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Abstract: The position and altitude of a sub-reflector have an important influence on the pointing
accuracy of a radio telescope. With the increase of the antenna aperture, the stiffness of the support
structure for the sub-reflector decreases. This causes deformation of the support structure when envi-
ronmental loads, such as gravity, temperature, and wind load, are applied to the sub-reflector, which
will seriously influence antenna pointing accuracy. This paper proposes an online measurement and
calibration method for assessing the deformation of the sub-reflector support structure based on the
Fiber Bragg Grating (FBG) sensors. Firstly, a reconstruction model between the strain measurements
and the deformation displacements of a sub-reflector support structure is established based on the
inverse finite element method (iFEM). In addition, a temperature-compensating device with an
FBG sensor is designed to eliminate the effects of temperature variations on strain measurements.
Considering the lack of the trained original correction, a non-uniform rational B spline (NURBS)
curve is built to extend the sample data set. Next, a self-structuring fuzzy network (SSFN) is designed
for calibrating the reconstruction model, which can further improve the displacement reconstruction
accuracy of the support structure. Finally, a full-day experiment was carried out using a sub-reflector
support model to verify the effectiveness of the proposed method.

Keywords: sub-reflector; Fiber Bragg Grating (FBG) sensor; self-structuring fuzzy network; measure-
ment model calibration; B-spline functions

1. Introduction

A sub-reflector is an important part of a large-aperture radio telescope, for it has a
direct impact on the electrical performance of the system [1]. Ideally, the position of the
sub-reflector relative to the antenna’s main reflector is fixed (Figure 1). However, as the
antenna diameter increases, the dimension of the sub-reflector support frame becomes
large, and its rigidity decreases. This causes the support frame to deform easily when
put under the influence of environmental loads (such as heat, gravity, etc.). A change in
the position of the sub-reflector relative to the main reflector will result in a decrease in
the electrical performance of the antenna. In particular, this will have a great impact on
the pointing accuracy of the antenna. Therefore, the research on the deformation of the
sub-reflector support structure under environmental loads has practical significance for
maintaining the electrical performance of a radio telescope.
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Figure 1. Radio telescope and the sub-reflector. 

Adjusting the sub-reflector position by an active surface control system is the main 
method to improve electrical performance [2–4]. In this approach, the position and alti-
tude of a deformed sub-reflector support structure must be accurately obtained first in 
order to provide an accurate input to the active surface control system. Currently, photo-
grammetry is generally used in engineering for such measurements. However, this 
method can only be used offline and at night, which means that it only compensates for 
the deformation caused by gravity. The Sardinian Radio Telescope (SRT) measurement 
team developed a non-contact measurement scheme based on a position sensing device 
(PSD) [5], which is composed of a laser diode and a complementary metal oxide semicon-
ductor (CMOS) camera. In this scheme, the accuracy of the PSD can reach about 0.1 mm 
for a 40 mm measurement range. Owing to the laser capturing capability of the CMOS 
cameras being easily influenced by the incident angle of the sunlight, this measurement 
scheme is limited to daytime operation. In order to overcome the above limitations, a con-
tact measurement technique was proposed and applied to large structures [6–8]. Com-
pared with traditional strain sensors, Fiber Bragg Grating (FBG) has been widely studied 
and applied in the field of shape perception because of its lightness, high accuracy, anti-
electromagnetic interference, and anti-radiation [9,10]. Marco Bonopera [11] presented 
important advances in the sensing design and principle of FBG-based displacement sen-
sors. Wang et al. discussed the reliability of the traditional temperature compensation 
method and proposed a novel temperature compensation method specifically for struc-
tures under different loading conditions [12]. 

The support structure of an antenna sub-reflector is a typical truss structure, which 
is composed of beam elements. In order to measure the deformation of the beam elements, 
Ko et al. proposed a load-independent method based on piece-wise continuous polyno-
mials and classical beam theory [13]. The disadvantage of this method is that it only re-
constructs structure deformation in one dimension. In practice, it is necessary to measure 
the deformation of the support structure for the sub-reflector in three dimensions. Bogert 
et al. analyzed and verified the effectiveness of the modal conversion method by recon-
structing structural deformation [14]. Although this method has many advantages, it re-
quires an accurate finite element model. In addition, this method requires a substantial 
amount of eigenvalue analysis and a detailed description of the properties of the elastic 
and inertial materials. 

To address the problem of inadaptability in the Ko and the modal methods when 
applying to complex topological structures and boundary conditions during reconstruc-
tion, Tessler proposed the inverse finite element method (iFEM) based on the variational 
principle [15,16]. From the kinematic assumptions of the iFEM frame and Timoshenko 
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Adjusting the sub-reflector position by an active surface control system is the main
method to improve electrical performance [2–4]. In this approach, the position and altitude
of a deformed sub-reflector support structure must be accurately obtained first in order to
provide an accurate input to the active surface control system. Currently, photogrammetry
is generally used in engineering for such measurements. However, this method can only
be used offline and at night, which means that it only compensates for the deformation
caused by gravity. The Sardinian Radio Telescope (SRT) measurement team developed
a non-contact measurement scheme based on a position sensing device (PSD) [5], which
is composed of a laser diode and a complementary metal oxide semiconductor (CMOS)
camera. In this scheme, the accuracy of the PSD can reach about 0.1 mm for a 40 mm
measurement range. Owing to the laser capturing capability of the CMOS cameras being
easily influenced by the incident angle of the sunlight, this measurement scheme is limited
to daytime operation. In order to overcome the above limitations, a contact measurement
technique was proposed and applied to large structures [6–8]. Compared with traditional
strain sensors, Fiber Bragg Grating (FBG) has been widely studied and applied in the
field of shape perception because of its lightness, high accuracy, anti-electromagnetic in-
terference, and anti-radiation [9,10]. Marco Bonopera [11] presented important advances
in the sensing design and principle of FBG-based displacement sensors. Wang et al. dis-
cussed the reliability of the traditional temperature compensation method and proposed a
novel temperature compensation method specifically for structures under different loading
conditions [12].

The support structure of an antenna sub-reflector is a typical truss structure, which is
composed of beam elements. In order to measure the deformation of the beam elements, Ko
et al. proposed a load-independent method based on piece-wise continuous polynomials
and classical beam theory [13]. The disadvantage of this method is that it only reconstructs
structure deformation in one dimension. In practice, it is necessary to measure the deforma-
tion of the support structure for the sub-reflector in three dimensions. Bogert et al. analyzed
and verified the effectiveness of the modal conversion method by reconstructing structural
deformation [14]. Although this method has many advantages, it requires an accurate
finite element model. In addition, this method requires a substantial amount of eigenvalue
analysis and a detailed description of the properties of the elastic and inertial materials.

To address the problem of inadaptability in the Ko and the modal methods when
applying to complex topological structures and boundary conditions during reconstruction,
Tessler proposed the inverse finite element method (iFEM) based on the variational prin-
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ciple [15,16]. From the kinematic assumptions of the iFEM frame and Timoshenko beam
theory, Gherlone et al. proposed an inverse finite element method for sensing the defor-
mation of a beam or frame structure [17,18]. Bao et al. [19] developed the single variable
iFEM model to reduce the number of strain sensors required in multi-node load. Chen
et al. [20] established a unified reconstruction method for the beam-like structure based on
the framework of iFEM, which can reduce the structure identification error by introducing
some generalized quantities. Shang et al. [21] proposed the inverse-plate quadrilateral area
coordinates method to replace the Jacobian matrix, such that the error caused by numerical
integration can be avoided. Roy et al. [22] expanded the applicability of the iFEM beam
model to include prismatic beams with arbitrary cross-sections. Zhao et al. [23] combined
the Green-Lagrange strain theory to extend the iFEM for nonlinear deformation.

Due to some uncertain factors, including sensor installation position errors and strain
measurement errors presented in actual engineering, the accuracy of shape sensing with the
iFEM is affected. Pan et al. proposed to use a fuzzy network to approximate the relationship
between the measured strains and the inverse solution strains. They established a fuzzy
calibration network through 13 sets of working condition data, and the calibrated strain
was used to solve the frame deformation displacement [24]. Fu et al. proposed a fuzzy
calibration network with support vectors to generalize the use of the network [25]. The
network is obtained by training with 10 sets of working condition data. Since the above-
mentioned approaches use less data for training the calibration network, the resulting
network covers less information, which will directly influence the accuracy of the calibration
network [26]. In addition, Li et al. [27] customize a calibration method using a fuzzy self-
framework, which can effectively solve the interference caused by the sensor paste error
in iFEM.

However, the reconstruction accuracy of the partial evaluation position was only
improved by the above calibration method. In addition, the errors between calibration
results and the actual deformation displacement were increased when the faint noise
interfered with the working condition data. Considering the reduced influence of external
factors on the real-time reconstruction of structural deformation, an online measurement
and calibration method for structural deformation based on small samples is proposed in
this paper, which can calibrate the reconstruction values of the sub-reflector position and
altitude in real-time to improve the reconstruction accuracy. The main original aspects of
the proposed method are twofold. Firstly, a reconstruction model between the FBG strain
measurements and the deformation displacements of a sub-reflector support structure is
established. Secondly, the sample measurement data is extended by the NURBS to provide
the training data for the SSFN, which can effectively correct random noise data.

2. Establishment of the Deformation Reconstruction Model for Beam Structure

The antenna sub-reflector support legs are a typical truss structure composed of beam
elements. This suggests that the inverse finite element beam theory can be used to establish
the deformation measurement model for the antenna sub-reflector support structure [17,18].
The measurement procedure is divided into two parts: (1) establishing the reconstruction
model with the inverse finite element method and (2) calculating the section strains from
the measured strain. This paper proposes a method for temperature compensation to
eliminate the effect of temperature on strain measurement.

2.1. Inverse Finite Element Method for Beam Element

Based on the assumption of Timoshenko beam theory, a three-dimensional Cartesian
coordinate system for a beam structure of constant cross-section is established, as shown in
Figure 2. Here, L represents the length of the beam element, the central axis of the beam
overlaps with the x-axis of the Cartesian coordinate system, and the y-axis overlaps with
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the main inertia axis of the section as well. The deformation field at a point B(x,y,z) on the
surface can be expressed as

ux(x, y, z) = u(x) + zθy(x)− yθz(x)
uy(x, y, z) = v(x)− zθx(x)
uz(x, y, z) = w(x) + yθx(x)

, (1)

where
{

ux(x, y, z), uy(x, y, z), uz(x, y, z)
}

are the deformation displacements along the X,
Y, and Z axes at point B, respectively, and u(x, y, z) = {u(x), v(x), w(x), θx(x) , θy(x), θz(x)

}
represents the degree of freedom of the node, as shown in Figure 2.
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In the finite element framework, arbitrary nodal degrees of freedom u(x, y, z) can
be obtained by the dot product of the shape function N(x) and discrete nodal degrees of
freedom ue:

u(x) = N(x)ue, (2)

Then, the section strain vector e(ue) can be calculated based on Equation (2), given by

e(ue) = B(x)ue, (3)

where B(x) is a matrix containing the derivative of the shape function N(x). However, the
theoretical section strain e(ue) cannot be obtained directly from the strain sensor due to the
existence of measurement strain errors. Therefore, a least squares function, ϕ, is used to
establish the relationship between the analytic section strain e(ue) and measured section
strain vector eε:

ϕ(u) = ‖e(ue)− eε‖2, (4)

where eε is the calculated section strain from the measured surface strain. Expanding the
above least squares error function gives the following quadratic expansion:

ϕ(u) =
1
2
(ue)Tkeue − (ue)Tfe + ce, (5)

where ce is a constant, and ke and fe are defined as follows:{
ke

k = L
n ∑n

i=1
[
BT

k(xi)Bk(xi)
]

fe
k = L

n ∑n
i=1
[
BT

k(xi)eε
k(xi)

] , (6)
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where L is the length of the beam element; n and xi(0 < xi < L) are the number and axial
coordinates of the estimated section strain position, respectively. When the error function
ϕe(u) is minimized with respect to ue, the result is simplified as

keue = fe (7)

2.2. Calculation of Section Strains from Measured Strains

When the installation position of the strain sensor is determined, the section strain can
be calculated from the measured surface strain using the following formula:

ε(xi, θi, βi) = eε
1(xi)

(
c2

β − vs2
β

)
+ eε

2(xi)
(

c2
β − vs2

β

)
sθ R + eε

3(xi)
(

c2
β − vs2

β

)
cθ R

+eε
4(xi)cβsβcθ − eε

5(xi)cβsβsθ + eε
6(xi)cβsβR,

=
[(

c2
β − vs2

β

)
,
(

c2
β − vs2

β

)
sθ R,

(
c2

β − vs2
β

)
cθ R, cβsβcθ , cβsβsθ , cβsβR

]
·eε(xi)

= T(xi, θi, βi) ∗ eε(xi)
cβ ≡ cos βi, sβ ≡ sinβi, cθ ≡ cosθi, sθ ≡ sinθi

(8)

where xi is the coordinates of the i-th strain sensor placement, θi is the central angle
of the section for the i-th strain sensor, and βi is the angle between the strain measure-
ment direction and the beam element surface generatrix. Therefore, the section strain
eε(u) =

[
eε

1(xi), . . . eε
6(xi)

]T at any section can be determined using Equation (8). In addi-
tion, v denotes the Poisson’s ratio, and R stands for the outer diameter of the section, as
shown in Figure 3.
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2.3. Temperature Compensation for Measured Strain

Temperature does not only cause structural deformation but also influences strain
measurements. When considering the service environment of a strain sensor, it is also
necessary to eliminate the impact of temperature change on the support legs. This paper
proposes a real-time temperature compensation method for obtaining the strain after
temperature compensation.

Accounting for the influence of the electromagnetic effect from a sensor and the long-
distance transmission of measurement information, this paper employs a Fiber Bragg
Grating (FBG) sensor as both strain and temperature sensors. Since FBG sensors are based
on optical principles and optical fiber material, the advantages of such sensors include the
transmission of information without any electromagnetic interference and a low signal
attenuation rate.

As shown in Figure 4, the Fiber Bragg Grating strain sensor was installed on the surface
of the measured object, and a temperature compensation sensor was placed near each strain
sensor. It is then followed by connecting the FBG sensors with the demodulation instrument,
such that the computer can obtain the strain data from the demodulation instrument. The
FBG strain sensor is a novel strain measurement device that is designed to measure the shift
in light wavelength caused by the FBG grating deformation due to tension/compressive



Micromachines 2023, 14, 1093 6 of 17

force or temperature change. The deformation for the unit length of the grating is labeled
as the strain, given by

εi = K

(
λend(i) − λini(i)

λini(i)

)
, K = 1− Pe (9)

where λend(i) and λini(i) are the wavelength shift and initial wavelength of the i-th FBG sen-
sor, respectively; Pe is the photo-optical coefficient of the fiber; and the strain measurement
εi is expressed as micro strain.
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In Figure 4a, since the FBG strain sensor and temperature compensation sensor are
close to each other, they are regarded as possessing the same temperature. The difference
between them is in the deformation strain value of the support structure. Meanwhile, the
temperature compensation device only measures the strain caused by the environment
temperature, which is labeled as εcomp:

εcomp(xi, θi, βi) = ε(xi, θi, βi)− εtemp(xi, θi, βi) (10)

where the symbol εtemp(xi, θi, βi) represents the strain value measured by the temperature
compensation device.

3. The Establishment of Self-Architected Fuzzy Calibration Network

The actual measured displacements at the end of a support leg can be obtained
by the measuring device (denoted by “uact

x , uact
y , uact

z ”). Hence, the reconstructed end
displacement along different axes is labeled as “uiFEM

x , uiFEM
y , uiFEM

z ”, and their values
can be obtained by the inverse finite element method. Hence, the components of the
reconstruction errors are

∆ux(xi, yi, zi) = uact
x (xi, yi, zi)− uiFEM

x (xi, yi, zi)
∆uy(xi, yi, zi) = uact

y (xi, yi, zi)− uiFEM
y (xi, yi, zi)

∆uz(xi, yi, zi) = uact
z (xi, yi, zi)− uiFEM

z (xi, yi, zi)

(11)

The calibration process is divided into two parts. The first part concerns the construc-
tion of a third-order B-spline curve equation based on the measured strain and reconstruc-
tion error data. The expansion of the initial data is also performed through Equation (11).
The second part involves establishing the self-architected fuzzy calibration network and
using the expanded data to realize the real-time calibration of end displacements.

3.1. Expansion of Data Sample

The number of samples used to train the self-architected fuzzy network will directly
influence the fineness of the network’s description of the relationship between different
variables, which in turn determines the precision of the calibration networks. Therefore,
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expanding the training data sample capacity is of great significance for improving the
precision of network calibration. According to the reconstruction theory discussed in
Section 2, the relationship between strain measurement and reconstruction displacement
is nonlinear. Therefore, this paper proposes to use the 3rd B-spline function for data
sample expansion.

For a given n + 1 plane or spatial points Pi(i = 0, 1, · · · , n), the definition for an n-th
parameter segment on a B-spline curve is given by

Pk,n(u) =
n

∑
i=0

PiGi,n(u), uε[0, 1] (12)

Here, Pk,n(u) is the k-th segment on the n-th degree B-spline curve, u is the data point
parameter; Gi,n is the basis function of the n-th degree B-spline curve, and the polygon
formed by its vertex Pi is called the B-spline curve feature polygon. According to the
definition of the B-spline curve, the k segment of an n-th B-spline curve is only related to
n + 1 control points signified by Pi. The 3rd B-spline curve is controlled by the 6 control
points designated by Pi is composed of three B-spline curve segments, each is controlled by
4 points in Pi, as shown in Figure 5.
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The B-spline curve is local. The change of one control point will only influence the
adjacent curve segment and will not influence the trend of change on the entire curve. For
n = 3, the 3rd B-spline curve segment Pi,3(u), is given by

Pi,3(u) =
3

∑
i=0

PiGi,3(u), uε[0, 1], (13)

where i = 0, 1, 2, 3. The basis functions of the cubic B-spline curve are as follows:
G0,3(u) = 1

6
(
−u3 + 3u2 − 3u + 1

)
G1,3(u) = 1

6
(
3u3 − 6u2 + 4

)
G2,3(u) = 1

6
(
−u3 + 3u2 + 3u + 1

)
G3,3(u) = 1

6 u3

, uε[0, 1] (14)

It can be written in matrix form as{
xu = GX
yu = GY

, uε[0, 1] (15)

where G is the basis function matrix of the cubic B-spline, X and Y are the coordinate
vectors of the control points in each section of the cubic B-spline curve, and (xu, yu) are the
coordinates of a point on the cubic B-spline curve. For continuous values of u, a smooth
B-spline curve can be determined. For n control vertices, a complete cubic B-spline curve
can be obtained by only moving the control vertices n−3 times. After successfully fitting
the cubic B-spline curve, the data point parameter u is taken from 0 to 1 in a certain step,
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such that the corresponding number of points on the curve can be obtained, and the data
can be expanded.

3.2. Construction of the Calibration Network

In reality, there are errors in the sensor installation and data collection, which lead to
subsequent displacement reconstruction errors. In this paper, the self-architected fuzzy
network (SAFN) algorithm is used to calibrate the reconstruction errors. The algorithm uses
the triangular membership functions (MF), which independently increases the membership
functions and fuzzy rules together with adjusting their distributions, thereby improving the
structure of the fuzzy system. Based on the cubic B-splines, large-scale data is obtained, and
a further fuzzy network is derived to approximate the measured strain and reconstruction
error.

The generation of self-architected fuzzy networks can be divided into three parts:
(1) adding MF and generating the rules, (2) establishing self-adapting fuzzy rules and
consequent parts, and (3) preserving fuzzy networks [24]. The algorithm flowchart is
shown in Figure 6.
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1. Adding MF and generation rules

(1) Error criterion

The root-mean-square error is used to describe the system error, and its calculation is
given by Equation (16). In the equation, y(k) represents the output value from the fuzzy
network, and yd(k) signifies the reconstruction deformation error. Hence, the system error
RMSE2 can be calculated. The symbol Er represents the error threshold in the training
phase. If RMSE2 > Er, the membership function needs to be increased at the input.

RMSE =

√
∑N

k=1 (y(k)− yd(k))
2

N
(16)

(2) Completeness criteria

For any input variable xj in the working range, the current value xj(k) can help activate
an MF, and the maximum value for µm

(
xj(k)

)
of the obtained membership degree is either
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greater than or equal to the preset β value. If µm
(
xj(k)

)
< β, MF needs to be increased or

is otherwise unchanged.

2. The consequence of self-adaptive rules

Based on the current estimated output value and the expected output value from
the fuzzy network, the rule consequences are adjusted. At k moment, the expression for
adjusting the consequence of the j-th rule αj(k) is as follows:

∆αj(k) = γ · µj(k− 1) · (r(k− 1)− y(k)), (17)

where µj(k− 1) represents the activation of the j-th rule at time k− 1, r(k− 1) represents
the estimated displacement that is input to the network at the previous time, and y(k) is
the calibrated displacement error output from the fuzzy network at the current time. The
value of γ is artificially adjusted to change the speed of the self-adaptive process of the
rule consequence.

3. Fixing the rules and obtaining the fuzzy network

After adding the data, the estimated output error from the network for all training
input values becomes very small. For EFN < Er, it means that the autonomous architecture
stage of the network is completed. The network training is then stopped, and the fuzzy
rules in the current network are saved.

After expanding the samples of strain and reconstruction error through the cubic
B-spline theory, the expanded samples are used to train the fuzzy network and generate
the fuzzy calibration network. In engineering practice, when the real-time measured strain
ε(xi, θi, βi) is input into the fuzzy calibration network, the calibrated displacement error
value can be presented in real-time. After that, the accurately reconstructed displacements
will be obtained.

4. Experimental Examples

In order to verify the accuracy and effectiveness of the online reconstructed displace-
ment error calibration method presented in this paper, a scaled-down model for a radio
telescope test antenna model was constructed, as shown in Figure 7. Under the elevation
motion, the support structure’s deformation measurements and calibration experiment
were carried out. The support structure is made of aluminum alloy material. Its Young’s
modulus is 7300 MPa, Poisson’s ratio is v = 0.3, density ρ = 2557 kg/m3, and the entire
structure weighs about 43 kg. The support beam is 2000 mm long and has a radius of
20 mm. The total weight of the sub-reflector is 200 kg.
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In order to realize the deformation reconstruction for the support legs of the sub-
reflector, six fiber grating strain sensors are installed on the surface of each support leg, and
three sensors are placed on the same section to capture the surface strain. In the experiments,
the strain data is measured by the FBG strain sensor (Fiber Bragg Grating| os1100, Micron
Optics, Atlanta, GA, USA) and the FBG demodulator (Optical Sensing Instrument| Si 155,
Micron Optics, Atlanta, GA, USA) Strain measurement system. The positions of the six
strain sensors are shown in Table 1. Here, xk represents the relative position, and (θ, β)
are the circumferential angle θ with angle β between x-axis and the frame, both measured
in degrees. The properties of the FBG sensor include 1530–1565 wavelength operating
range, 0.23 nm bandwidth, 15 db side-mode rejection ratio, 10 mm grid length, and 1 pm
demodulation accuracy.

Table 1. Strain sensor locations.

Axial Position xk 0.2L 0.8L

(θ1, β1) (0,0) (0,45)
(θ2, β2) (120,0) (−120,0)
(θ3, β3) (−120,0) (120,0)

A high-precision single-point laser tracker (LTS, API Tracker 3, Automated Precision
Inc., Rockwell, MD, USA) was used to measure the actual displacement at the end of the
support leg and at different elevation angles. The resolution of the LTS is 1 um, and the
precision is related to the distance between the LTS and the measured object (the ratio is
5 um/m). During the experiment, the distance between the instrument and the test antenna
model was 6 m, and the measurement precision of the laser tracker was 0.03 mm. The
entire measurement system is shown in Figure 8.
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In the experiments, the global coordinate system was established on the main reflector.
In each local coordinate system, the x-axis was established along the neutral axis of each
support beam, the y-axis and z-axis were orthogonal in the beam section, and the four
support beams had four different local coordinate systems (Figure 9).
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Figure 9. Global and local coordinate systems.

In order to better validate the effectiveness of the calibration scheme proposed in this
paper, the strain and real displacement data at the end of the support leg at each elevation
angle were collected at midnight to ensure that the model was in a stable environmental
temperature. Assuming the initial position and altitude of 0 degree between the main
reflector of the antenna and the horizontal plane, the strain data collected by the fiber
demodulator was recorded and returned to zero. The platform was then rotated and
stopped every 5 degrees increment to measure the strains and true displacements of the
support leg (see Figure 10).
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From 5 to 60 degrees, the strains ε∗ and displacements at the end of the support legs{
uact

x , uact
y , uact

z

}
were collected. As shown in the second section, the reconstruction value{

uiFEM
x , uiFEM

y , uiFEM
z

}
of the deformation at the end of the support legs can be calculated

by ε(xi, θi, βi). According to Equation (3), the reconstruction errors can be obtained in the
form of

{
∆ux, ∆uy, ∆uz

}
. From the 12 working conditions, the data at the elevation angles

of 15
◦
, 30

◦
, 40

◦
, and 55

◦
were used to test the precision of the calibration network, and the

data of the remaining eight working conditions were used to train the self-architected fuzzy
calibration network.

For each support leg, the strain ε∗ that shows the greatest reaction to changes of the eleva-
tion angle in the model is selected and combined with the reconstruction error to form three con-
trol points of deformation direction, designated by {ε∗, ∆ux(xk, yk, zk)},

{
ε∗, ∆uy(xk, yk, zk)

}
and {ε∗, ∆uz(xk, yk, zk)}, with (k = 1, 2 · · · 8). Consider {ε∗, ∆ux(xk, yk, zk)}, the eight work-
ing conditions form eight vertices. According to Section 3.1, the cubic B-spline curve can be
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obtained. The data from the eight groups of working conditions can be expanded based on
the value in the parameter u from 0 to 1, in step of 0.002, thereby forming 501 sets of data.
Similarly, for

{
ε∗, ∆uy(xk, yk, zk)

}
and {ε∗, ∆uz(xk, yk, zk)}, which are also expanded into 501

sets of data. Using the extended data from a single direction of the support leg for training,
three sets of fuzzy calibration networks, SSFNx, SSFNy, and SSFNz, can be obtained. This is
then followed by inputting the measured strains, obtained at the elevation angles of 15

◦
, 30

◦
,

40
◦
, and 55

◦
, into each SSFNx, SSFNy, and SSFNz to determine the calibrated displacement

error. Finally, the calibration displacement value is obtained by adding the calibration error to
the initial reconstruction displacement.

When the fuzzy calibration network is completed, the real-time input strain and
output deformation calibration can be realized. In this paper, four elevation angles taken at
midnight were used as a case study to validate the calibration network. For the support 1,
the displacement and calibration error as shown in Table 2, and corresponding FBG strains
and temperature compensation as shown in Table 3. Meanwhile, the estimated index of the
fuzzy calibration network’s ability defined as

δ(%) =

∣∣∣uact − ucal
∣∣∣

uact × 100% (18)

the actual, reconstructed, and calibrated displacements are denoted as uact, uiFEM and ucal .

Table 2. Displacement and calibration error for No. 1 support leg.

Angles x Direction y Direction z Direction

55
◦

uact 1.86 mm 19.01 mm 4.76 mm
uiFEM 1.53 mm 17.48 mm 4.56 mm

ucal 1.83 mm 18.79 mm 4.71 mm
δ(%) 1.61% 1.16% 1.05%

40
◦

uact 1.56 mm 15.85 mm 3.99 mm
uiFEM 1.26 mm 14.18 mm 3.71 mm

ucal 1.54 mm 15.85 mm 3.98 mm
δ(%) 1.28% 0% 0.25%

30
◦

uact 1.29 mm 12.70 mm 3.25 mm
uiFEM 0.97 mm 10.75 mm 2.85 mm

ucal 1.28 mm 12.68 mm 3.22 mm
δ(%) 0.78% 0.16% 0.92%

15
◦

uact 0.75 mm 6.66 mm 1.77 mm
uiFEM 0.48 mm 5.15 mm 1.41 mm

ucal 0.74 mm 6.49 mm 1.73 mm
δ(%) 1.33% 2.55% 2.26%

Table 3. FBG strains and temperature compensation for No. 1 support leg.

Angles 55
◦

40
◦

30
◦

15
◦

FBG strain/µε

ε1 −20 −62 −101 −173
ε2 −485 −431 −376 −263
ε3 −111 −115 −117 −112
ε4 −345 −314 −272 −191
ε5 418 331 251 96
ε6 −79 −82 −86 −91

FBG temperature
compensation/µε

ε1 55 52 51 43
ε2 21 25 32 33
ε3 28 34 39 37
ε4 7 13 20 25
ε5 29 36 37 34
ε6 27 31 36 33
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For the support 2, the displacement and calibration error as shown in Table 4, and
corresponding FBG strains and temperature compensation as shown in Table 5.

Table 4. Displacement and calibration error for No. 2 support leg.

Angles x Direction y Direction z Direction

55
◦

uact 1.67 mm 16.76 mm 4.66 mm
uiFEM 1.40 mm 18.86 mm 6.35 mm

ucal 1.63 mm 16.53 mm 4.68 mm
δ(%) 2.4% 1.37% 0.43%

40
◦

uact 1.40 mm 14.00 mm 3.90 mm
uiFEM 1.16 mm 15.53 mm 5.22 mm

ucal 1.38 mm 13.97 mm 3.94 mm
δ(%) 1.43% 0.21% 1.03%

30
◦

uact 1.16 mm 11.38 mm 3.14 mm
uiFEM 0.89 mm 12.04 mm 4.08 mm

ucal 1.15 mm 11.36 mm 3.11 mm
δ(%) 0.86% 0.18% 0.96%

15
◦

uact 0.68 mm 6.12 mm 1.57 mm
uiFEM 0.44 mm 6.02 mm 2.08 mm

ucal 0.67 mm 6.01 mm 1.53 mm
δ(%) 1.47% 1.8% 2.55%

Table 5. FBG strains and temperature compensation for No. 2 support leg.

Angles 55
◦

40
◦

30
◦

15
◦

FBG strain/µε

ε1 −237 −237 −238 −227
ε2 −484 −438 −386 −282
ε3 −17 −43 −66 −112
ε4 −128 −122 −114 −105
ε5 365 283 206 62
ε6 −560 −485 −404 −252

FBG temperature
compensation/µε

ε1 22 26 27 30
ε2 16 19 26 30
ε3 25 27 31 32
ε4 −8 1 12 18
ε5 29 34 37 35
ε6 9 14 19 23

For the support 3, the displacement and calibration error as shown in Table 6, and
corresponding FBG strains and temperature compensation as shown in Table 7.

For the support 4, the displacement and calibration error as shown in Table 8, and
corresponding FBG strains and temperature compensation as shown in Table 9.

It can be seen from Tables 2–9 that the reconstructed displacements for the end of the
support legs can be calibrated well at different elevation angles using the small sample
self-architected fuzzy calibration algorithm proposed in this paper. The percentage dis-
placement errors in the x, y, and z directions do not exceed 4% after calibrating the four
support legs. In particular, for the elevation angle at 40 degrees, the y-direction displace-
ment percentage error at the end of the No. 1 support leg is 0%. It can be seen from the
actual displacements in the x, y, and z directions that the y direction is the main deformation
direction. In most cases, the calibration error in the y direction is less than that in the x and
z directions when the deformation is large. This suggests that the presented calibration
scheme in this paper has better calibration ability for the main deformation direction.
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Table 6. Displacement and calibration error for No. 3 support leg.

Angles x Direction y Direction z Direction

55
◦

uact 2.29 mm 17.10 mm −0.73 mm
uiFEM −0.18 mm 15.77 mm −0.84 mm

ucal 2.22 mm 16.89 mm −0.72 mm
δ(%) 3.06% 1.23% 1.37%

40
◦

uact 1.90 mm 14.25 mm −0.61 mm
uiFEM −0.25 mm 12.79 mm −0.69 mm

ucal 1.88 mm 14.26 mm −0.60 mm
δ(%) 1.05% 0.07% 1.64%

30
◦

uact 1.48 mm 11.42 mm −0.48 mm
uiFEM −0.34 mm 9.70 mm −0.53 mm

ucal 1.51 mm 11.39 mm −0.47 mm
δ(%) 2.03% 0.26% 2.08%

15
◦

uact 0.78 mm 5.99 mm −0.25 mm
uiFEM −0.29 mm 4.65 mm −0.26 mm

ucal 0.81 mm 5.92 mm −0.24 mm
δ(%) 3.85% 1.17% 4.0%

Table 7. FBG strains and temperature compensation for No. 3 support leg.

Angles 55
◦

40
◦

30
◦

15
◦

FBG strain/µε

ε1 −16 −32 −50 −74
ε2 −369 −335 −295 −212
ε3 30 4 −21 −61
ε4 −187 −180 −165 −138
ε5 328 240 164 25
ε6 −359 −309 −261 −173

FBG temperature
compensation/µε

ε1 14 22 28 28
ε2 17 20 26 29
ε3 27 30 38 34
ε4 9 18 24 27
ε5 35 36 38 36
ε6 12 21 25 29

Table 8. Displacement and calibration error for No. 4 support leg.

Angles x Direction y Direction z Direction

55
◦

uact 1.93 mm 16.90 mm −1.52 mm
uiFEM −0.22 mm 18.91 mm −1.39 mm

ucal 1.88 mm 16.70 mm −1.50 mm
δ(%) 2.59% 1.18% 1.32%

40
◦

uact 1.60 mm 14.12 mm −1.27 mm
uiFEM −0.27 mm 15.57 mm −1.13 mm

ucal 1.58 mm 14.11 mm −1.26 mm
δ(%) 1.25% 0.07% 0.79%

30
◦

uact 1.25 mm 11.47 mm −1.03 mm
uiFEM −0.33 mm 12.07 mm −0.86 mm

ucal 1.26 mm 11.39 mm −1.02 mm
δ(%) 0.80% 0.70% 0.97%

15
◦

uact 0.66 mm 6.17 mm −0.55 mm
uiFEM −0.27 mm 6.02 mm −0.41 mm

ucal 0.67 mm 6.07 mm −0.54 mm
δ(%) 1.52% 1.62% 1.82%
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Table 9. FBG strains and temperature compensation for No. 4 support leg.

Angles 55
◦

40
◦

30
◦

15
◦

FBG strain

ε1 13 −9 −30 −73
ε2 −369 −338 −299 −220
ε3 26 −1 −21 −61
ε4 −191 −176 −165 −140
ε5 −288 −272 −239 −184
ε6 421 337 258 100

FBG temperature
compensation

ε1 11 10 18 28
ε2 21 21 27 30
ε3 35 36 37 36
ε4 5 8 15 23
ε5 37 39 42 34
ε6 18 24 27 27

In order to further verify the effectiveness of the temperature compensation device
designed in this paper, the strain data under the elevation of 55◦ at noon and from the
No. 1 support leg was used. In this case, the strain value εcomp(xi, θi, βi) was obtained
by Equation (10). It can be seen from Table 10 that the temperature has a great influence
on strain measurement. However, when the measured strains, ε, are compensated, εcomp

becomes stable.

Table 10. Two strain measurements for No. 1 support leg at 55
◦
.

Strain Time ε1/µε ε2/µε ε3/µε ε4/µε ε5/µε ε6/µε

ε
Midnight −20.48 −484.92 −111.42 −345.13 417.76 −79.67

Noon −327.20 −601.49 −118.92 −354.49 45.15 −125.02

εtemp Midnight 353.65 −315.15 48.26 −152.23 616.02 86.15
Noon 52.94 −442.72 38.77 −150.58 246.41 45.80

εcomp Midnight −374.14 −169.77 −159.69 −192.91 −198.26 −165.83
Noon −380.14 −158.77 −157.69 −203.91 −201.26 −170.83

εεtempεcomp Comparing the displacement reconstruction value uPM, uiFEM at noon and
at midnight with the displacement ucomp, the results are as follows.

It can be seen from Table 11 that the displacement reconstruction value at the end
of No. 1 support leg measured at noon has a deviation of 0.67 mm in the y direction
when compared with the measurement taken at night. The deviation decreases to 0.06 mm
after temperature compensation for the measured strain. It is clear that the temperature
compensation method can greatly reduce the influence of environmental temperature
changes on the strain acquisition system. Therefore, the self-structuring fuzzy network and
the temperature compensation device proposed in this paper are important for improving
the accuracy of traditional inverse finite elements in real-world engineering applications.

Table 11. Displacement o No. 1 support leg at 55
◦
.

Reconstruction
Value x Direction/mm y Direction/mm z Direction/mm

uiFEM 1.53 17.48 4.56
uPM 1.47 18.15 4.73
ucomp 1.51 17.42 4.54

5. Conclusions

We have proposed an online measurement and calibration method for deformation
estimation for the support structure of a sub-reflector in order to provide accurate ad-
justment data for the sub-reflector control system of a radio telescope. Firstly, the fiber
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grating sensors are used to measure the surface strain of the support leg. It is then followed
by deformation reconstruction for the end of the support leg of the sub-reflector using
the inverse finite element method. Finally, the proposed calibration method is used to
calibrate the reconstruction displacement to improve the precision. The results show that
the percentage error for each support leg is less than 4%, with the minimum error reaching
0%. Comparing the calibration results along the three directions, we demonstrate that
our calibration method is accurate along the main deformation direction. For problems
relating to small sample data, this paper proposes the use of the cubic B-spline to expand
the initial working condition data so as to provide a data guarantee for the training of a
high-precision calibration network. In addition, a temperature compensation device is
designed to compensate the measured strains in order to reduce the influence of ambient
temperature on reconstruction accuracy. The experimental results show that the device
can effectively reduce the influence of service temperature on the reconstruction. Further-
more, the demonstrated calibration method can be applied to other structures, such as
large reflectors, for deformation measurement. However, our experimental period was
short, and further exploration is required for the long-term application of the temperature
compensation device over wide temperature ranges.
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