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Abstract: We obtain a transform that relates the standard Bessel–Gaussian (BG) beams with BG
beams described by the Bessel function of a half-integer order and quadratic radial dependence
in the argument. We also study square vortex BG beams, described by the square of the Bessel
function, and the products of two vortex BG beams (double-BG beams), described by a product of
two different integer-order Bessel functions. To describe the propagation of these beams in free space,
we derive expressions as series of products of three Bessel functions. In addition, a vortex-free power-
function BG beam of the mth order is obtained, which upon propagation in free space becomes a finite
superposition of similar vortex-free power-function BG beams of the orders from 0 to m. Extending
the set of finite-energy vortex beams with an orbital angular momentum is useful in searching for
stable light beams for probing the turbulent atmosphere and for wireless optical communications.
Such beams can be used in micromachines for controlling the movements of particles simultaneously
along several light rings.

Keywords: Bessel–Gaussian beam; optical vortex; paraxial propagation

1. Introduction

Among different light beams, there are not many beam families whose propagation in
free space is described analytically. Thus, to predict beams’ behavior upon propagation,
focusing, or other conversions, it is often necessary to use some numerical approaches
which can be inexact and cannot explain the physical effects that can appear or disappear
when some parameters are changed. Thus, finding a new light beam that can be described
analytically is a significant achievement. Among the paraxial vortex light beams that
have an analytical description, the most widely known are the Laguerre–Gaussian [1] or
Bessel–Gaussian beams [2]. Other examples of such beams are hypergeometric Gaussian
beams [3] and modes [4] or generalized Laguerre–Gaussian beams [5].

Starting from the well-known work by F. Gori and co-authors [2], miscellaneous modi-
fications of the Bessel–Gaussian (BG) beams are being investigated with a growing interest.
The BG beams can be generated by an axicon, a light modulator, or other elements [6–8].
Bessel–Gaussian beams are convenient for probing the turbulent atmosphere since, on
one hand, they are of a finite energy like the Gaussian beam and, on the other hand, they
manifest quasi-diffraction-free properties due to the Bessel function [9–12]. As was shown
in [13], BG beams are more resistant to the distortions induced by a turbulent atmosphere
than the Gaussian beam. The authors of [14] demonstrated that in a Kolmogorov-type
turbulent atmosphere, BG beams conserve along a longer distance than the Gaussian
beam. The free-space propagation of BG beams in the THz wavelength range was studied
in [15]. Bessel–Gaussian beams are used for the manipulation of microparticles [16,17]
and for generating entangled pairs of photons in quantum informatics [18,19]. Therefore,
extending the set of different types and modifications of BG beams is a relevant problem.
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In [20], modified BG beams called “frozen waves” were studied. In [21], the propagation of
asymmetric BG beams [22,23] in a turbulent atmosphere was considered.

In this work, we obtain modifications of BG beams, such as square BG beams and
products of the BG beams. For such beams, we derive explicit analytical expressions that
describe their evolution upon propagation in free space. Similar to standard BG beams,
the beams we study are not structurally stable, but they are also composed of a set of
concentric light rings. The number of rings and the light energy between them change
upon the beam’s propagation in free space. In the far field, all the beams studied except
one are similar to the standard BG beam and contain a single light ring with almost no side
lobes. Only one beam, the vortex-free power-function BG beam, contains several rings in
the far field, and their number equals that of the beam order.

2. Bessel–Gaussian Beams and Modulated Bessel–Gaussian Beams

Bessel–Gaussian (BG) beams, first studied in [2], are not structurally stable beams, i.e.,
their transverse intensity distribution changes when the beams propagate in free space.
However, the change is insignificant, and all the intensities keep their shape of concentric
circles. The complex amplitude of the BG beam at an arbitrary distance along the optical
axis z is

BGm(r, ϕ, z|c ) = 1
q(z)

exp

(
c2

4q(z)
− r2

w2
0q(z)

+ imϕ

)
Jm

(
cr

w0q(z)

)
, (1)

where q(z) = 1 + iz/z0, z0 = kw2
0/2 is the Rayleigh range, (r, ϕ) are the polar coordinates

in the transverse plane, m is the topological charge, Jm(x) is the mth-order Bessel function
of the first kind, w0 is the Gaussian beam waist radius, k is the wavenumber of light, c is
a dimensionless (possibly complex) parameter affecting the transverse component of the
wave vector (c/w0 = kr), and k2 = k2

r + k2
z, kz is the longitudinal component of the wave

vector. Here and in the following text, we will use a vertical line to separate variables
and parameters.

The complex amplitude of a BG beam (1) in the initial plane can be expanded into a
series of Laguerre–Gaussian (LG) beams:

BGm(r, ϕ, 0|c ) = exp

(
c2

4
− r2

w2
0
+ imϕ

)
Jm

(
cr
w0

)
= exp

(
c2

8

) ∞

∑
ν=0

c2ν+mLGν,m(r, ϕ)

23ν+m(ν + m)!
, (2)

where the LG beams in the initial plane are described by the following expression:

LGn,m(r, ϕ) = exp

(
− r2

w2
0
+ imϕ

)(
r

w0

)m
Lm

n

(
2r2

w2
0

)
, (3)

Based on the associated Laguerre polynomial Lm
n (x). As can be seen from Equation (2),

when the parameter c is small (c� 1), only the first term in the series is significant, and the
BG beam in this case is close to the LG beam.

In addition to standard BG beams, BG beams with quadratic radial dependence (qBG)
are also known. They were introduced in [24]. Later, in [25], the transformation of these
beams by an optical ABCD system was investigated, and now qBG beams are considered
part of the classification of circular optical beams [26]. In the initial plane, the complex
amplitude of a qBG beam is defined as

qBGm(r, ϕ, 0|c ) = exp

(
− r2

w2
0
+ imϕ

)
Jm/2

(
cr2

w2
0

)
. (4)

As can be seen from Equation (4), the qBG beams depend on a Bessel function of an
integer order when m is even and a Bessel function of a half-integer order when m is odd.
It can also be seen that in contrast with BG beams, the argument of the Bessel function
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depends quadratically on the radial coordinate. The complex amplitude of a qBG beam in
the Fresnel zone is as follows:

qBGm(r, ϕ, z|c ) = 1
√

q+q−
exp

(
−
[

1 + i(1 + c2)
z
z0

]
r2

w2
0q+q−

+ imϕ

)
Jm/2

(
cr2

w2
0q+q−

)
. (5)

The parameters q± in Equation (4) depend on the propagation distance z and the
parameter c:

q± = q±(z) = q(z)± c
z
z0

= 1 + (i± c)
z
z0

. (6)

Equations (5) and (6) reveal that when the value c is large enough (c� 1), the imagi-
nary part of the factor q+q− in the argument of the Bessel and the exponential functions is
small compared to the real part, and the BG becomes approximately propagation-invariant,
i.e., its intensity distribution shape is almost conserved, changing only in scale.

Further, we obtain an integral transform that relates BG beams (1) with qBG beams (4).
It can be shown that this transform is given by

F(r, ϕ, z|a ) =
∞∫
0

BGm(r, ϕ, z|c )Jm/2

(
ac2

4

)
cdc

= 2√
1+a2q2(z)

exp
(
− a2q(z)r2

1+a2q2(z) + imϕ
)

Jm/2

(
ar2

1+a2q2(z)

)
.

(7)

Since

F
(

r, ϕ, z + i · c2

1 + c2

∣∣∣∣1 + c2

c

)
= qBGm(r, ϕ, z|c ),

the complex source idea then reveals a common background of both beams, described in
Equations (1) and (5).

3. Square Bessel–Gaussian Beams

In our works [27,28], we considered double Laguerre–Gaussian (dLG) beams and
square LG beams. Both of these types of beams can be expressed via finite sums of LG beams.
In [29], (Chapter X “Orthogonal polynomials”, Section 10.12 “Laguerre polynomials”), the
following relation between the Laguerre polynomials and the Bessel function is given:

lim
n→∞

[
n−αLα

n

(
r2/n

)]
= r−α Jα(2r). (8)

Thus, it can be seen that when the radial index tends to infinity, the number of light
rings should also tend to infinity, and the radii of these rings are described by the Bessel
function. This leads to the qualitative difference between the Laguerre–Gaussian and the
Bessel–Gaussian beams—the former have a finite number of rings, and the latter have an
infinite number of rings. A natural continuation of the works [27,28] is the investigation of
whether similar solutions to the Helmholtz equation can be obtained that describe square
BG beams or the products of the BG beams.

Here, we consider square BG beams and show that they can be represented as an
infinite sum of BG beams (1). The complex amplitude of a square BG beam (BBG) in the
initial plane reads as

BBGm(r, ϕ, 0|c ) = exp

(
c2

2
− r2

w2
0
+ 2imϕ

)
J2
m

(
cr
w0

)
. (9)

Here, we prefer to scale the parameters of the initial BG beam ( c→ c
√

2 , w0 → w0
√

2)
but keep the Gaussian factor unchanged.
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The complex amplitude of the BBG beam can be obtained by using a generating
function for the squares of the Bessel functions [30]:

∑
ν∈Z

J2
ν(x)(−t2)

ν
= J0

[
x
(

t +
1
t

)]
. (10)

After rather complicated algebra, we reduce the Fresnel transform of the initial com-
plex amplitude (9) to the following series of Bessel functions:

BBGm(r, ϕ, z|c ) = 1
q(z) exp

(
c2

2q(z) −
r2

w2
0q(z)

+ 2imϕ

)
× ∑

ν∈Z
(−i)ν Jm−ν

(
cr

w0q(z)

)
Jm+ν

(
cr

w0q(z)

)
Jν

(
c2z

2z0q(z)

)
.

(11)

Equation (11) indicates that the square BG beams do not conserve their shape upon
propagation in free space but are a superposition of a countable number of the products of
BG beams of the orders whose sum is equal to 2m, i.e., the initial topological charge. It is
interesting to note that in the far field, i.e., when z→ ∞ , the series in Equation (11) reduces
to the power function r2m. Thus, in the far field (and in the focus of a spherical lens), the
square BG beam has the shape of a single light ring without side lobes.

4. Product of Two Bessel–Gaussian Beams

Since the series in Equation (11) contains the product of two similar Bessel functions
depending on r, it seems quite possible that for a product of two different BG beams, instead
of the squared one, we can evaluate the Fresnel transform. Let us introduce the product of
two BG beams in the initial plane z = 0:

dBGm,n(r, ϕ, 0|a, b ) = exp

(
a2 + b2

4
− r2

w2
0
+ i(m + n)ϕ

)
Jm

(
ar
w0

)
Jn

(
br
w0

)
. (12)

Then, in same way as expansion (11) was derived, the initial field (12) leads to the
following solution of the paraxial equation:

dBGm,n(r, ϕ, z|a, b ) = 1
q(z) exp

(
a2+b2

4q(z) −
r2

w2
0q(z)

+ i(m + n)ϕ

)
× ∑

ν∈Z
(−i)ν Jm+ν

(
ar

w0q(z)

)
Jn−ν

(
br

w0q(z)

)
Jν

(
abz

2z0q(z)

)
.

(13)

As can be seen from Equation (13), if n = m and a = b = c, the product of two BG beams
reduces to the square BG beam. It can also be seen that for the case n = b = 0, the series in
(13) collapses to the only term with ν = 0, and the product of two BG beams reduces to the
standard BG beam:

dBGm,0(r, ϕ, z|a, 0 ) = BGm(r, ϕ, z|a ). (14)

Some other particular cases of the dBG beams, as in Equation (13), are also interesting
to mention. If n = −m, then the dBG beam is a vortex-free beam:

dBGm,−m(r, ϕ, 0|a, b ) = (−1)m exp
(

a2+b2

4 − r2

w2
0

)
Jm

(
ar
w0

)
Jm

(
br
w0

)
,

dBGm,−m(r, ϕ, z|a, b ) = (−1)m

q(z) exp
(

a2+b2

4q(z) −
r2

w2
0q(z)

)
× ∑

ν∈Z
iν Jm+ν

(
ar

w0q(z)

)
Jm+ν

(
br

w0q(z)

)
Jν

(
abz

2z0q(z)

)
.

(15)



Micromachines 2023, 14, 1029 5 of 11

Its limiting case, when b vanishes, is a product of the vortex-free BG beam by the
power function:

pBGm(r, ϕ, 0|a ) = 2mm! · lim
b→0

dBGm,−m(r,ϕ,0|a,b )
(−ab)m

= exp
(

a2

4 −
r2

w2
0

)(
r

aw0

)m
Jm

(
ar
w0

)
.

(16)

The beam from Equation (16) can be called a vortex-free power-function BG beam.
Tending the parameter b to zero in Equation (15), we obtain nonzero items of the series for
−m ≤ ν ≤ 0 only. Then, changing the summation index ν→ −ν , we derive the Fresnel
transform of the beam from Equation (16):

pBGm(r, ϕ, z|a ) = 1
q(z) exp

(
a2

4q(z) −
r2

w2
0q(z)

)
×

m
∑

ν=0

(
m
ν

)(
r

aw0q(z)

)m−ν
Jm−ν

(
ar

w0q(z)

)(
iz

z0q(z)

)ν
.

(17)

Although the square and products of the BG beams are given by infinite superpositions
(Equations (11) and (13)), expression (17) indicates that the power-function vortex-free BG
beam in the Fresnel diffraction zone is a finite superposition of similar power-function BG
beams of the orders ν from 0 to m.

In the far field (z� z0), the argument of the Bessel functions in Equation (17) becomes
small. Thus, since Jν(ξ) ≈ (ξ/2)ν/ν! at ξ ≈ 0, the sum in Equation (17) transforms into an
ordinary Laguerre polynomial:

pBGm(r, ϕ, z� z0|a ) ≈ 1
q(z) exp

(
a2

4q(z) −
r2

w2
0q(z)

)
m
∑

ν=0

(
m
ν

)
(−z2

0r2/2z2w2
0)

m−ν

(m−ν)!

= 1
q(z) exp

(
a2

4q(z) −
r2

w2
0q(z)

)
Lm

(
z2

0r2

2z2w2
0

)
.

(18)

As result, in the far field, the pBG beam appears as m light rings.

5. Simulation

In this section, we describe the computational results of the beams from Equations (5),
(13) and (17). All distributions are obtained in two ways: by using the numerical Fresnel
transform, implemented as a convolution with adopting the discrete fast Fourier transform,
and using the theoretical expression. Using the discrete fast Fourier transform is actually
equivalent to computing the convolution integrals via Rieman sums, i.e., splitting the
integration area into rectangles. All intensity distributions obtained in these two ways are
visually indistinguishable, while the phase distributions are different only in low-intensity
areas. This confirms the correctness of the Formulae (5), (13) and (17) for the complex
amplitudes upon space propagation.

Shown in Figure 1 are the intensity and phase distributions of the modulated Bessel–
Gaussian beam (5) in several transverse planes. To obtain a beam with several rings and to
prove that it is approximately propagation-invariant, we choose a large value of the scaling
factor c = 30.

Figure 1 confirms that when the scaling factor c is large enough, the transverse intensity
shape almost does not change upon propagation.

Figure 2 depicts the intensity and phase distributions of a BG beam and of the corre-
sponding square BG beam (9) (11) in several transverse planes.
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beam waist radius w0 = 1 mm, beam order m = 3, scaling factor c = 30, propagation distances z = 0 

(a,b), z = z0/2 (c,d), z = z0 (e,f), z = 2z0 (g,h), and z = 5z0 (i,j). Dashed squares (c,e,g,i) denote the areas 

corresponding to shown phase distributions (d,f,h,j). Green plots (a,c,e,g,i) show the intensity 
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Figure 1 confirms that when the scaling factor c is large enough, the transverse in-

tensity shape almost does not change upon propagation. 

Figure 2 depicts the intensity and phase distributions of a BG beam and of the cor-

responding square BG beam (9) (11) in several transverse planes. 
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(a,b,e,f,i,j,m,n) and a square BG beam (c,d,g,h,k,l,o,p), Equations (9) and (11), in several transverse 

planes for the following computational parameters: wavelength λ = 532 nm, Gaussian beam waist 

Figure 1. Intensity (a,c,e,g,i) and phase (b,d,f,h,j) distributions of the qBG beam (5) in several
transverse planes for the following computation parameters: wavelength λ = 532 nm, Gaussian
beam waist radius w0 = 1 mm, beam order m = 3, scaling factor c = 30, propagation distances
z = 0 (a,b), z = z0/2 (c,d), z = z0 (e,f), z = 2z0 (g,h), and z = 5z0 (i,j). Dashed squares (c,e,g,i) denote the
areas corresponding to shown phase distributions (d,f,h,j). Green plots (a,c,e,g,i) show the intensity
cross-sections.
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Figure 2. Intensity (a,c,e,g,i,k,m,o) and phase (b,d,f,h,j,l,n,p) distributions of a BG beam
(a,b,e,f,i,j,m,n) and a square BG beam (c,d,g,h,k,l,o,p), Equations (9) and (11), in several transverse
planes for the following computational parameters: wavelength λ = 532 nm, Gaussian beam waist
radius w0 = 1 mm, beam orders m = n = 2, scaling factors a = b = 12, propagation distances z = 0 (a–d),
z = z0/2 (e–h), z = z0 (i–l), and z = 2z0 (m–p).
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According to Figure 2, the square BG beam is narrower in the initial plane, and its
side lobes are suppressed due to the squared Bessel function. A narrower distribution
in the initial plane leads to higher space frequencies and thus to higher divergence upon
propagation in free space. This is confirmed by Figure 2g,k,o. A notable feature of the
squared BG beams is the much smaller dark area in the center of the diffraction pattern.

Figure 3 illustrates the intensity and phase distributions of two BG beams with different
parameters, as well as of the beams described in (12) and (13), constructed as their product,
in several transverse planes. For computation based on Equation (13), the series was
bounded by 100 terms.
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Figure 3. Intensity (a,c,e,g,i,k,m,o,q,s,u,w) and phase (b,d,f,h,j,l,n,p,r,t,v,x) distributions of two BG
beams with different parameters (a–d,g–j,m–p,s–v), as well as of the beams described in
Equations (12) and (13), constructed as their product (e,f,k,l,q,r,w,x), in several transverse planes
for the following computational parameters: wavelength λ = 532 nm, Gaussian beam waist radius
w0 = 1 mm, orders of BG beams m = 2 (a,b,g,h,m,n,s,t) and n = 3 (c,d,i,j,o,p,u,v), scaling factors of BG
beams a = 8 (a,b,g,h,m,n,s,t) and b = 5 (c,d,i,j,o,p,u,v), propagation distances z = 0 (a–f), z = z0/2 (g–l),
z = z0 (m–r), and z = 2z0 (s–x). The grids on the intensity distributions are shown to match the radii of
the light rings in different beams.

As can be seen in Figure 3, the intensity distributions of both BG beams in the initial
plane have the shape of a single bright ring (Figure 3a,c), but the first beam has a ring
with a smaller radius and a pale second ring (Figure 3a). Between these rings, there is
a dark, zero-intensity ring, and the multiplication of the complex amplitudes of both
beams (two multipliers in Equation (12)) leads to two bright, light rings (Figure 3e), since
the thick ring in Figure 3c is “cut” into two rings by the dark ring from Figure 3a. This
is a key difference here from the square BG beams, i.e., instead of one dark spot in the
center of a circular light distribution, the diffraction pattern contains a dark ring between
two light rings.

In the initial phase distributions (Figure 3b,d,f), there are rings with phase jumps of
π. The Bessel functions are equal to zero on these rings. However, upon propagation, the
arguments of the Bessel functions become complex, and the function values are nonzero.
Therefore, there are no such phase jumps in Figure 3h,j,l,n,p,r,t,v,x.

Despite the lower topological charge of the first BG beam (m = 2 vs. n = 3), its scaling
factor is, vice versa, greater than that of the second beam (a = 8 vs. b = 5). Therefore,
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upon propagation, it diverges faster, and at a distance of z = z0/2, its light ring has a
greater diameter than the ring of the second BG beam; it is now this ring that is cut by the
minimal-intensity ring of the second beam. Therefore, the beam in Figure 3k,l also has
two light rings, as in the initial plane in Figure 3e,f.

Upon propagation into the Fresnel zone and the far field (rows 3 and 4 in Figure 3),
the light rings of both BG beams almost do not overlap (rings in Figure 3m,o in the Fresnel
zone and rings in Figure 3s,u in the far field). Therefore, after multiplication, these rings
are suppressed, and other rings appear: those that are not seen in the initial plane. Thus,
the diameter of the outer light ring of the product beam (Figure 3q,w) exceeds the ring
diameters of both BG beams.

Figure 4 depicts the intensity and phase distributions of the vortex-free power-function
BG beam (17) in several transverse planes.
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Figure 4. Intensity (a,b,d,f,h,j) and phase (c,e,g,i,k) distributions of the vortex-free power-function
Bessel–Gaussian beam (17) in several transverse planes for the following computational parameters:
wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, beam order m = 3, scaling factor
a = 15, propagation distances are z = 0 (a), z = z0/2 (b,c), z = z0 (d,e), z = 2z0 (f,g), z = 5z0 (h,i), and
z = 10z0 (j,k). Dashed squares (b,d,f,h,j) denote the areas corresponding to shown phase distribu-
tions (c,e,g,i,k).

As can be seen in Figure 4, the intensity distribution in the initial plane consists of
multiple light rings (there are seven rings in Figure 4a). Upon propagation, only two rings
remain; then, in the far field, the number of rings increases to three, which is consistent with
the theory that predicts that there should be m rings in the far field. The phase distribution
is not shown for the initial plane since it is zero, while in other planes, it is seen to be a
rotationally symmetric, and the beam does not contain optical vortices.

Thus, in this section, the numerical simulation confirms our main theoretical ideas.
First of all, the simulation shows that all the derived mathematical expressions are correct.
Second, the hypothesis of the approximate shape-invariance of the modulated BG beams
is confirmed when the scaling factor of the Bessel function is large enough. Third, the
simulation confirms that the vortex-free power-function BG beam contains in the far field
several light rings whose number equals to the beam order. In addition to confirming the
theoretical predictions, the simulation demonstrates a feature of the product of two BG
beams that was not predicted by the above theory. In contrast to the conventional BG beams
that have one bright ring with many side lobes, the products of two BG beams contain
two bright rings in the initial plane, in the Fresnel diffraction area, and in the far field since
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the bright ring of one BG beam in the product is being cut by an intensity at zero or at the
minima of the other BG beam.

6. Conclusions

In this work, we obtained the following results. An integral transform (7) was derived
that relates the standard BG beams, Equation (1), and the modified qBG beams, which are
different from the conventional qBG beams, Equations (4) and (5). As can be seen from
Equation (7), these beams can be treated as the continuous superposition of the standard
BG beams, with the weight function equal to a fractional-order Bessel function. Square BG
(BBG) beams (9) were proposed and studied, and their complex amplitude depends on the
square of the Bessel function. We obtained the complex amplitude of the BBG beams in the
Fresnel diffraction zone in the form of a series of products of three different Bessel functions
(11). As a generalization of square BG beams, we also investigated double BG (dBG)
beams (12), and their complex amplitudes are proportional to the product of two Bessel
functions of different orders and of different scales. The complex amplitudes of such beams
in the Fresnel diffraction zone were also represented in the form of a series of products
of three different Bessel functions (13). We also considered modified BG beams, whose
complex amplitudes are equal to a product of the Bessel function by the power function
of the radial variable (16). This set of pBG beams is a subset of vortex-free BG beams.
When such a beam of the m-th order propagates in free space, it becomes a superposition
of a finite number of similar vortex-free power-function BG beams of the orders from
0 to m. Among the listed modifications of the BG beams, the double BG beams are the
most general. They constitute a four-parametric beam family in which two parameters
are integers (orders) and two parameters are complex-valued. If the complex parameters
become real-valued, they define the beam scales. The square BG beams and the power-
function BG beams are special cases of the double BG beams. When one order and one
scale parameter are both equal to zero, the double BG beams reduce to the conventional
BG beams from [2]. Thus, the family of the considered beams is significantly wider than
the family of the standard BG beams and has two times more degrees-of-freedom. New
varieties of the BG beams considered in this work will be useful for probing the atmosphere,
in wireless communications, microparticle manipulation, and in quantum informatics
for generating entangled pairs of photons. In micromechanics, these laser beams can be
used for controlling the movements of microparticles along circular trajectories [31–33].
For instance, the one-dark-spot distribution of the square BG beams (from Figure 2) can
be adopted for trapping a non-spherical metallic microscopic object and for rotating it
around its center of mass, whereas the two-ring distributions of the double BG beams
(from Figure 3) can be used for guiding metallic particles along circular paths since such
particles, in contrast to dielectric ones, tend toward dark regions instead of bright regions.
In addition, metallic particles tend toward an intensity minimum; thus, the squared BG
beams can also allow the rotation of metallic particles (the intensity between the two bright
rings in Figure 2g,k,o is nearly two times lower than the intensity on these rings). In optical
data transmission, two-ring distributions can be used for redundant information encoding
since it is more likely that medium-induced distortions will destroy one light ring than two.
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