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Abstract: In this work, an electrical stability model based on surface potential is presented for
amorphous In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) under positive-gate-bias stress (PBS)
and light stress. In this model, the sub-gap density of states (DOSs) are depicted by exponential
band tails and Gaussian deep states within the band gap of a-IGZO. Meanwhile, the surface potential
solution is developed with the stretched exponential distribution relationship between the created
defects and PBS time, and the Boltzmann distribution relationship between the generated traps and
incident photon energy, respectively. The proposed model is verified using both the calculation
results and experimental data of a-IGZO TFTs with various distribution of DOSs, and a consistent and
accurate expression of the evolution of transfer curves is achieved under PBS and light illumination.

Keywords: a-IGZO TFTs; sub-gap density of states; surface potential; electrical stability model

1. Introduction

Amorphous In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) have been widely in-
vestigated as pixel-switching and driving devices for active-matrix display technology
because they offer high-current drive capacity, low off-state power consumption, and
low-temperature uniform deposition compared with amorphous silicon-based TFTs [1,2].
However, there are high-density sub-gap defects located in the bandgap of a-IGZO, which
cause a change in threshold voltage (∆Vth) and the degradation of subthreshold swing
(∆SS) under electrical and light stress, respectively [3,4]. Correspondingly, the uniformity of
pixel-to-pixel brightness are affected in active-matrix display applications [5,6]. As a result,
electrical stability modeling is required for the accurate stability prediction of a-IGZO TFTs
under external stress conditions.

Up to now, some models for a-IGZO TFTs have been proposed to describe current–voltage
characteristics, such as the surface potential (ϕs)-based compact model, charge-based
capacitance model and unified dc/capacitance compact model [7–9]. Although the band-
tail states and localized deep states are considered in these models for a-IGZO TFTs, the
localized sub-gap density of states (DOSs) is invaluable in solving the model. Actually,
new defects are generated in the device channel or at the a-IGZO/gate dielectric interface
under external stress conditions [10,11]. For example, it has been demonstrated that the
oxygen interstitial (Oi)-related defects are created in the device channel or the interface
region under gate bias stress, originating from weakly bonded oxygen ions in a-IGZO
TFTs [12,13]. Furthermore, the occupied deep-level oxygen vacancy (Vo) defects (energy
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width of ~1.5 eV) near the valence band maximum (VBM) in a-IGZO are ionized into single-
ionized Vo (Vo

+) and double-ionized Vo (Vo
2+)-related defects under the corresponding

incident photon energy [4,14]. In this work, to realize the electrical stability modeling for a-
IGZO TFTs, the stretched exponential distribution relationship for created Oi-related defects
as a function of the PBS time (t) and the Boltzmann distribution relation for generated
Vo-related defects versus the incident photon energy (Eph) are adopted to calculate the ϕs
in the model. The accuracy of the proposed model is confirmed by comparison calculation
results and the experimental data of a-IGZO TFTs with various fabrication conditions. It is
found that the evolution of transfer curves for a-IGZO TFTs under PBS and light stress is in
good agreement between the calculated and experimental results.

The back-gate structure of TFTs was applied for the modeling in this work, as shown
in Figure 1. SiO2 (200 nm) thin film as a gate dielectric layer was grown on a heavily
doped n-type Si substrate by plasma-enhanced chemical vapor deposition (PECVD) at a
temperature of 300 ◦C. Next, a 50 nm a-IGZO film was deposited by pulsed laser deposition
(PLD) at room temperature, and the oxygen partial pressure (Po2) was set at 1 Pa and
3 Pa, respectively. The composition of the ceramic target used was In:Ga:Zn = 2:2:1 in an
atom ratio. The TFT channel region was then formed by optical photolithography and wet
chemical etching. Subsequently, a Ti/Au bilayer was grown by e-beam evaporation for
the source/drain metal electrode. The fabricated TFTs had a channel width and length of
200 µm and 40 µm, respectively. Finally, a SiO2 (100 nm) thin film used as a passivation
layer was grown by PECVD. The samples were annealed in air at T = 300 ◦C.
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Figure 1. Schematic diagram of a-IGZO TFTs used in modeling.

2. Model Calculation
2.1. Surface Potential Model Calculation

For an n-type a-IGZO TFT, the sub-gap trap distribution comprises both the Gaussian
deep states and exponential tails near the conduction band (EC) edge [15,16]. Based on the
gradual channel approximation, the one-dimensional Poisson’s equation is given by

d2 ϕ

dx2 =
q

εigzo

(
nfree + ntail + ng

)
(1)

where the x-direction is defined as perpendicular to the channel direction, as shown in
Figure 1. ϕ is the electrostatic potential, q is the electric charge, and εigzo is the permittivity
of a-IGZO. The free-electron concentration (nfree) in the channel, the electron concentration
of tail states (ntail), and the electron concentration of deep states (ng) can be expressed
as follows:

nfree = niexp

[
E f+q(ϕ−Vch)

qφ f

]
(2)
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ntail = NTexp
[E f − Ec+q(ϕ−Vch)

wtl

]
, (3)

ng =
n

∑
k=1

dNk

1+ 1
g e

Ek−E f −qϕ

qφ f

, (4)

where ni is the intrinsic electron concentration, φ f is the thermal voltage, Vch is the
channel potential, and Ef is the Fermi-level energy; NT = gtail(πkT/sin(πkT/wtl)) when
wtl > kT [17], herein, gtail is the tail states density at EC, and wtl is the conduction band
tail slope. In this work, to solve the integration of Equation (4), the rectangle rule is ap-
plied to subdivide an integral interval into n equal rectangle levels [17]. In Equation (4),
Nk = NGexp

[
−(Ek − E0)

2/
(
qφg
)2
]
, where NG is the peak value of the deep states, Ek is the

center energy value of each discrete rectangle distribution, E0 is the energy value within the
band gap corresponding to the peak of the deep states, qφg is the characteristic decay energy
of the deep states, d is the distance between every two discrete levels, and g is defined
as the degenerescence constant. By combining Equation (1) with the derivative relation,
2(dϕ/dx)

(
d2 ϕ/dx2) = (d/dx)(dϕ/dx)2, the magnitude of the electric field (E(ϕ) = dϕ/dx)

can be written as
dϕ

dx
=

√
2q

εigzo

∫ ϕ

0

(
nfree + ntail + ng

)
dϕ. (5)

By using Gauss’s law at the TFT interface region, the ϕs can be expressed by

VGS −VFB − ϕs =
εigzoE(ϕs)

COX
, (6)

where VGS is the gate-source voltage, VFB is the flat-band voltage, and COX is the oxide
capacitance per unit area. Then, substituting Equation (5) into Equation (6), the relationship
between the VGS and ϕs can be written as

VGS −VFB − ϕs =

√
2qεigzo

{
N f

[
exp
(

ϕs/φ f

)
−1
]
+ Ntl[exp(qϕs/wtl)−1] + Ng

} 1
2

COX
, (7)

in the above Equation (7), N f = nfreeφ f exp
(
−ϕ/φ f

)
, Ntl = ntailφtlexp(−qϕ/wtl), and

Ng = φ f ∑n
k=1 Nkln

[
Ck + exp

(
ϕs/φ f

)]
. Herein, Ck =

1
g× exp

[(
Ek − E f

)
/qφ f

]
.

Using charge-sheet approximation and then taking both the diffusion and drift current
into account, the drain current can be expressed as

IDS(y) = µEW
(

φ f
dQi
dy
−Qi

dϕs

dy

)
, (8)

where µE is the electron mobility, µE = µi(VGS −VFB)
p, µi and p are the fitting parameters,

W is the channel width, y-direction is parallel to the device interface, and Qi is the induced
charge density per unit area: Qi = −COX(VGS − VFB − ϕs) − Qtail − Qg. Herein, the charge
density of the tail state (Qtail) and the charge density of the deep states (Qg) are given by

Qtail =
∫ tigzo

0
−qntaildx = −qnigzotigzo, (9)

Qg =
∫ tigzo

0
−qngdx = −qngtigzo, (10)

and consequently, Equation (8) can be obtained by integrating this along the y-direction.
The result can be expressed as
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IDS = µE
W
L

{
φ f [Qi(ϕsd)−Qi(ϕss)]−

∫ ϕsd

ϕss
Qi(ϕs)dϕs

}
(11)

where L is the channel length, and ϕsd and ϕss are the value of ϕs when Vch = VDS and
Vch = 0 V, respectively. In Equation (11), the integral result of Qi(ϕs) can be written as

G(ϕs) = qtigzo[φtailntail + φ f ∑ n
k=1 Nkln(Ck + e

ϕs
φ f )] (12)

Finally, substituting Equation (12) with Equation (11), the drain current (IDS) equation
can be obtained as

IDS = µE
W
L

{
φ f [Qi(ϕsd)−Qi(ϕss)]− [G(ϕsd)−G(ϕss)]

}
. (13)

2.2. Model Verification

To confirm the accuracy of the model, the ϕs solution is compared with numerical
results with different Vch values and defect distributions.

As shown in Figure 2a,b, it was found that the surface potential characteristics are
in line with numerical results. The parameters for the model calculation are summarized
in Table 1. Meanwhile, to further evaluate the model validity, a comparison of the model
results with the measured experimental data from a-IGZO TFTs fabricated with Po2 values
of 1 Pa and 3 Pa was carried out. It has been demonstrated that DOSs mainly originate
from Vo-related traps in a-IGZO, and the distribution of DOSs is affected by the Po2
during channel layer deposition [18,19]. Correspondingly, the quantity of Vo within the
a-IGZO films grown with Po2 values of 1 Pa and 3 Pa was analyzed by X-ray photoelectron
spectroscopy (XPS). As shown in Figure 3a,b, the binding energy peaks at 530.1 eV, 530.9 eV,
and 532 eV are associated with the O2− ions combined with metal atoms (M-O), Vo, and
OH−, respectively [20,21]. The relative amount of Vo in the a-IGZO films could be described
by the area ratio of the Vo peak to the total O 1s peak, which are 37% and 32% for a-IGZO
films grown with Po2 values of 1 Pa and 3 Pa, respectively. Therefore, the output and
transfer characteristics of devices fabricated with Po2 values of 1 Pa and 3 Pa are used
to compare with those of the model. As shown in Figure 4a,b, the model results are in
accordance with the measured I–V curves for a-IGZO TFTs. The obtained model parameters
are presented in Table 1. Thus, these results confirm that the model can accurately predict
the I–V characteristics for a-IGZO TFTs with various distributions of DOSs. In addition, it
has been reported that new trap states are generated for a-IGZO TFTs under PBS and light
stress, which cause the diminishment in electrical performance [10,22,23]. Therefore, in the
following, the newly created defect DOS model is used to describe the electrical stability of
a-IGZO TFTs under external stress conditions.
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Table 1. Key parameters used in the model.

Parameters Value Unit Parameters Value Unit
q 1.6 × 10−19 C d 0.05 eV

εigzo 11.5 - E0 2.7 eV
COX 1.73 × 10−4 F/m2 µi 5 cm2s−1/V1+p

VFB 0 V p 0.7 -
VDS 10 V W 200 µm
φf 0.026 V L 40 µm
Ef 2.6 eV tigzo 50 nm
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3. Results and Discussions
3.1. The Model of a-IGZO TFTs under PBS

It has been demonstrated that the ∆Vth values for a-IGZO TFTs under PBS are mainly
ascribed to the creation of oxygen-related traps [10,24]. Under PBS, the oxygen interstitials
(Oi) are generated from the weakly bonded oxygen ions in a-IGZO, which are in an
octahedral configuration [Oi(oct)] and are electrically active. The created Oi(oct)-related
defects located above the mid-gap are occupied by trapping electrons and become the
negatively charged defect [Oi

2−(oct)] when the Ef increases under PBS, which causes a
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positive drift in the transfer curve of a-IGZO TFTs [24,25]. Meanwhile, the generated
Oi

2−(oct)-related defects are transformed into deep-level negative-U states due to the
structural relaxation effect. Because the generated Oi(oct)-related defects are distributed
above the mid-gap, the peak value of the Gaussian-distributed deep defects are adjusted to
describe the generation of new defects of a-IGZO TFTs during the PBS process. In previous
reports, the ∆Vth in a-IGZO TFTs under PBS depended on the characteristic trapping time
of carriers (τ) and the dispersion parameter of the barrier energy height (β), which is in
accordance with the stretched exponential distribution relationship [26,27]. Therefore, in
this work, the amount of created Oi-related traps (∆NG) with the increase of PBS time (t)
can be expressed as follow:

∆NG= αV0{1−exp[−( t
τ
)β]} (14)

where α is the fitting parameter relating to the DOSs, and V0 is Vbias-Vth0 (Vbias and Vth0 are
the PBS voltage and the initial Vth of the device, respectively).

Next, substituting Equation (14) into Equation (3), the modified DOSs model can be
written as

Nk = (NG + ∆NG)exp

[
−
(

Ek − E0

qφg

)2
]

. (15)

Finally, the IDS of a-IGZO TFTs under PBS could be calculated by using the proposed
DOSs model.

To validate the proposed scheme, the model is compared with the experimental results
from the evolution of transfer curves versus PBS time for devices fabricated with Po2 values
of 1 Pa and 3 Pa, respectively. The PBS stability of the a-IGZO TFTs is measured at a VGS of
20 V for the PBS time of 5000 s. Based on the proposed DOS model calculation, it is clear
that the peak value of the Gaussian-distributed oxygen-related defects (NG) is increased as
the PBS time increases for the a-IGZO TFTs, as shown in Figure 5a,b. Meanwhile, the ∆NG
after 5000 s of PBS is 1.05× 1018 cm−3eV−1 and 6.8× 1017 cm−3eV−1 for a-IGZO TFTs with
Po2 values of 1 Pa and 3 Pa, respectively. In addition, as shown in Figure 6a,b, it is found
that the evolution of transfer curves for the devices calculated using the defect DOS model
agrees well with the experimental results, and the specific values of the relevant parameters
are listed in Table 2. Correspondingly, the ∆Vth values are 4.5 V and 2.5 V for a-IGZO TFTs
fabricated with Po2 values of 1 Pa and 3 Pa, suggesting that the oxygen-related defects are
suppressed in the channel by the increasing in Po2. This result can also be supported by
XPS analysis. Thus, the presented results confirm that the model could accurately predict
the PBS stability of a-IGZO TFTs.

Table 2. Parameters of the DOSs under PBS.

Parameter Po2 [Pa] Initial
PBS Time [s]

500 2000 5000

NT [cm−3eV−1]
1 1 × 1019 1 × 1019 1 × 1019 1 × 1019

3 1 × 1019 1 × 1019 1 × 1019 1 × 1019

wtl [eV] 1 0.048 0.048 0.048 0.048
3 0.047 0.047 0.047 0.045

NG [cm−3eV−1]
1 3.5 × 1017 7.6 × 1017 1.1 × 1018 1.4 × 1018

3 5.2 × 1017 7.5 × 1017 9.5 × 1017 1.2 × 1018

qφg [eV] 1 0.09 0.09 0.095 0.095
3 0.083 0.085 0.09 0.09

β
1

0.853

τ[s]
1 1544.58
3 1902.39

α
1 6.43 × 1016

3 5.49 × 1016
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3.2. The Model of a-IGZO TFTs under Light Illumination

It has been demonstrated that there are high-density entirely occupied Vo values
existing in the VBM with the energy distribution of ~1.5 eV, which are ionized to Vo

+ and
Vo

2+ under short-wavelength light. During photo-excited ionization processes, the new
unoccupied defect states are generated at the bottom of EC and mid-gap due to the outward
lattice relaxation effect [28,29]. Meanwhile, the values of the activation energy (Ea) for the
photo-induced transition from Vo to Vo

+ and Vo
2+ are ~2.0 eV and ~2.3 eV, respectively.

Figure 7a shows the process of generating Vo-related traps in a-IGZO under monochromatic
light. Since the generated Vo-related defects are mainly distributed near the bottom of the
EC [29,30], the conduction band tail slope is adjusted to describe the creation of Vo-related
defects for a-IGZO TFTs under a light illumination process. It has been reported that the
exponential band tails can be expressed by a generalization of Boltzmann relations in
semiconductor materials [31,32]. Thus, in this work, the Boltzmann distribution relation
is applied to describe the generated Vo-related defects at the bottom of the EC under light
conditions. The amount of change in the conduction band tail slope (∆wtl) versus the
incident photon energy (Eph) can be written as



Micromachines 2023, 14, 842 8 of 11

∆wtl = σ

{
1−
[

1 + exp
(Eph − Ea

γ

)]−1
}

(16)

where σ is the fitting parameter, and γ is the fitting parameter in proportion to the oxygen
partial pressure. Substituting Equation (16) with Equation (4), the density of the tail state
(NTL) model of a-IGZO TFTs under light stress can be given by

NTL = gtailexp
(

E−Ec

wtl + ∆wtl

)
. (17)
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As a result, the IDS of a-IGZO TFTs under light conditions could be calculated by using
the proposed DOS model. To check the proposed scheme, a comparison between the model
and the measured transfer curves of a-IGZO TFTs under monochromatic light at various
wavelengths for 120 s was carried out. According to the proposed DOS model calculation,
it is clear that the ∆wtl is increased as the wavelength of incident light is reduced from
700 nm to 500 nm for the a-IGZO TFTs, as shown in Figure 7b,c. Correspondingly, the
∆wtl values are 0.085 eV and 0.043 eV for a-IGZO TFTs with Po2 values of 1 Pa and 3 Pa
after λ = 500 nm, as shown in Figure 7d. Meanwhile, the evolution of transfer curves for
a-IGZO TFTs calculated using the proposed DOS model is in good accordance with the
experimental results, as shown in Figure 8a,b. The specific values of the relevant parameters
are listed in Table 3. Under light illumination, the transfer curves of TFTs drift toward
the negative direction as the incident wavelength light reduces from 700 nm to 500 nm,
which are induced by the photo-excited electrons from the occupied interface defects and
occupied deep Vo states. In addition, it has been demonstrated that the ∆SS is associated
with the amount of created defects (∆Nt) within the device’s active region [33,34]. It is
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found that the ∆SS values for devices fabricated with Po2 values of 1 Pa and 3 Pa are 0.9
V/dec and 0.5 V/dec after λ = 500 nm, suggesting that deep-level Vo can be suppressed
by increasing Po2. Therefore, these results demonstrate that the model could accurately
predict the light stability of a-IGZO TFTs.

Micromachines 2023, 14, x FOR PEER REVIEW 10 of 12 
 

 

 
Figure 8. Measured evolution of transfer curves as a function of various conditions of monochro-
matic light illumination for a-IGZO TFTs fabricated with different Po2 values compared with model 
results: (a) 1 Pa and (b) 3 Pa. 

Table 3. Parameters of the DOSs under illumination. 

Parameter Po2 [Pa] Initial 
Wavelength of Light [nm] 

750 650 600 550 500 

NT [cm−3eV−1] 
1 1 × 1019 1 × 1019 1.5 × 1019 1.5 × 1019 1.5 × 1019 2.5 × 1019 
3 1 × 1019 1 × 1019 1 × 1019 1 × 1019 1 × 1019 1 × 1019 

wtl [eV] 
1 0.048 0.060 0.073 0.097 0.130 0.133 
3 0.047 0.055 0.060 0.065 0.076 0.090 

NG [cm−3eV−1] 
1 3.5 × 1017 3.5 × 1017 3.5 × 1017 3.5 × 1017 3.5 × 1017 3.5 × 1017 
3 5.2 × 1017 5.2 × 1017 5.2 × 1017 5.2 × 1017 5.2 × 1017 5.2 × 1017 

qϕg [eV] 
1 0.09 0.09 0.09 0.09 0.09 0.09 
3 0.083 0.083 0.083 0.083 0.083 0.083 

Ea [eV] 
1 

2.3 
3 

γ 
1 0.1 
3 0.3 

σ 
1 0.089 
3 0.076 

4. Conclusions 
In this work, an electrical stability model based on surface potential for a-IGZO TFTs 

considering both exponential band tails and Gaussian deep states has been proposed. In 
this model, a reasonable method is presented for solving the surface potential by using 
the stretched exponential and Boltzmann distribution relation to describe the generated 
defects as a function of external stress conditions, the feasibility of which has been demon-
strated by achieving good agreement between calculation results and experimental data 
of a-IGZO TFTs under PBS and light conditions. Thus, the proposed model is accurate 
and useful for predicting the electrical stability of a-IGZO TFTs. 

Author Contributions: Conceptualization, X.H., W.C., C.H., and C.C.; writing—original draft prep-
aration, W. C.; writing—review and editing, X.H., C.H, Z.S. and W.X. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (grant no. 
61904086 and 62274096) and China Postdoctoral Science Foundation (grant no. SBH19006). 

Figure 8. Measured evolution of transfer curves as a function of various conditions of monochromatic
light illumination for a-IGZO TFTs fabricated with different Po2 values compared with model results:
(a) 1 Pa and (b) 3 Pa.

Table 3. Parameters of the DOSs under illumination.

Parameter Po2 [Pa] Initial
Wavelength of Light [nm]

750 650 600 550 500

NT
[cm−3eV−1]

1 1 × 1019 1 × 1019 1.5 × 1019 1.5 × 1019 1.5 × 1019 2.5 × 1019

3 1 × 1019 1 × 1019 1 × 1019 1 × 1019 1 × 1019 1 × 1019

wtl [eV] 1 0.048 0.060 0.073 0.097 0.130 0.133
3 0.047 0.055 0.060 0.065 0.076 0.090

NG
[cm−3eV−1]

1 3.5 × 1017 3.5 × 1017 3.5 × 1017 3.5 × 1017 3.5 × 1017 3.5 × 1017

3 5.2 × 1017 5.2 × 1017 5.2 × 1017 5.2 × 1017 5.2 × 1017 5.2 × 1017

qφg [eV] 1 0.09 0.09 0.09 0.09 0.09 0.09
3 0.083 0.083 0.083 0.083 0.083 0.083

Ea [eV]
1

2.33

γ 1 0.1
3 0.3

σ
1 0.089
3 0.076

4. Conclusions

In this work, an electrical stability model based on surface potential for a-IGZO TFTs
considering both exponential band tails and Gaussian deep states has been proposed. In
this model, a reasonable method is presented for solving the surface potential by using the
stretched exponential and Boltzmann distribution relation to describe the generated defects
as a function of external stress conditions, the feasibility of which has been demonstrated
by achieving good agreement between calculation results and experimental data of a-IGZO
TFTs under PBS and light conditions. Thus, the proposed model is accurate and useful for
predicting the electrical stability of a-IGZO TFTs.
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