Operating voltage 5 V

Input voltage limit (recommended) 6–20 V (7–12 V)

Digital I/O pins 14 (of which 6 provide PWM output)

PWM digital I/O and Analog input pins 6

DC current per I/O pin 20 mA

DC current for 3.3v pin 50 mA

Flash memory 32 KB (0.5 KB used by bootloader)

SRAM 2 KB (ATmega328P)

EEPROM 1 KB (ATmega328P)

Clock speed and LED Built-in 16 MHz and 13

Table 3. Raspberry Pi technical data information.

Manufacturer Raspberry Pi

Place of Business CHICAGO, IL, 60693 US

Model and Part number SC15184

Memory Storage Capacity and RAM 2 GB

Memory Slots Available 4

Memory Technology SDRAM

Maximum Memory Supported 2 GB

RAM Technology LPDDR4, SDRAM

Memory Type DDR3 SDRAM

Processor Type and Number of Processors Cortex, 4

OS and Hardware Interface Linux, USB, USB Type C, Ethernet, HDMI,
Video, USB 3.0, USB 2.0

The MEMS accelerometer data is collected while the sensor is mounted on the vehicle.
The experimental setup is conducted at the University of Windsor Automotive Research
Lab and Micro-Nano Mechatronic Lab shown in Figure 4. For driving mode data collection,
vehicles are tested on city roads to acquire reliable and realistic dynamic data for real-world
environments. In the lab experiment, the performance of the laboratory sensor was assessed
by exciting the driving terminal and measuring the output from the sensing terminal using
a sense and drive circuit. This process was similar to the one presented in [38].
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The LSM9DS1 sensor (STMicroelectronics, Geneva, Switzerland) is connected to the
Raspberry Pi B plus. The data is collected using the Serial Data (SDA) and Serial Clock (SCL)
pins of the Raspberry Pi. MPU6050 (TDK InvenSense, San Jose, CA, USA) is connected to
the Arduino Uno board (Monza, Italy), and through its SDA and SCL channels, the data
is collected. The sensitivities of the analog and digital accelerometers are expressed in
mV/g and LSB/g (least significant bit per unit of acceleration), respectively. The MPU-6050
has an operating voltage of 1.8 V with an analog-to-digital conversion (ADC) scale of
16 bits. Thus, each unit of LSB is equivalent to 0.0275 mV, and 16,384 LSB/g is equivalent
to 450 mV/g [39]. Using the mentioned conversion scheme, the MPU data have been
converted to mV/g so that the comparison of results to other IMU accelerometer results
provides a meaningful explanation. The ADXL335 (ElectronicWings, Pune, India), an
analog sensor not reverse polarity protected, is connected to the analog (A0, A1, A2) pins
on the board.

Various spots on the vehicle are considered for mounting sensors. These spots have
been deliberately selected. The study of hood vibrations on the engine or radiator fan can
provide valuable information on the improvement of hood performance in accidents as
well as health monitoring of the engine and the radiator fan. The dashboard vibrations are
directly related to the passenger comfort level and vibration isolation from sources outside
the passenger/driver area. The exhaust pipe vibration can be an indication of an exhaust
leak. This paper will discuss multiple reasons for testing the sensors at the abovementioned
locations. The unprocessed data from the in-house MEMS accelerometer are at the signal
level (mV), and commercial IMU MEMS accelerometer data are expressed in acceleration
(g). As discussed before, the conversion of the units is crucial to enable us to compare the
sensitivity in both cases. Since this paper focuses on employing MEMS accelerometers in
different environments, the experiment is conducted in both idle and driving modes.

(1) The vehicle is idle, and accelerometers are mounted in different positions on the
vehicle, including:

(a) on the hood above the engine, (b) on the hood above the radiator fan, and (c) on
the trunk and the exhaust pipe.

(2) The vehicle is in driving mode, and accelerometers are mounted on the dashboard
in three road conditions:

(a) local roads with frequent braking, (b) highways with high speed, and (c) a bumpy
country road.

Both in-house and commercial MEMS sensors sense in-plane vibration. The data is
collected for a 120 s duration, from the hood above the engine, the hood above the radiator
fan, over the exhaust pipe, and on the dashboard of the tested sedan car. The 120 s are split
into 3 sections: engine off before turning on the car (40 s), idle while the vehicle is on (40 s),
and after turning the vehicle off (40 s). A detailed test plan is presented in Table 4.
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Table 4. The detailed test plan for data collection of a vehicle in several dynamic conditions.

Test
Number The Application of Accelerometer Data Laboratory Sensor and IMU

Mounting Position Driving Mode/Condition Time
(s)

1 To obtain the response from the engine On the hood above the engine Engine started, Idle mode 120

2 To obtain the response from the radiator fan On the hood above the
radiator fan Engine started, Idle mode 120

3 To obtain the response from exhaust pipe On trunk over the exhaust exit Engine started, Idle mode 120

4 To obtain the response from dashboard On the car dashboard Engine started, Idle mode 120

5 To obtain the response from frequent braking On the car dashboard Driving mode on local roads 120

6 To measure acceleration in rapid speed changes On the car dashboard Driving mode on the highway 120

7 To observe the road condition On the car dashboard Driving mode on a bumpy country road 120

3. Data Acquisition, Results, and Analysis

Experiments are conducted using a sedan car, and dynamic data have been collected
using an in-house MEMS accelerometer and IMU MEMS sensors for both idle and driving
modes. The in-house sensor is mounted on the car using a customized in-house-designed
test fixture. The commercial sensors are mounted using duct tape. The mounting is checked
to ensure proper orientation for all sensors. Data from the lab experiment was collected
under controlled conditions, and data were not collected from the in-house sensor on the
road test due to the difficulties related to using the instruments to collect the data. The
laboratory temperature was 23 ◦C during the experiment, which is within the operation
temperature range of commercial accelerometers. The temperature on the exhaust pipes
and radiator fan was also within the normal operation range because the vehicle was only
on for two minutes, and the next test was minutes later. Therefore, there was enough time
for the exhaust pipe and the hood to cool down and return to room temperature before
the next test started. For the abovementioned reasons, the temperature parameter is not
considered in the data analysis. The noise effect is within the normal range of the everyday
use of a vehicle. The test is run before starting the car for 20 s to check the noise level. As
seen from the results, the noise in the normal test environment can be neglected because of
its much lower level than the signal level.

3.1. Dynamic Data of the Vehicle in Idle Engine Mode

Dynamic data of various positions on the vehicle are collected in idle engine mode.
The time and frequency domain results of the experiments are presented in the subse-
quent sections.

3.1.1. Accelerometers on the Hood above the Engine

The time-domain data were collected by mounting the chips on the hood above the
engine, plotted, and presented in Figure 5a–d and d for the lab designed in-house sen-
sor, LSM9DS1, ADXL335, and MPU6050, respectively. The comparison of laboratory and
commercial IMU MEMS accelerometer data plots indicates a similar trend with few discrep-
ancies, which might have occurred due to the different sensitivities of the related sensor.
The in-house and MPU6050 sense higher values of acceleration compared to ADXL335 and
LSM9DS1. The signal level in mV can be converted to g units using sensitivity data.

The maximum deviation of sensitivity is described by the frequency response. The
frequency response provides the deviation over a frequency range. The sensitivity itself,
however, is measured at a particular frequency, which is generally lower than the mechani-
cal resonance of the sensor. Therefore, the different measured acceleration amplitudes seen
in Figure 5 for the same experimental condition are due to different frequency responses of
the sensors. As seen in Figure 6d, the accelerometers sense different ranges of frequencies.
Moreover, there are other factors that can be behind different measured accelerations, such
as noise, linearity, and temperature tolerance.
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Very low amplitude vibrations (mostly noise signals) can be observed for 40 s prior
to starting the car. The vibration amplitude increases after starting the car, and the g
values subsequently increase. The LSM9DS1 and ADXL335 sensor time data are presented,
indicating a gradual decrease as the engine vibration settles down. After turning the engine
off, the signal levels abruptly decrease, taking 40 s and expressing lower-level vibrations.
The sensors have reliable data for sensing the vibrations when the engine starts and stops.
Among commercial IMUs, the MPU6050 response has a higher amplitude compared to the
ADXL335 and LSM9DS1 IMUs.

3.1.2. Accelerometers on the Hood above the Radiator Fan

Similar to the previous tests, IMUs are mounted on the hood above the radiator fan,
and the time domain data were collected and converted to acceleration (g) presented in
Figure 6a–d for LSM9DS1, ADXL335, MPU6050, and the FFTs of the three commercial
sensors, respectively.

The signal output is in g in this case since all the sensors are commercial ones with
signal levels ranging from 2.2 g to 2.5 g in idle engine mode. The plots suggest that the
ADXL335 and MPU6050 sensors respond similarly as the vibrations gradually decrease.
From the FFT and PSD plots, resonance frequencies of 38 Hz and 75 Hz are obtained for
the engine and radiator fan tests, respectively. As seen in Figure 6, the signal level obtained
from the MPU6050 sensor is higher. A total of 2 different frequencies are sensed here, 38 Hz
being the dominant frequency, which corresponds to 2280 RPM from the radiator fan. The
higher frequencies are more indicative of the structural health of the subsystems in the
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engine. It is noteworthy that in this type of vibration test, the results depend on what one
is looking for and help understand the sources of the vibrations.

3.1.3. Accelerometers on the Exhaust Pipe

IMU accelerometers are mounted on the exhaust pipe. The measured time-domain
signals are presented in Figure 7a–d for the laboratory, LSM9DS1, ADXL335, and MPU6050
sensors, respectively. The signal level obtained from the exhaust pipe test is in mV and was
measured using a lab-designed sensor. The amplitude of the signal ranged from −100 mV
to 50 mV and was then converted to g. The data collected for commercial sensors were in
the range of 0.6 mV to 0.8 mV while the engine was on. The noise of the lab-designed plot
is high due to the circuitry and sensor sensitivity. The test results suggest that, compared to
the in-house chip, the commercial sensors respond more sharply to increases and decreases
in vibration, as indicated by the sharper changes in the signal level.
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3.1.4. Accelerometers on the Dashboard in Idle Mode

The dashboard data are directly related to the passenger comfort level. IMU accelerom-
eters are mounted on the dashboard in the front seat and passenger side. The acquired
time-domain data was then converted to the acceleration in (g) and presented in Figure 8a–d
for LSM9DS1, ADXL335, MPU6050, and FFTs of all three commercial sensors, respectively.

The data is collected on the dashboard in idle engine mode. There are lower-level vi-
brations before starting the car. By starting the car, the vibrations grow higher in amplitude.
Therefore, there is a sharp increase in the acceleration value at 24 Hz frequency. The time-
domain data show a gradual decrease in engine vibration as the engine settles. By stopping
the engine, the signal level decreases abruptly, and for that reason, in the last 40 s, there
are only very low-level vibrations. The 24 Hz frequency of the vibration is related to the
vibration sensed inside the car by the passenger, which is the superposition of all vibrations
after being carried and attenuated from the engine to the dashboard. The intensity of the
vibrations is also attenuated because of some level of isolation from the engine.

3.1.5. MEMS Accelerometer Data of All Positions

Finally, ADXL335 data collected from the hood above the engine, hood above the
radiator fan, exhaust pipe, and dashboard positions are compared to provide a better
understanding of the strength of dynamic sources presented in Figure 9a–d. The vibrations
are high in amplitude at the time of engine ignition; hence, a sharp increase in acceleration
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values is seen before gradually decreasing as the engine settles. Figure 9 shows that the
amplitude of vibrations on the hood above the engine is higher than the amplitude of
vibrations on the hood above the radiator fan and exhaust pipe. The results show the lower
amplitude of the vibrations on the dashboard since they are attenuated when carried from
the engine to the dashboard.
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As seen from Figure 9, the pattern of settling down is similar in three tests on the hood
above the engine, hood above the radiator fan, and dashboard because they are directly
proportional to the vibrations from the engine and the fan as a whole system. However, the
exhaust pipe has an independent pattern because it is far from the engine and its vibrations.

3.1.6. In-House MEMS Accelerometer on the Hood above the Engine

The in-house MEMS accelerometer data is collected by mounting the chip on the hood
above the engine. Two sets of data are collected and presented in Figure 10. When the
engine is off, only noise is detected. At 40 s after starting the car, the chip senses vibrations
caused by the engine, and this continues until the engine is turned off at 80 s. After the
engine is turned off, the chip no longer detects any vibrations except for noise. In some
tests, the noise is stronger than in the other tests because of the noise sources that are not
controllable, such as the passing cars around the lab building. The plots demonstrate that
the sensors are adequately sensitive and capable of producing a response. As previously
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explained, the output signal from the in-house sensor is in mV due to its analog nature and
has also been normalized.
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Figure 10. Time domain response test data (from the engine) of lab-designed in-house MEMS
accelerometer chip: (a) first set of time data; (b) second set of time data.

Moreover, the acceleration signal output is in mV, and the peak-to-peak range is
approximately 122 mV. Figure 11 indicates that the sensor responds consistently. Since the
amplitude of the response is in the mV range, the signal strength is sufficient to account for
small ranges of movements. Power and PSD profiles are derived from the engine hood time
response data to reflect the signal power and energy density versus frequency, as shown in
Figure 11.
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Figure 11. (a) Power (dB) and (b) PSD of measured data from vibrations on the engine by the
in-house sensor.

The PSD helps to understand the strength of the signal. Because of multiple frequencies
present in the sensor signal, which itself comes from vibrations, there are various peaks
in the PSD plot. The relationship between the signal and power in dB is given by power
(dB) = 10log10(y), where y is the PSD of the signal. The signal strength decreases gradually
over the frequency range, which implies that most of the vibrations from the engine are of
a low-frequency nature. From Figure 11b, the peak amplitude is at the 44.18 Hz frequency
for the presented two sets of data. The vehicle on which the tests are run has an I4 engine
(4-cylinder engine) and an RPM of 2500. Since only the dominant vibrations are of interest
in this test, a sampling frequency of 200 samples/sec is used. The vehicle under test
(VUT) has 2500 revolutions per minute (RPM), which corresponds to 41.67 Hz since 1 RPM
represents 1/60 Hz. The analytical 41.67 Hz is accurately sensed by the in-house sensor at
44.18 Hz. Most of the signal power is present below 200 Hz. Nevertheless, there are some
broadband vibrations over 200, which is an indication of subsystems. This is particularly
significant when studying structural health, as it can provide valuable information about
potential failures and aid in the diagnosis of such failures. Nonetheless, in this paper, we
are most interested in the lower frequency vibrations related to the comfort level and the
validity of the vibration tests.
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3.2. Dynamic Data from the Dashboard of the Vehicle in Driving Mode

While the vehicle is in drive mode, the data is collected for 120 s by mounting all
accelerometers on the dashboard of the sedan car. There is a combination of different
vibration sources affecting the dynamic data collected from mounting the sensors on the
dashboard. This experiment is divided into three sections. First, data is collected while the
car is being driven on local roads with local posted speed limits and several stop signs that
need the vehicle to come to full stops. Then, data is collected from highway driving, and
data recording starts just before the ramp or speeding to adjust to the high speed and stops
by exiting the highway. Finally, the data is collected from country roads where the roads
have many potholes and bumpy areas.

3.2.1. Dynamic Data Measured on Local Roads

Commercial IMU accelerometers are mounted on the dashboard. Then, time domain
data are collected with acceleration in g and presented in Figure 12a–c for LSM9DS1,
ADXL335, and MPU6050, respectively. Figure 12 depicts the time-domain data collected
from the vehicle while driving on local or residential streets with a speed limit of 50 km/h
and high traffic congestion, using sensors mounted on the dashboard. The impact of
unevenness on these roads, particularly the need for full stops at stop signs, can be seen
from the plots. It can be concluded that all three IMUs with MEMS accelerometers exhibit
consistent sensitivity and data storage.
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Whenever brakes are pressed, the vibrations increase sharply and then settle down for
a while during rest time, and again, when the gas pedal is pressed, the vibrations increase.
This can be seen from the plots in Figure 12, where the signal is recorded and displayed.
The vibration condition of the vehicle depends on the road roughness, suspension type
of the vehicle, road traffic, and driving conditions. Vibration amplitudes higher than 2 g
are deemed uncomfortable, occurring a couple of times in the road test, which is expected
because of the car type and model used in the test and a couple of potholes during the ride.

Figure 13 shows the power (dB) and PSD profiles obtained from the dashboard time
response data while driving on local roads. These profiles have been used to observe the
signal power and energy density in various frequency spectra. Power and PSD values
have been compared for three commercial datasets, where it is observed that MPU6050
has a better response compared to ADXL335 and LSM9DS1. This happens due to the
range of the acceleration measurement of the sensors. The strength of the signal gradually
decreases versus the frequency spectrum, which means that the low-frequency components
are stronger. All three sensors have very similar behavior over the displayed frequency
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range. The peak response is observed at 5.03 Hz for all 3 sensors, as shown in Figure 13b.
Under local road conditions, most of the signal power is present at frequencies below
20 Hz. In, Figure 13a, there were some less strong broadband vibrations over 20 Hz. It is
important to note that the vibrations experienced during road tests are much stronger and
at lower frequencies, resulting in less power being present in the higher frequency ranges
and should not be confused with the current case.
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Figure 13. (a) Power (dB) and (b) power spectral density (PSD) of measured data from the lo-
cal driving.

3.2.2. Dynamic Data from the Highway Test

Commercial IMUs are mounted on the dashboard with the time domain data repre-
sented in acceleration (g) in the highway road condition seen in Figure 14a–d for LSM9DS1,
ADXL335, MPU6050, and FFT plots of all three commercial sensors, respectively. Figure 14
shows the time data of the same vehicle on a highway with a speed limit of 100 km/h and
high traffic flow while the sensors are mounted on the dashboard. The sharp increase in
the acceleration can be seen in Figure 14 before entering the highway and then settling
gradually once on the highway.
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For the driving test on the highway in real-world conditions, the experiment is con-
ducted to represent the performance of all three commercial sensors for a 120 s time
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duration. The car acceleration accounts for the first 20 s of data where the vibrations are
the strongest. As the ride becomes smoother, the acceleration in g decreases. By reaching
a speed of 100 km/h and maintaining the same speed for an adequate amount of time,
the vibrations are all notably constant from 20 s to 110 s. The FFT analysis of the sensor
data indicates that the low-frequency vibrations (approximately 5 Hz) detected by the
sensors are predominantly from the normal road surface (such as highways and local roads
with few potholes). The sensors capture the acceleration dynamics from pressing the gas
pedal. In contrast, the FFT plot exhibits higher frequency and lower amplitude vibrations
emanating from the vehicle itself. During the road test, the frequencies observed are below
20 Hz, while those above 20 Hz are attributed to engine and highway driving conditions.
These findings underscore the importance of considering frequency spectra when analyzing
vibration data from road tests, particularly when discerning between the road surface and
vehicle-generated vibrations.

3.2.3. Dynamic Data from Tests on Bumpy Roads

The commercial IMU are mounted on the dashboard, and the time domain data are
presented in acceleration (g) shown in Figure 15a–d for LSM9DS1, ADXL335, MPU6050,
and all FFTs together, respectively. Figure 15 shows the unevenness of the driving track. All
three IMUs with MEMS accelerometers have stable sensitivity and data storage. In this case,
while driving on a gravel or uneven road, the vibrations are primarily of low frequency,
as observed through FFT data analysis. The FFT data from the bumpy roads indicate
multiple resonance peaks with high amplitude at low frequencies and low amplitude at
high frequencies, indicating an appropriate response to both the road surface and vehicle
dynamics. The time plot fluctuations correspond to vibrations caused by potholes of
various sizes and their recurrence.

Micromachines 2023, 14, 923 15 of 21 
 

 

 
Figure 15. Accelerometer data in bumpy country roads for (a) LSM9DS1, (b) ADXL335, (c) 
MPU6050, and (d) FFTs of all three sensors’ signals. 

Power (dB) and PSD profiles are derived from the dashboard time response data 
while driving on the bumpy road to observe the signal power and energy density with 
different frequency spectra, as shown in Figure 16. By comparing the three commercial 
sensors’ data, MPU6050 has a better response compared to the other two sensors. This is 
due to the range of the g-measurement of the sensors. However, the response is stable for 
all three sensors over the frequency spectrum. The strength of the signal gradually de-
creases in the three sensor response plots, displaying similar behavior over the frequency 
range. More peaks are visible in Figure 16a because the signal has more vibrations. At 4.88 
Hz, all 3 sensors in Figure 16b show a peak response, which means that the current vibra-
tions have a very low frequency. This low-frequency nature of the vibrations is consistent 
with all road tests, which have also shown that vibrations in the road environment are of 
a low-frequency nature. The second strongest frequency occurs at approximately 18 Hz, 
which is overlayed by the bumpy road condition. In the bumpy road test, in contrast to 
the local road test, the amplitude of vibrations is higher, as shown in the PSD plot in Figure 
16a. This is consistent with the fact that there are stronger motions on bumpy roads. 

 
Figure 16. (a) Power (dB) and (b) power spectral density (PSD) of measured data from the bumpy 
road condition. 

  

0 20 40 60 80 100 120

Time(s)

-5

0

5

Ac
ce

le
ra

tio
n(

g)

(a)LSM9DS1 chip

0 20 40 60 80 100 120

Time(s)

-5

0

5

Ac
ce

le
ra

tio
n(

g)

(b)ADXL335 chip 

0 20 40 60 80 100 120

Time(s)

-5

0

5

Ac
ce

le
ra

tio
n(

g)

(c)MPU6050 chip

0 20 40 60 80 100

Frequency(Hz)

0

1

2

3

4

Ac
ce

le
ra

tio
n(

g)

(d)FFTs of IMU Sensors

ADXl335

MPU6050

LSM9DS1

0 20 40 60 80 100 120

Frequency(Hz)

0

0.05

0.1

0.15

0.2

PS
D(

m
/s

2 )2 /H
z

(b) PSD plot

MPU6050

ADXL335

LSM9DS1

0 20 40 60 80 100

Frequency(Hz)

-120

-100

-80

-60

-40

-20

0

Po
we

r(d
B)

(a) Power(dB) plot

MPU6050

ADXL335

LSM9DS1

Figure 15. Accelerometer data in bumpy country roads for (a) LSM9DS1, (b) ADXL335, (c) MPU6050,
and (d) FFTs of all three sensors’ signals.

Power (dB) and PSD profiles are derived from the dashboard time response data while
driving on the bumpy road to observe the signal power and energy density with different
frequency spectra, as shown in Figure 16. By comparing the three commercial sensors’ data,
MPU6050 has a better response compared to the other two sensors. This is due to the range
of the g-measurement of the sensors. However, the response is stable for all three sensors
over the frequency spectrum. The strength of the signal gradually decreases in the three
sensor response plots, displaying similar behavior over the frequency range. More peaks
are visible in Figure 16a because the signal has more vibrations. At 4.88 Hz, all 3 sensors
in Figure 16b show a peak response, which means that the current vibrations have a very
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low frequency. This low-frequency nature of the vibrations is consistent with all road tests,
which have also shown that vibrations in the road environment are of a low-frequency
nature. The second strongest frequency occurs at approximately 18 Hz, which is overlayed
by the bumpy road condition. In the bumpy road test, in contrast to the local road test, the
amplitude of vibrations is higher, as shown in the PSD plot in Figure 16a. This is consistent
with the fact that there are stronger motions on bumpy roads.
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Figure 16. (a) Power (dB) and (b) power spectral density (PSD) of measured data from the bumpy
road condition.

4. Significance of MEMS Accelerometers in Automotives

The main application of MEMS accelerometers in the automotive industry is airbag
sensors for crash detection used by manufacturers because of their low cost and availability.
Nevertheless, these sensors can also be used as vibration sensors to detect the dynamic
conditions of automobiles. Vibrations from different locations in a vehicle can create a level
of discomfort for the passenger. Quantification of the vibration data from inside the car can
provide more information about the overall comfortability and reliability of vehicles. It is
possible to determine the speed and condition of a vehicle from the acceleration fluctuations
and angular rate changes while the vehicle is in off, idle, or driving mode. This can be
completed using several types of MEMS devices, such as gyroscopes, speed sensors, and
position sensors, including MEMS accelerometers. Some applications are described in the
literature, which is seen in advanced car models, although some have recently become
more prevalent than before. This paper investigates the dynamic conditions of a vehicle.
The acceleration data are collected using a laboratory MEMS accelerometer and three
commercial MEMS accelerometers. The data collected in idle mode can be considerably
beneficial for future vehicle developments. Additionally, data obtained from road tests can
be used to provide meaningful information about road conditions. The amplitude of time
data shows the real scenario of the driving condition, and the same time data are used for
FFT plots.

The dominant frequencies are provided for each location on the vehicle in Table 5.
The most dominant frequencies are under 100 Hz, showing the low-frequency behavior of
the vibrations for the tested vehicle. Analyzing the frequency and amplitude of vibrations
helps determine which vibrations have a greater impact on the comfort of passengers in a
car. While the strongest vibrations occur from the engine, it is important not to overlook
the radiator fan vibrations. Despite being farther from the passenger seat, these vibrations
have high amplitude and a slightly lower frequency that can affect the distance they travel.
As a result, they can contribute just as much as the engine vibrations.
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Table 5. The vibration frequencies in different locations on the vehicle in idle mode in Hz.

Sensor Type
Location on the Car Hood above

the Engine
Hood above

the Fan
Exhaust Pipe Dashboard

Lab-designed 44.18 23 and 38 10 and 27 22.8
ADXL335 40 38 and 75 22 and 28 24
MPU6050 40 38 and 75 22 and 28 24
LSM9DS1 40 38 and 75 22.6 and 28.6 24

Various frequencies are present because of the variety of parts and subsystems in the
vehicle. For each location, there is a main resonant frequency. However, in the hood above
the fan and exhaust pipe cases, there is a second oscillating frequency accompanying the
main frequency, which is the same for all sensors. The presence of the second oscillating
frequency is due to the other system components near the fan and exhaust pipe.

As seen in Figure 17, the strongest motions are present in the engine and radiator fan.
There is a level of isolation from the engine to the dashboard, which leads to lower levels
of vibrations.
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Figure 17. Comparison of the maximum vibration amplitude in different locations on the vehicle.

In [36], the vibration data are collected from a 2006 Renault Clio 1.5 L Diesel car
(Boulogne-Billancourt, France) on the dashboard using quickDAQ version 1.5.0.6. Table 6
compares the amplitude of the vibrations collected by each accelerometer. LSM9DS1 and
ref. [40] have the same amplitude of vibrations.

Table 6. The amplitudes of vibrations on the dashboard in g.

Sensor Type
Location on the Car

Dashboard

Lab-designed 0.07
ADXL335 0.07
MPU6050 0.1
LSM9DS1 0.15
Ref. [40] 0.15

The vibration frequencies from different road conditions are provided in Table 7. The
dominant vibration frequency is approximately 5 Hz, which masks the vibration frequency
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of the vehicle itself because of the higher amplitude of vibrations in driving mode. In
the highway and the bumpy road, there are other frequencies, but the resonances and
vibrations are not as strong in those frequencies as the dominant 5 Hz frequency. There are
different oscillations on the highway and bumpy road; however, the strongest oscillation
is approximately 5 Hz, which makes it the main resonance obtained from the vehicle
dashboard in driving mode. The test results for ADXL335 in [12] indicate that by placing
the sensor in different locations, including the engine and dashboard, the amplitude of
vibrations is 1.22 and 0.14 g, which is consistent with the 1.5 and 0.07 g amplitudes in this
paper. The difference between the two is a result of using different makes and models
of vehicles.

Table 7. The vibration frequencies of commercial sensors under different road conditions in Hz.

Sensor Type
Road Cond.

Local Highway Bumpy

ADXL335 5.03 5 and 66 4.88 and 18
MPU6050 5.03 5 and 64 4.88 and 17
LSM9DS1 5.03 5 and 60 4.88 and 17

Figure 18 shows the maximum vibration amplitude sensed by the commercial sensors
under different road conditions. As seen here, the vibration amplitudes are the highest
on bumpy roads. There is a slight increase in highway vibrations compared to local road
vibrations. In total, the pattern of stronger vibrations can be seen in all the sensors, which
is related to the condition of potholes and the bumpiness of the road.
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5. Conclusions

This paper conducts a detailed experimental analysis and viability review of three
commercial accelerometers and a customized accelerometer sensor to study their applica-
bility in capturing the vibration dynamics in various locations on a vehicle under different
idle and driving conditions. Moreover, this extensive study provides information that helps
researchers customize new sensors by identifying the frequencies that should be selected
for their design to separate the frequencies of both vehicle and road vibrations from that of
the sensor. The results presented in this paper show the importance of inertial sensors in
automotive dynamic sensing that are currently under-researched. A lab-designed in-house
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MEMS accelerometer and three commercial accelerometers are used to test the vehicle
dynamics. Then, the output time domain frequency domain and PSD data are presented.
The plots that display the output results provide an accurate representation of the dynamic
conditions observed in the experiment. The frequency of the vibrations for the hood above
the engine is 44.18 Hz for the in-house sensor and 40 Hz for the commercial sensors. The
main vibration frequency of the hood above the radiator fan is 38 Hz, which is expected
for the tested vehicle make and model. Conversely, the vibration frequencies of the road
tend to fall within the lower frequency range of approximately 5 Hz. As expected, the low-
frequency vibrations are dominant in driving mode and mask the motions from the vehicle
itself since they are stronger and have higher amplitude. There is a slight difference in the
frequency of the local road and bumpy road, being 5.03 Hz and 4.88 Hz, respectively. When
conducting the test on the bumpy road, the lower speed of the car compensated for the
expected increase in frequency. This is because, in such tests, the speed and frequency are
typically proportional. The acceleration amplitude in the idle mode test ranges from 0.07 g
to 2.5 g. The amplitude information is especially crucial when selecting a sensor. Trying to
measure a vibration signal outside the sensor range can clip or distort the sensor output
signal. The tested accelerometers have different sensitivities and response amplitudes. This
study provides extensive information and comparison aiding in understanding how to
select a specific sensor. The sensors used here are selected because of their compatibility
with the test types in this paper and are not promoted. The higher sensitivity can be useful,
especially in digitizing the response since there will be less possibility of error. Moreover,
the detection of the signal will be simple. During the collection of dynamic data in driv-
ing mode, the time domain and FFT data show the driving conditions of the traffic and
road surface, which proves that the sensitivity of the sensors is adequate to detect such
conditions. These tests (altogether) are useful in condition monitoring for fault detection
and system health investigations where vehicle health is concerned. The frequencies of the
three road conditions are approximately 5 Hz, with different amplitudes for different levels
of bumpiness. In higher amplitude vibrations, low-sensitivity accelerometers would be
used. Both idle and drive mode test data provide valuable information that can be used for
various purposes. These purposes include but are not limited to functionality, efficiency,
comfortability of new smart cars, diagnostic, maintenance, and safety of the vehicles, which
is feasible by gaining accurate and precise data on vehicles.
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