
Citation: Jia, J.; Jin, L.; Jia, X.; You, K.

A Novel Program Scheme for

Z-Interference Improvement in 3D

NAND Flash Memory. Micromachines

2023, 14, 896. https://doi.org/

10.3390/mi14040896

Academic Editor: Xiaoxin Xu

Received: 10 March 2023

Revised: 14 April 2023

Accepted: 20 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Communication

A Novel Program Scheme for Z-Interference Improvement in
3D NAND Flash Memory
Jianquan Jia 1,2, Lei Jin 1,2,*, Xinlei Jia 1,2 and Kaikai You 1,2

1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: jinlei@ime.ac.cn

Abstract: With gate length (Lg) and gate spacing length (Ls) shrinkage, the cell-to-cell z-interference
phenomenon is increasingly severe in 3D NAND charge-trap memory. It has become one of the
key reliability concerns for 3D NAND cell scaling. In this work, z-interference mechanisms were
investigated in the programming operation with the aid of Technology Computer-Aided Design
(TCAD) and silicon data verification. It was found that the inter-cell trapped charges are one of the
factors causing z-interference after cell programming, and these trapped charges can be modulated
during programming. Thus, a novel program scheme is proposed to suppress the z-interference by
reducing the pass voltage (Vpass) of the adjacent cells during programming. As a result, the proposed
scheme suppresses the Vth shift of 40.1% for erased cells with Lg/Ls = 31/20 nm. In addition, this
work further analyzes the optimization and balance of program disturbance and z-interference with
the scaling of cell Lg-Ls based on the proposed scheme.

Keywords: 3D NAND; adjacent gate pass voltage; charge-trapping memory; cell-to-cell z-interference
program

1. Introduction

Due to the rapid development of the information era, 3D NAND memory is widely
used in various applications to fulfill the explosive growth in data demand due to its
good product performance and cost [1,2]. In the future development of 3D NAND, cell
pitch shrinkage will be the inevitable and important way to increase storage density [3,4].
There is a prominent, non-ideal effect, called z-interface, in 3D NAND flash memory. The
manifestation of this non-ideal effect is that the threshold voltage of the cell WLn (victim)
is affected when the cell WLn + 1 (aggressor) is programmed, which manifests as the
shift and broadening of the threshold distribution in the array operations, as shown in
Figure 1. The reading window for stored data is affected by z-interference. With the
cell Lg/Ls shrinkage, z-interference is one of the most critical concerns regarding device
reliability [5–7]. In this situation, z-interference improvement is of great importance for the
development of 3D NAND memory. In addition to process improvement [8], operation
schemes have been reported to improve z-interference by adjusting the read voltage (Vread)
of adjacent cells during the read operation [9–11]. These operation solutions used to
improve z-interference mainly increase the WLn + 1 Vread voltage in order to increase the
inverse electric field, thus reducing the WLn + 1 pattern’s impact on the channel barrier
during WLn reading. However, there is a tradeoff between the read voltage tuning and
read disturbance because of the higher Vread of the adjacent cell gate, which is also one of
the key reliability requirements of 3D NAND flash [12]. Nevertheless, there are few studies
on the improvement of 3D NAND z-interference during the cell programming operation.
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Figure 1. Schematic diagram of z-interference’s impact on the 3D NAND device’s reliability.

In this work, the influence of the adjacent cell WLn ± 1 gate Vpass on z-interference
during programming was investigated for the first time. With the aid of Technology
Computer-Aided Design (TCAD) and silicon data verification, we propose reducing the
adjacent cell WLn ± 1 Vpass to improve the z-interference during programming. A lower
adjacent cell Vpass can reduce the inter-cell trapped electron density and suppress the
channel barrier increase caused by the inter-cell trapped electron. The experimental data
show that there is a 40.1% increase in the z-interference when the adjacent gate Vpass is
reduced from 9 V to 3 V for a cell Lg/Ls = 31/20 nm in the erase pattern.

2. Methods and Principle

We used TCAD simulation to study the z-interference mechanism of 3D NAND
memory and verify the principle with experimental test data. This is a common research
mode in this field, as demonstrated by the reference articles [13–15]. The models used
in TCAD device simulation are as follows: the Shockly–Read–Hall (SRH) model, non-
local tunneling (NLT) model, Poole–Frenkel model and drift-diffusion model. These can
effectively reflect the physical characteristics and have proven useful for explaining many
phenomena of 3D NAND flash [16–18]. In addition, in order to simplify the research,
this paper mainly studies the z-interference of WLn + 1 (aggressor) P7 pattern to the
WLn (victim) erase pattern in the TLC mode, which is the worst case. The typical 3D
NAND charge-trap memory device is a “junction-free” structure in which the transistors
are connected without any junction between the adjacent cells. As an aspect of device
dimension scaling, the cell threshold is more susceptible to, and influenced by, the program
state of the adjacent cells [19].

Analyzing the z-interference mechanism of the simulation in Figure 2, it can be
observed that when the selected WLn (victim) is read after WLn + 1 (aggressor) has been
programmed, the channel inversion electron densities near the target cell are changed. For
z-interference improvement, several works have aimed to decrease the channel barrier with
operation schemes, but most studies have focused on the adjustment of the neighboring
cells’ Vread during the read operation [9–11,16,20]. Other researchers have studied schemes
of non-selected cells’ Vpass to improve the device characteristics during programming in
3D NAND flash, such as cell Vpass disturbance and PGM disturbance [21,22], but they have
not clearly focused on the analysis of the influence of the adjacent cells’ WLn ± 1 Vpass on
z-interference during programming. Additionally, there is no study on the components
and formation factors of WLn (victim) channel barrier increase that arises during WLn + 1
(aggressor) pattern programming.
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In this work, the channel was divided into different regions for z-interference analysis.
Figure 2 mainly demonstrates the z-interference mechanism. As shown in Figure 2, the
channel potential barrier, which is increased due to adjacent cell programming, can be
divided into two regions: Region A and Region B. Region A corresponds to the WLn + 1
cell region. Region B is the inter-cell regime. For Region A, the increase in the channel
potential barrier (the peak of the channel conduction band) is inevitable and irrelevant to
the program pattern with certain device dimensions. Meanwhile, for Region B, compared
with planar 2D NAND devices [23], the inter-cell charge is unique to typical 3D NAND
trap charge memory devices, but it is not necessary for the formation of device patterns. It
should be noted that z-interference can also be improved by suppressing the influence of
Region B, which, to the best of our knowledge, has not yet been clearly studied. This work
provides a further analysis of the effect of Region B on z-interference.

In order to confirm the influence of the Region B electron trap density on z-interference,
TCAD simulation was carried out to compare the z-interference between the “trap-continuous”
and “trap-cut” structures [24]. As there is no trapping layer between two adjacent cells in
the “trap-cut” structure, the z-interference induced by the inter-cell charge is eliminated. The
reading of WLn (victim) is affected only by the pattern of WLn + 1 (aggressor). The lower
the Vth of WLn (victim), the higher the Vth of WLn + 1 (aggressor), and the greater the
change in the channel barrier are, the more apparent the z-interference effect will be. In
Figure 3, the simulation data show that the “trap-cut” structure has a 57.2% increase in
z-interference as compared with the default “trap-continuous” structure. In other words,
as expected, the z-interference can be improved by reducing the impact of the charge in
Region B. Based on the above analysis, the trapped electronic charges in Region B are one
of the reasons for z-interference in 3D NAND memory.
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3. Proposal and Results

From the simulation analysis reported in the second section of this paper, we learn
that the inter-cell charge in Region B is one of the key reasons for the z-interference, and
the capture of these electrons is related to the electric field during the programming. The
regulation of the adjacent cell Vpass is the most effective way to regulate this electric
field; thus, we propose reducing the adjacent cell Vpass during the WLn + 1 (aggressor)
programming phase to decrease the fringing field in the inter-cell region, thereby reducing
the inter-cell charge in Region B to improve the z-interference.

In contrast to Figure 2, Figure 4 demonstrates how to improve z-interference using
the proposed scheme. Figure 4a shows the proposal scheme operation waveform dia-
gram. Figure 4(b1,b2) shows the electric potential and electric field in the programming
operation with the proposed scheme, demonstrating that the potential gradient between
the programming cell and the adjacent cell is increased with the decrease in the adjacent
cell Vpass, leading to an edge electric field distribution range decrease that enables FN
tunneling to occur. Thus, after programming, as shown in the trap charge density analysis
in Figure 4(b3), the proposed scheme reduces the inter-cell trap density, further reducing the
Region B trap charge influence on the channel electrons’ inversion, shown in Figure 4(b4).
Figure 4(b4) shows the change in the channel inversion electron concentration with the
proposed scheme during WLn (victim) reading after WLn + 1 (aggressor) programming.
Figure 4c shows the Vth shift caused by cell-to-cell z-interference during cell pitch scaling.
The experimental data show a 40.1% improvement in the cell WLn + 1 (aggressor) P7
pattern to the WLn (victim) erase pattern with Lg/Ls = 31/20 nm due to the reduction in
the Vpass of the adjacent cell from 9 V to 3 V during programming.

In summary, by simulating and analyzing the channel barrier and electron trap charge
density in Region B, the inter-cell charge was confirmed to have an impact on z-interference.
The proposed scheme reduces the adjacent cell Vpass in the programming operation for
z-interference improvement. The underlying mechanism is the reduction in the inter-
cell charge impact on the channel barrier increase by reducing the inter-cell electron
charge density.
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4. Discussion

This section provides a further discussion of the proposed scheme. The improvement
of the proposed scheme was achieved by changing the electron trap charge distribution in
the programming operation. For WLn + 1 (aggressor) programming according to different
patterns in the TLC mode, there is always a suppression effect of the edge electric fields
when reducing the adjacent cell Vpass. Generally, from the experimental data shown in
Figure 5, we can see that the improvement of the proposed scheme will always be effective
when the WLn + 1 (aggressor) is programmed according to different patterns.
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It is worth mentioning that there is a drawback of adjacent cell Vpass reduction, which
deteriorates the programming disturbance. The difference in channel boosting potential
between the target cell and the adjacent cell will increase with the adjacent cell Vpass
reduction in the inhibit string, leading to band-to-band tunneling and the hot electron
injection effect [21].

As shown in Figure 6b, when the adjacent cell Vpass decreases, this will have an impact
on the channel potential in the inhibit string. The electric field intensity between the target
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cell and adjacent cells will increase in the channel, which will enhance the band-to-band
effect. Part of the hot electrons generated by the band-to-band effect will be injected into the
trap layer due to the hot carrier injection effect, resulting in the deterioration of program
disturbance. The other hot electrons will drift into the channel directly below the target
cell under the action of an electric field, reducing the target cell’s boosting potential and
increasing the potential difference between the channel and the gate. The free electrons in
the channel below the target cell will be injected into the trap layer due to the FN tunneling
effect, resulting in a further deterioration of program disturbance.
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Figure 6. (a) Program disturbance and z-interference inducing Vth shift with different levels of
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impact on the program disturbance.

Therefore, there is an optimal condition for adjacent cell Vpass adjustment, considering
the program disturbance and z-interference. In Figure 6a, the thick, solid line indicates
the net increase in the total Vth shift, which comprehensively considers the z-interference
and the program disturbance. With Lg/Ls shrinkage, the optimization point moves to the
low-voltage region, which, due to the proportion of z-interference increase, influences the
device characteristics’ degradation.

The differences between the two operation schemes in regard to z-interference im-
provement are listed and summarized below in Table 1. One of the schemes is based on the
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adjustment of the adjacent cell Vread during reading, which is the scheme reported in most
articles [9–11], and the other scheme is based on the adjustment of the adjacent cell Vpass
during programming, as proposed in this article.

Table 1. Comparison of the schemes when adjusting the adjacent cell Vread and Vpass.

Z-Interference Improvement
Schemes

Adjusting the Adjacent
Cell Vread during Reading

Adjusting the Adjacent
Cell Vpass during Programming

Operation During Reading During Programming

Principle Adding an additional inverse electric field to
enhance channel inversion

Reducing the negative effect of the
inter-cell charge trap on the channel

inversion

Voltage adjustment range Smaller Larger

Impact Read disturbance Program disturbance

Remark
The improvement effects of these two schemes can be stacked without conflict; both of

these schemes require independent control of the adjacent cell voltage during operation,
which requires an additional voltage source

Firstly, these two schemes are applied in different operations, with the former applied
in the reading operation and the latter applied in the programming operation. Secondly, the
principles of the two schemes are different. The former mainly enhances channel inversion
by increasing the Vread bias in order to add an additional electric field, and the latter mainly
reduces the negative effect of the inter-cell charge trap on channel inversion. Finally, the
negative effects of the two schemes are also different. The former can cause a deterioration
of the reading disturbance, but the latter can increase the programming disturbance. Based
on these negative effects, there are also differences in the adjustable bias range.

It is worth mentioning that the improvement effects of these two schemes can be
stacked without conflict. Compared to the conventional scheme, both of these schemes
require independent control of the adjacent cell voltage during operation, which requires an
additional voltage source. Thus, this scheme will increase the dynamic power consumption
and entails a circuitry overhead (area). However, this increase is completely acceptable for
NAND chip operation and circuitry design.

5. Conclusions

The z-interference is the most important factor affecting the device characteristics
during 3D NAND cell shrinkage. The z-interference mechanism is the channel barrier
increase observed after WLn + 1 (aggressor) programming. The inter-cell charge in the
trap layer is partially responsible for the channel potential barrier increase, which can
be modulated during programming. Thus, z-interference can be improved during the
programming operation. This work clearly explains, for the first time, how the voltage of
adjacent cells affects z-interference in 3D NAND devices during programming and proposes
reducing the adjacent cell Vpass in the programming stage to decrease the inter-cell charge
density. Considering the negative effect of Vpass reduction on program disturbance, there
is an equilibrium point between the z-interference and program disturbance. As Lg/Ls
shrinks, the optimized pass bias moves towards the low-voltage region due to the increased
proportion of z-interference, impacting on the device characteristics.
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