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Abstract: A novel Performance Optimized Carrier Stored Trench Gate Bipolar Transistor (CSTBT)
with Low Switching Loss has been proposed. By applying a positive DC voltage to the shield gate, the
carrier storage effect is enhanced, the hole blocking capability is improved and the conduction loss is
reduced. The DC biased shield gate naturally forms inverse conduction channel to speed up turn-on
period. Excess holes are conducted away from the device through the hole path to reduce turn-off
loss (Eoff). In addition, other parameters including ON-state voltage (Von), blocking characteristic
and short circuit performance are also improved. Simulation results demonstrate that our device
exhibits a 35.1% and 35.9% decrease in Eoff and turn-on loss (Eon), respectively, in comparison with
the conventional shield CSTBT (Con-SGCSTBT). Additionally, our device achieves a short-circuit
duration time that is 2.48 times longer. In high-frequency switching applications, device power
loss can be reduced by 35%. It should be noted that the additional DC voltage bias is equivalent
to the output voltage of the driving circuit, enabling an effective and feasible approach towards
high-performance power electronics applications.

Keywords: CSTBT; shield gate; DC bias; low switching loss; conduction loss

1. Introduction

Insulated Gate Bipolar Transistor (IGBT) is the core device in power electronic devices
used for electric energy conversion and circuit control [1–3]. Various IGBT structures and
techniques have been proposed and studied, including the field stop IGBT (FS-IGBT) [4],
injection enhanced gate transistor (IEGT) [5] and carrier stored trench-gate bipolar transistor
(CSTBT) [6]. With IGBT discrete devices and IGBT modules having an output power of up
to 10 MW, they are widely utilized in high-voltage systems of Electric Vehicle, such as the
main drive inverter, on-board charger (OBC), battery management system, on-board air
conditioning control system, steering and other high-voltage auxiliary systems. In addition,
IGBT is extensively employed in DC and AC charging piles, making them the cornerstone
of the Electric Vehicle ecosystem.

For modern electronic systems represented by Electric Vehicles, higher operating
frequency and higher power output are essential design goals. In the power converter
system of Electric Vehicles (e.g., DC/DC converter, DC-to-DC inverter and the electronic
power transformer), increasing the operating frequency can significantly benefit the sys-
tem by reducing its volume, eliminating total harmonic distortion and improving power
quality [7,8].

However, IGBT is still bottlenecked by technical and physical limitations, such as the
unique trailing current and resulting switching loss that restrict the switching frequency to
below 20 kHz [9–11]. Among the IGBTs mentioned above, CSTBT stands out as a promising
candidate for the next-generation power electronics due to its ability to significantly reduce
the on-state voltage while improving the carrier distribution in trench IGBT [12–14].

In a typical CSTBT, an additional carrier storage (CS) layer with a higher doping concentra-
tion is located between the P-type well region (P-body) and the N-drift region. In the on-state,
the CS layer acts as a higher potential barrier that blocks holes from being collected by the
emitter, leading to hole accumulation in the drift region near emitter side [15,16]. Accordingly,

Micromachines 2023, 14, 1039. https://doi.org/10.3390/mi14051039 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14051039
https://doi.org/10.3390/mi14051039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-6784-5863
https://orcid.org/0000-0002-0785-9446
https://doi.org/10.3390/mi14051039
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14051039?type=check_update&version=1


Micromachines 2023, 14, 1039 2 of 12

this causes a considerable number of electrons to be injected through the emitter, maintaining
electrical neutrality and increasing the carrier concentration [17,18].

The switching frequency of optimized IGBTs is limited to 20 kHz to 40 kHz, which
falls short of the desired 100 kHz, resulting in a tradeoff between high power and high
frequency [19–21].

Therefore, improving the switching performance of IGBT has become a highly con-
cerned issue, with two primary limiting factors listed below:

1. Inherent tail current affecting the switching performance.
2. Overheating caused by excessive switching loss, which is the main limiting factor at

present [22].

Switching frequency refers to the number of times the IGBT is switched on and off
within a second. Under the specified bus voltage and current, IGBT will generate power
loss every time it switches. As the switching frequency increases, so does the power loss
and temperature rise, which could lead to IGBT failure if the temperature exceeds the upper
limit. The total power losses of an IGBT chip are typically composed of turn-on loss (Eon),
turn-off loss (Eoff) and conduction loss, and are proportional to the product of frequency
and switching loss (Eoff + Eon).

In high frequency switching applications above 20 kHz, the reduction of switching
loss becomes crucial, as it accounts for the majority of the total power consumption (above
60%), as shown in Figure 1b. In order to reduce the total power consumption under the
switching frequency of 20~50 kHz, IGBT chip performance must be set at the position of
high Von, low Eon and Eoff, like High speed IGBT in Figure 1a.
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total power loss under different frequency (Calculated according to IGBT data sheet).

Currently, shield gate technology (SGT) is a promising way to reduce switching loss
by decreasing Qg. However, the grounded bottom electrode in SGT increases channel
resistance, leading to a serious impact on Von and a corresponding rise in conduction loss.

In this work, we propose a CSTBT device with a forward DC bias shield gate and hole
path (DC-CSTBT). The characteristics of low Von, low Eon, low Eoff and high breakdown
voltage are demonstrated simultaneously. The proposed device only made minor changes
on the basis of conventional CSTBT and offers a simple and easy-to-implement structure
and process.

2. Structure and Process Flow

The schematic diagram of the proposed DC-CSTBT is shown in Figure 2a. Compared
with the conventional CSTBT shown in Figure 2b, both devices have the same doping
profile except for an extra N-type carrier storage layer (CS2).



Micromachines 2023, 14, 1039 3 of 12

Micromachines 2023, 14, x FOR PEER REVIEW 3 of 14 
 

 

2. Structure and Process Flow 
The schematic diagram of the proposed DC-CSTBT is shown in Figure 2a. Compared 

with the conventional CSTBT shown in Figure 2b, both devices have the same doping 
profile except for an extra N-type carrier storage layer (CS2). 

 
Figure 2. (a) The proposed DC-CSTBT; (b) Conventional CSTBT. 

In the proposed DC-CSTBT, the trench gate is split into two parts, including the 
upper and deeper parts. The upper part is connected to the gate control signal, controlling 
the turning on and off of the device. The deeper shield trench gate is connected to a 
positive DC bias. Generally, the DC bias value is the same as the gate saturation turn-on 
voltage, and there is no need to add the additional output of the driving circuit. 

The CS2 region on the left is achieved by additional lithography and ion 
implantation. There is a gap between the trench and the CS2, and the state (on/off) of this 
hole path is completely controlled by the trench gate voltage. In the on state, the hole 
channel is closed, and the gap is inverted and acts as a whole CS storage layer with a CS2 
layer. As the CS2 locates away from the bottom of the trench, its doping concentration is 
high to reduce Von without blocking characteristic deterioration. Table 1 shows the major 
structural parameters of the proposed device. 

Table 1. Major structural parameters. 

Parameter Value 
Cell pitch 4 μm 

Gate oxide thickness 120 nm 
N-drift doping 5.9 × 1013 cm−3 

CS doping 4.0 × 1014 cm−3 
High doping CS (CS2) 1.5 × 1017 cm−3 

P-well doping 3.0 × 1016 cm−3 
Trench depth  5 μm 

The split trench gate technology is compatible with the current manufacturing 
process. The process flow of the device is shown in Figure 3. The main process steps 
include epitaxial layer formation, ion implantation, trench etching, polysilicon deposition 
and etching, oxide layer formation, etc. Two additional processes compared with the 
conventional CSTBT process are highlighted in red, namely the polysilicon etching and 
the oxide layer deposition. 

Figure 2. (a) The proposed DC-CSTBT; (b) Conventional CSTBT.

In the proposed DC-CSTBT, the trench gate is split into two parts, including the upper
and deeper parts. The upper part is connected to the gate control signal, controlling the
turning on and off of the device. The deeper shield trench gate is connected to a positive
DC bias. Generally, the DC bias value is the same as the gate saturation turn-on voltage,
and there is no need to add the additional output of the driving circuit.

The CS2 region on the left is achieved by additional lithography and ion implantation.
There is a gap between the trench and the CS2, and the state (on/off) of this hole path
is completely controlled by the trench gate voltage. In the on state, the hole channel is
closed, and the gap is inverted and acts as a whole CS storage layer with a CS2 layer. As
the CS2 locates away from the bottom of the trench, its doping concentration is high to
reduce Von without blocking characteristic deterioration. Table 1 shows the major structural
parameters of the proposed device.

Table 1. Major structural parameters.

Parameter Value

Cell pitch 4 µm
Gate oxide thickness 120 nm

N-drift doping 5.9 × 1013 cm−3

CS doping 4.0 × 1014 cm−3

High doping CS (CS2) 1.5 × 1017 cm−3

P-well doping 3.0 × 1016 cm−3

Trench depth 5 µm

The split trench gate technology is compatible with the current manufacturing process.
The process flow of the device is shown in Figure 3. The main process steps include epitaxial
layer formation, ion implantation, trench etching, polysilicon deposition and etching, oxide
layer formation, etc. Two additional processes compared with the conventional CSTBT process
are highlighted in red, namely the polysilicon etching and the oxide layer deposition.

In addition, the detailed device process of split gate formation is shown in
Figure 4a–f below. After deep trench etching (Figure 4a), an oxide (Figure 4b) and a
very thick polysilicon (Figure 4c) is deposited in the trench. Then, part of the polysilicon is
etched (Figure 4d), and only the bottom part as a shield gate is left. Subsequently, an oxide
layer is deposited to complete the isolation of the upper and lower split gates (Figure 4e).
Finally, polysilicon is deposited into the trench to form the split gate (Figure 4f). The split
gate at the bottom serves as the DC bias shielding gate in the paper. Figure 4g shows the
formation of CS2 on the left. A high-energy ion injection is added after an emitter injection,
and the distribution of the CS2 layer is defined by mask.
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Figure 4. The formation process of DC bias shielding gate and extra CS2 in the proposed device.
(a) deep trench etching. (b) oxide deposition. (c) polysilicon deposition. (d) polysilicon etching.
(e) oxide deposition to complete the isolation. (f) polysilicon deposition to form the split gate. (g) the
formation of CS2.

Despite the slight increase in device fabrication complexity or cost associated with the
proposed DC bias shielding approach, the process steps are completely consistent with
those of existing trench IGBT devices. Additionally, the inclusion of a DC bias shield gate
necessitates only minimal alterations to the driving circuit and requires the addition of only
one lithography mask. This device has a simple structure and low cost, with great potential
for practical applications.

3. Simulation Results and Discussion

The device model is established by the Sentaurus Technology Computer-Aided Design
(TCAD) simulation, and the process conditions are based on the SMIC 0.18 µm process node.
The following four aspects of optimization brought by DC bias shielding are introduced.
The structures contrasted below include a conventional CSTBT, a conventional shield CSTBT
with a grounded shield gate (Con-SGCSTBT), DC-CSTBT, referring to CSTBT without
a split gate, a split gate CSTBT with grounded shield gate and the proposed DC bias
CSTBT, respectively.



Micromachines 2023, 14, 1039 5 of 12

A. Low Eon

There are two factors contributing to the low Eon. Firstly, the SGT gate structure
reduces the Miller capacitance, which helps to decrease the Eon. The Miller effect in-
duces the formation of a platform voltage when driving the trench gate, which subse-
quently prolongs switching time and heightens switching loss. These consequences can
have profoundly detrimental effects on the normal operation of the IGBT. Secondly, the
shield gate DC bias technology accelerates the formation of conductive channels, further
reducing the Eon.

(1) low QGC
In the conventional CSTBT structure, the whole CGC is composed of three parts, as

depicted in Figure 5c; namely, CGC1, CGC2 and CGC3. CGC1 and CGC2 are mainly related
to gate oxide thickness and the coupling area between trench and collector. Among these
three parts, CCG3 is the most dominant factor. Compared with a conventional CSTBT, the
deeper trench of the proposed device is DC biased (equivalent to AC ground), resulting
in a smaller coupling area between the gate and collector. The charging time of the Miller
capacitor is reduced by 42.7% in the proposed DC-CSTBT compared with the conventional
CSTBT. QGC is reduced from 61.3 nC to 35.1 nC, and the Miller capacitance of the proposed
device, equivalently, is decreased from 8.636 nF/cm2 to 2.57 nF/cm2. The reduction in
Miller capacitance is mainly transformed into CGE. The simulation results indicate that
the QGC of the proposed device remains constant under a different DC bias, as depicted
in Figure 5b. Therefore, a higher DC bias can enhance the carrier storage effect without
deteriorating the Miller effect.
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(2) Faster turn-on by forward biased bottom inversion channel
Con-SGCSTBT will bring the problem of excessive Von. To address this, the improved

DC-CSTBT is proposed here.
Figure 6 shows the turn-on curve of the proposed device under a clamped load.

The collector current voltage and collector current of the proposed device is swifter than
Con-SGCSTBT, as depicted in Figure 6a,b. This improvement can be attributed to the inverse
channel forward formed by the DC voltage at the trench bottom rather than the grounded
deep trench. The formation of a conductive channel is accelerated and the turn-on process
is sped up effectively by the DC biasing technique.
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The turn-on process of the IGBT is as follows. First, a positive bias is applied at the
trench, which inverts the P-base region to form an N channel. Then, the emitter releases
electrons into the drift region through this channel, leading to the potential drop in the drift
region. When the potential is low to a certain threshold, the collector PN junction conducts
forward, and holes are injected into the N-region; conductance modulation effect starts.

Figure 7 shows the distribution of electron current during the turn-on state. Large
electron currents flowing to the drift region can be clearly seen at the trench bottom. The
mechanism can be explained as follows. There exists a DC bias at the shield gate and a
corresponding electric field pointing from the trench bottom to the emitter. Consequently,
electrons in the emitter are injected through the inversion layer around the shield gate,
resulting in a decrease in the N-drift potential.
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2 × 10−7 ns, 3 × 10−7 ns, respectively).

Moreover, the hole current density at the collector region is marked, which can further
compare the collector injection speed, as illustrated in Figure 7a–c. At t0, the hole current
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density at the collector (JCH) of DC-CSTBT is 104 larger than that of the normal grounded
shield gate. At t1, JCH of DC-CSTBT is also nine times larger. Until t2, both reach an order
of magnitude of 47 A/cm2 and 14.6 A/cm2, respectively. It is further proved that the DC
bias shield can speed up the device turn-on process.

Figure 8 shows the turn-on curve of the proposed DC-CSTBT (under various DC bias).
It can be seen that the JC of the DC-CSTBT with a higher DC voltage is much swifter. A
higher DC bias contributes to a stronger electric field to promote the incident of electrons.
In addition, during the turn-on process, dV/dt and dI/dt are significantly improved, and
the turn-on loss can be reduced. The simulation results show that, compared with the
Con-SGCSTBT, the Eon of the proposed device can be reduced by 35.9%, from 3.2 mJ/cm2

to 2.05 mJ/cm2.
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B. Low Eoff

Figure 9a illustrates the transient hole current distribution during the turn-off at t1 (a
period of time after the turn on time t0) of the DC-CSTBT and hole current values along
C1. It can be seen that the highest hole current is concentrated at the designed hole path,
reaching more than 1 × 104 A/cm2 as depicted in Figure 9b.

In the turn-off process, the inversed hole path recovers into the P-region with VG
transferring to zero. Consequently, the accumulated holes in the drift region are swept out
through the inversion layer around the hole path region, accelerating hole extraction to
make the drift zone reach neutrality as soon as possible.

The mixed-mode, clamped, inductive switching simulation is performed to study
the turn-off performance. The simulated devices are set to the same current of 10 A at
the current density of 100 A/cm2. The DC bus voltage (Vbus) is set to 1500 V. The load
inductance Lc load is 1 mH and the circuit is shown in Figure 10a. The gate voltage decreases
from 15 to 0 V to turn off the device. The simulated turn-off process of Con-SGCSTBT and
the proposed DC-CSTBT (with same Von of 1.5 V) are shown in Figure 10b,c. Clearly, the
Toff of the DC-CSTBT is much smaller than that of Con-SGCSTBT, which indicates that the
Eoff of the proposed device is more excellent.
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Figure 10d illustrates the relationship between Eoff and Von for the two different
structures, after changing the peak P-collector doping concentration. Under Von = 1.15 V,
the Eoff of the proposed DC-CSTBT is 6.5 mJ/cm2, which is 36.1% lower than that of the
Con-SGCSTBT (4.15 mJ/cm2). In addition, the switching loss, including Eon and Eoff, are
further compared, as shown below.

Figure 11 shows the tradeoff curves of Von − (Eoff + Eon) for the devices. It is observed
that the tradeoff curves of DC-CSTBT is obviously more optimized than Con-SGCSTBT. This
is mainly due to the presence of both a hole path and emitter electron injection acceleration
techniques, which improve turn-on and turn-off, respectively. For the same Von 1.38 V,
Eoff + Eon of DC-CSTBT is decreased by 35.1% compared with the Con-SGCSTBT. However,
with the Von of 1.14 V, this reduction percentage is still higher. Considering the same
Eoff + Eon of 6.4 mJ/cm2, the Von of the DC-CSTBT can be 25.8% lower than that of the
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Con-SGCSTBT. Therefore, DC-CSTBT have a better tradeoff between Von and Eoff + Eon than
Con-SGCSTBT. Correspondingly, the calculated power loss in high-frequency switching
applications (100 kHz) can be reduced by 32.5% as shown in Figure 11b.
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C. Blocking characteristics

As mentioned above, the breakdown voltage of the trench IGBT is affected by the
deep trench structure. The breakdown voltage of the trench IGBT is lower than that of the
traditional planar type because of the pre-breakdown of trench bottom.

Especially with the introduction of the carrier enhancement layer, the electric field at the
bottom becomes too concentrated. The reason for the high electric field is the largest potential
difference at the trench bottom. The electric potential of the trench is 0 V, which is the lowest
potential at the same depth in the drift region. Breakdown initially occurs at the bottom of the
trench. Some structures have previously been proposed to attenuate the overly concentrated
electric field, such as implanting the P-type doped well at the bottom. However, the conduction
loss will increase significantly because of the drift zone resistance increase. To address this issue,
the proposed DC bias device employs a deeper trench electrode connected with a forward DC
bias to reduce the potential difference at the bottom trench by raising the potential at the shield
gate, thus relieving the electric field at the bottom of the trench effectively. Figure 12a,b show
the impact ionization distribution under same reverse bias at 1800 V. It should be noted that
Con-SGCSTBT shows similar breakdown characteristics as a conventional CSTBT for the same
electric field distribution at the trench bottom, while the proposed device can reduce the peak
impact by about 50% compared with Con-SGCSTBT.
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Figure 12c illustrates the tradeoff relationship between BV and Von of Con-SGCSTBT
and the proposed DC-CSTBT (by changing the doping concentration of the CS layer).
Under the same Von, the proposed device always has a higher BV because of the weakened
electric field at the trench bottom. For Con-SGCSTBT, the BV starts to decrease when Von is
smaller than 1.35 V (reduce the conduction pressure drop by increasing the concentration of
CS). While the proposed device can maintain 1600 V withstand voltage until Von is smaller
than 1.2 V. The present device achieves a better tradeoff relationship.

D. Conduction characteristics

The forward DC bias at the deep shield trench repels positively charged holes because
of mutual repulsion between positive charges, promoting the accumulation of holes near
the trench bottom, as depicted in Figure 13a. Therefore, a large number of holes accumulates
at the emitter side. In order to maintain electrical neutrality, the emitter should emit a
corresponding quantity of electrons. With the increase in carrier doping concentrations
in the drift region, the on-resistance of the device is reduced. Figure 13b shows the
comparison of output characteristics of the proposed device under different forward DC
voltages including 0 V, 3 V and 15 V. It is clear that Von decreases with DC bias rises, as
a higher DC voltage contributes to a stronger hole block effect. Figure 13c compares the
distributions of the hole carrier density along line C2 for DC-CSTBT and with a DC bias
at collector current density J = 100 A/cm2. As the DC bias at the deeper electrode only
contributes to a higher hole carrier density near the emitter, only a little penalty in the
switching losses will be added.
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E. Other characteristics

Output characteristics, transfer characteristics and short circuit characteristics are
also studied. Simulation results show that the JC–VG curve does not change, while the
saturation current and short circuit characteristics are greatly optimized.

Figure 14a shows that the saturation current density is significantly reduced compared
with Con-SGCSTBT, since no current flows through the left half of the proposed DC-CSTBT.
In addition, Figure 14b shows the transfer characteristics (JC–VG curve) of Con-SGCSTBT
and the proposed device under the same Von. The curve of both devices almost overlap,
indicating that the proposed structure only optimizes the device characteristics by adding
a DC bias shield structure, while preserving the basic transfer characteristics of the device.
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Figure 14. (a) Output characteristics of Con-SGCSTBT and DC-CSTBT. (b) Transfer characteristics of
Con-SGCSTBT and DC-CSTBT.

Figure 15 shows short-circuit waves. It indicates that the DC-CSTBT withstands a
significantly longer short-circuit duration time (device failure time is defined when lattice
temperature reaches 1687 K) than that of the Con-SGCSTBT before failure. Owing to
the smaller saturation current density, the short-circuit time of the proposed DC-CSTBT
structure is about 2.48 times longer than that of the Con-SGCSTBT.
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4. Conclusions

A novel DC-CSTBT with additional forward DC bias is proposed and investigated by
numerical simulations. The trench is split into two parts, the upper one serves as a normal
gate electrode while the deeper one is biased by forward DC voltage to block holes from
flowing to the emitter. By combining the enhanced carrier storage effect caused by forward
bias and hole path, the proposed device shows excellent performance. Specifically, the new
structure exhibits a 42.7% decrease in QGC; Eoff and Eon are reduced by 35.1% and 35.9%.
Importantly, the process steps are completely consistent with the existing trench IGBT
devices. Only two simple process steps are added, and only one additional lithography
mask is needed, making the device highly practical with the potential for low cost and a
simple structure.
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