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Abstract: Mode converters is a key component in mode-division multiplexing (MDM) systems,
which plays a key role in signal processing and multi-mode conversion. In this paper, we propose an
MMI-based mode converter on 2%-∆ silica PLC platform. The converter transfers E00 mode to E20

mode with high fabrication tolerance and large bandwidth. The experimental results show that the
conversion efficiency can exceed −1.741 dB with the wavelength range of 1500 nm to 1600 nm. The
measured conversion efficiency of the mode converter can reach −0.614 dB at 1550 nm. Moreover,
the degradation of conversion efficiency is less than 0.713 dB under the deviation of multimode
waveguide length and phase shifter width at 1550 nm. The proposed broadband mode converter
with high fabrication tolerance is promising for on-chip optical network and commercial applications.

Keywords: integrated optic; mode converter; multimode interference; integrated optics devices

1. Introduction

With the development of new generation communication technology and large-
capacity signal processing technology, the demand for high-speed data transmission and
large-capacity data processing is increasing. Various multiplexing methods have been
proposed for this purpose, such as wavelength division multiplexing (WDM), space divi-
sion multiplexing (SDM) and polarization division multiplexing (PDM) technologies [1–8].
Mode division multiplexing (MDM) has been considered as a promising technology [9,10]
that can significantly improve the capacity of optical communication, on-chip intercon-
nect, and computation [11,12]. Since the orthogonal eigenmodes of the same wavelength
propagate in a single channel without inter-channel crosstalk, cooperation with WDM
technology, MDM technology increases overall transmission capacity dramatically [13,14].
In MDM system, mode converter with broad bandwidth, low insertion loss, and high mode
conversion efficiency is the key components between fundamental mode and higher-order
modes at optical nodes [15–20]. Mode converters have been demonstrated on different
structures, such as asymmetrical directional couplers (ADCs) [21], Y-branch [22], multi-
mode interferometers (MMIs) [23,24]. Although ADCs convertors show low loss and high
fabrication tolerant, they suffer from high wavelength dependence. Y-branch convert-
ers contribute high crosstalk between modes. Nowadays, slotted waveguide and etched
metasurface waveguide converter show ultra-compact footprint and high efficiency of
mode conversion [17,25–28]. However, for commercial usage, large fabrication tolerances,
in the micrometer range, are necessary. Compared with other kinds of mode conver-
sion techniques, the mode converters based on MMIs shows broad bandwidth and large
fabrication tolerance.
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In this paper, we demonstrate an MMI-based mode converter on silica based planar
lightwave circuits (PLC) platform with 2% refractive index difference(∆). The light of E00
mode will be converted into E20 after propagating through the device. We optimize the
mode converter through beam propagation method (BPM). The simulation result shows
a conversion efficiency of −0.083 dB at 1550 nm. After fabrication, the converter shows
high mode conversion efficiency of −0.614 dB at 1550 nm. From 1500 nm to 1600 nm, the
conversion efficiency exceeds−1.741 dB. Moreover, the degradation of conversion efficiency
is less than 0.713 dB under the deviation of multimode waveguide length and phase shifter
width at 1550 nm. Compared with other mode conversion techniques, our designed MMI-
based mode converter reduces the device size while ensuring high conversion efficiency,
which has the advantages of broad bandwidth and large fabrication tolerance. The mode
converter is suitable for large scale and complex on-chip optical networks. The high
fabrication tolerance contributes the devices are promising for commercial application.

2. Design and Simulation

Several material platforms have been investigated for integrated photonics circuits,
including silicon-on-insulator (SOI), silicon nitride (SiN), polymer-based PLC and silica-
based PLC. SOI and SiN waveguide devices are compact and promising for co-package
optics. However, they suffer from low fabrication tolerant and high coupling loss with fiber.
Polymer based PLC devices are attractive for thermo-optical switch and high-speed modu-
lators. The stability of polymers is a major limitation to their commercial usage. Compared
with other platforms, the silica-based PLC have advantages of low loss, good match of the
optical mode field with an optical fiber, and is commercially available. However, the low
thermal optical coefficient (TOC) of silica contributes to high power consumption when
thermo-optical tuning is used. Therefore, the silica-based PLC platform is suitable for our
passive converter.

Figure 1a shows the cross section of single mode waveguide. The thickness is 4 µm.
With different germanium oxide doping, the refractive index difference between claddings
and cores is 2%. Refractive indices are 1.473 and 1.444 at 1550 nm, respectively. According to
the calculated relationship between effective refractive indices and waveguide width shown
in Figure 1b, we choose 4 µm as the height and width to maintain single mode propagation.
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Figure 1. (a) Cross section of the silica waveguide. (b) Calculated effective indices of 4-µm-thickness
silica waveguide with different widths.

The schematic of the proposed MMI-based mode converter is demonstrated in Figure 2.
The converter is constructed by input waveguide, tapered waveguide, 66% mode converter
MMI, phase shifter waveguide, S-bend, and output waveguide. The fundamental mode is
coupled into Port 1 (Pin) through a tapered waveguide. The 66% E00 mode is converted
into E10 at Port 2 (P1

out) after the first MMI. The light left propagates in fundamental mode
through Port 3 (P0

out). A phase shifter is introduced to ensure π phase difference between
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E00 mode and E10 mode. When these lights meet at the second MMI, the mode of light is
converted to E20 mode at Port 4 (Pout).
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Figure 2. Schematic of the MMI-based mode converter.

The first MMI coupler is a 3 × 3 MMI with outputs modified into two, one of which is
for first-order mode output, another is for fundamental mode output. The length of the
conventional 3 × 3 MMI is equal to the length of the 66% mode converter MMI, which is
LMMI = L1

3 = 3Lc/3 = Lc, with Lc as the coupling length based on self-imaging property
and it is given by [29]:

Lc =
π

β0 − β1
=

4nrW2

3λ0
(1)

where β0 is the fundamental mode propagation constant, β1 the first-order mode prop-
agation constant, λ0 is the operation wavelength, nr is the refractive index of the core
waveguide and W is the effective width taking into account the Goos–Hänchen shifts at
the ridge boundaries, whose displacement is very small, and can approximatively equal to
the width of MMI (WMMI). For a conventional 3 × 3 MMI, when E00 mode is input from
port Pin, the powers at three output ports of E00 modes are equal. However, the phases of
the three outputs are ϕ11 = ϕ0 + 5π/3, ϕ12 = ϕ0 + 2π/3 and ϕ13 = ϕ0 + π, respectively,
where ϕ0 is a constant phase. Therefore, the phase difference between the two fundamental
modes at Port 2 is π. We combine these two fundamental modes to form E10 mode. As for
of the E20 mode, we need a 2/3π phase shifter. With BPM calculating, the width and length
of the phase shifter are WPS = 3.7 µm and LPS = 200 µm, respectively.

Based on the above principle, we use BPM for the design and optimization of the
device at 1550 nm. To reduce the loss caused by mode mismatch, tapered waveguides
are introduced between MMI region and waveguides. Widths of tapers are transferred
from W1 = 4 µm, W2 = 11.5 µm and W3 = 4.5 µm to W ′1 = 4.5 µm, W ′2 = 10.4 µm, and
W ′3 = 4 µm, linearly. The gap between E10 mode port and E00 mode port is 4.85 µm.
The length of these three tapered waveguides is 35 µm. There are 100-µm-length straight
waveguides after E00 and E10 mode port. We use S-bend to connect Port 2 with output
width. The arc radius of the S-bend is above 2 cm. The loss caused by S-bend could be
neglected. The length of the straight waveguide that connects phase shifter and output
waveguide is chosen to be 400 µm. The width of the output waveguide is set to be 15.9 µm.
In our design, the width of the MMI (WMMI) is designed to be 22.25 µm, which is used to
avoid coupling between E10 mode and E00 mode at ports 2 and 3. Therefore, the calculated
MMI coupler length is optimized to be LMMI = 730 µm. The length of the output waveguide
is 800 µm. The total length of the mode converter is 2400 µm.

Figure 3a shows the field distribution of the device at 1550 nm wavelength with
fundamental mode is input. Figure 3b shows the fundamental mode field distribution of
the input. The mode distributions of E10 at port 2 and E00 at port 3 of the mode converter
MMI are shown in Figure 3c. Figure 3d shows the mode distribution of E20. From Figure 3a,
the E00 mode is successfully converted to the E20 mode. In the simulation, we set the
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E00 mode input power of port1 to 1 and simulated the conversion efficiency of the mode
converter from 1500 nm to 1600 nm, as shown in Figure 3e. The conversion efficiency in
percent (Ep) and dB (Ed) are calculated by Equations (2) and (3), respectively. Here, b is the
propagation loss of the E00 mode in the dB scale [30].

Ep = (1− 100.1b)× 100% (2)

Ed = 10lg(1− 100.1b) (3)
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At 1550 nm wavelength, the conversion efficiency is 96.2% (−0.083 dB). From
1500 nm to 1600 nm, simulation results show that the conversion efficiency exceeds
−0.630 dB. In summary, we obtain a mode conversion from E00 to E20 at 1550 nm with a
conversion efficiency of −0.083 dB.

3. Characterization and Discussion

The proposed mode converter was fabricated by the PLC foundry, SHIJIA, China.
First, the bottom cladding of ~15 µm was thermally oxidized on silicon substrate. Sec-
ond, we grew a 4-µm-thickness silica core layer above the bottom cladding by plasma
enhanced chemical vapor deposition (PECVD). The waveguide was formed by etching
through inductively coupled plasma etching (ICP) technique. Finally, PECVD was again
used to deposit the upper cladding. Since the existing coupling test system is difficult to
directly monitor the high-order mode power, a mode demultiplexer was introduced at
the end of the output waveguide to convert the E20 mode to the E00 mode to indirectly
characterize the higher-order mode power. The mode multiplexer/demultiplexer of E20
mode and a reference waveguide are fabricated simultaneously. The microscope images of
the demonstrated converter are shown in Figure 4a–d.

In Figure 4a, the measured width of the MMI is 22 µm. The widths of the two output
ports are measured in Figure 4b at 10 µm and 4 µm, respectively. The S bend is separated
from the phase shifter by a large distance of 5 µm, which can be observed in Figure 4c. The
width of the output waveguide is measured to be 16 µm in Figure 4d.
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Figure 4. (a–d) Microscopic images of the fabricated mode converter.

The E00 mode is coupled into the device by edge coupling system. The spectra of
the reference straight waveguide and the mode multiplexed/demultiplexer for the E20
mode are shown in Figure 5a. The normalized spectral response of the E00 to E20 mode
converter experimental measure data is shown in Figure 5b. The experimental results show
that the conversion efficiency can exceed −1.741 dB with the wavelength range of 1500 nm
to 1600 nm. The conversion efficiency of the device is −0.614 dB (87%) at 1550 nm. The
maximum conversion efficiency is −0.549 dB (88%) at 1556 nm. The 1-dB bandwidth of the
device is 90 nm. The captured output mode patterns at different wavelengths shown in
Figure 5c–e.
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We fabricate proposed device with different lengths of MMI and widths of phase shifter
to perform fabrication tolerant. The key components, MMIs and phase shifters, influence
the conversion efficiency of the device a lot. We study the fabrication tolerance by changing
length and width of MMI and phase shifter, and observe the output power of E20. The
deviations are 0 and ±10 µm for LMMI and 0 and ±0.2 µm for WPS. The simulation result is
shown in the Figure 6. We can see that when LMMI move away from their optimal values,
the conversion efficiency of E00–E20 has different degrees of degradation at wavelength
1550 nm., which means that the change of LMMI will cause an impact on the conversion
efficiency of the device. At 1550 nm, the conversion efficiency varies from −0.083 dB to
−0.234 dB.
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1500 nm to 1600 nm.

Similarly, the influence of WPS on the conversion efficiency of the device is simulated.
Figure 7 shows the dependence of the E00–E20 conversion efficiency on the WPS. We use
the optimal value LMMI = 730 µm as the length of MMI. It can be seen that the change of
WPS does have a certain impact on the conversion efficiency of the mode converter. At
the wavelength of 1550 nm, the conversion efficiency of the mode converter varies from
−0.083 dB to −0.155 dB. Compared with LMMI, the device is more sensitive to WPS.
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1500 nm to 1600 nm.

We summary the spectra of all samples and separate in four groups, as shown in
Figure 8a–d. It can be seen that at the wavelength of 1550 nm, the conversion efficiency
degradation of the device is less than 0.713 dB when changing LMMI and WPS. However,
the conversion efficiency of the converter proposed is lower than others. So there are still
some cases that need to be discussed for the MMI-based mode converter we designed. First
of all, during the simulation, we initially expected the conversion efficiency to be−0.083 dB
(97%) at 1550 nm. However, the actual test results show that the conversion efficiency of the
mode converter can only reach −0.614 dB (87%) at 1550 nm. The reason is the differences in
geometry and refractive index of cores with respect to design parameters. The device has
good repeatability, parameter scanning will help but only if you also have good repeatability.
This problem is solved by parameter scanning while fabrication. Secondly, in Figure 8a,d,
we note that when LMMI = 720 µm the normalized transmission may exceed 0, which is
caused by the normalization procedure owing to the vibration of the reference waveguide.



Micromachines 2023, 14, 1073 7 of 9
Micromachines 2023, 14, x FOR PEER REVIEW 7 of 9 
 

 

 
Figure 8. (a–c) The effect of PSW  on the conversion efficiency of the mode converter at a given fab-
rication error range for wavelengths ranging from 1550 nm to 1600 nm with LMMI of 720 µm, 730 µm 
and 740 µm, respectively. (d) The effect of LMMI on the conversion efficiency of the mode converter 
at a given fabrication error range for wavelengths ranging from 1550 nm to 1600 nm when PSW  is 
fixed to 3.7 µm. 

4. Discussion 
In order to clearly demonstrate the mode converter, Table 1 illustrates the perfor-

mance comparisons between the reported E00–E20 mode converters. The compact silicon-
on-insulator based device using a 1 × 4 Y-junction and 4 × 4 MMI couplers can realize 16 
different input-output mode conversions in C-band [31]. The mode converter with a cas-
caded tapers structure exhibits balanced performances [32]. The mode converter designed 
in Ref.[33] with phase change material inlaid in multimode waveguide has a large band-
width and high conversion efficiency. However, the mode converters in these reports only 
have simulation results and are not actually fabricated. Owing to the low fabrication tol-
erance of the SOI platform, the device is hard to fabricate with the designed characteristics. 
Moreover, the SOI device is fixed after fabrication. To obtain a flexible and reconfigurable 
device, mode switching is necessary for the MDM system. The mode switch based on 
phase change materials or van der Waals materials can be used to achieve low power con-
sumption and higher-order reconfigurable mode conversion [33–35]. In ref. [36], a mode 
converter based on cascaded long-period waveguide grating is mentioned, which uses the 
UV-curable polymer material EPO as the design material. The conversion efficiency of the 
device can be estimated to be more than 90% at 1550 nm. The polymer-based PLC is a low-
cost platform. The design method could be verified on polymer. The design method is also 
inspiring for silica-based PLC. After comparison, the device proposed shows high conver-
sion efficiency, high tolerance and large bandwidth, which has a good application pro-
spect in MDM system. 
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4. Discussion

In order to clearly demonstrate the mode converter, Table 1 illustrates the performance
comparisons between the reported E00–E20 mode converters. The compact silicon-on-
insulator based device using a 1 × 4 Y-junction and 4 × 4 MMI couplers can realize
16 different input-output mode conversions in C-band [31]. The mode converter with
a cascaded tapers structure exhibits balanced performances [32]. The mode converter
designed in Ref. [33] with phase change material inlaid in multimode waveguide has a
large bandwidth and high conversion efficiency. However, the mode converters in these
reports only have simulation results and are not actually fabricated. Owing to the low
fabrication tolerance of the SOI platform, the device is hard to fabricate with the designed
characteristics. Moreover, the SOI device is fixed after fabrication. To obtain a flexible and
reconfigurable device, mode switching is necessary for the MDM system. The mode switch
based on phase change materials or van der Waals materials can be used to achieve low
power consumption and higher-order reconfigurable mode conversion [33–35]. In ref. [36],
a mode converter based on cascaded long-period waveguide grating is mentioned, which
uses the UV-curable polymer material EPO as the design material. The conversion efficiency
of the device can be estimated to be more than 90% at 1550 nm. The polymer-based PLC is
a low-cost platform. The design method could be verified on polymer. The design method
is also inspiring for silica-based PLC. After comparison, the device proposed shows high
conversion efficiency, high tolerance and large bandwidth, which has a good application
prospect in MDM system.
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Table 1. Comparison the designed E00–E20 mode converter with reported works.

Refs. S/E BW (nm) CE (%) Structure Materials Footprint (µm2)

[29] E 35 93 MMI+ phase shifter SOI 1230 × 8

[31] S 35 98 Y-junction + MMI SOI 288 × 6.8

[32] S 100 93 Cascaded tapers SOI 2.5 × 6.5

[33] S 245 99 PCM inlaid in multimode
waveguide SOI 2.3 × 1.82

[34] E At 1550 nm 90 Long-period gratings Polymer PLC /

This work E 90 87 MMI + phase shifter Silica PLC 2400 × 22.25

S/E, Simulation/Experiment; BW, Bandwidth; CE, Conversion efficiency; PCM, Phase change material; /, Not
mentioned.

5. Conclusions

In this work, we proposed an MMI-based mode converter that has the capability to
efficiently convert E00 mode to E20 mode. The experimental results show that the fabricated
device has high tolerance and high conversion efficiency, and the efficiency of the fabricated
mode converter is −0.614 dB at 1550 nm wavelength. The degradation of conversion
efficiency is less than 0.713 dB within the range of fabricate deviation. This paper provides
a solution for efficient conversion in MDM systems.
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