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Abstract: As a MEMS gyroscope is susceptible to environmental interference, its performance is
degraded due to random noise. Accurate and rapid analysis of random noise of MEMS gyroscope is
of great significance to improve the gyroscope’s performance. A PID-DAVAR adaptive algorithm
is designed by combining the PID principle with DAVAR. It can adaptively adjust the length of the
truncation window according to the dynamic characteristics of the gyroscope’s output signal. When
the output signal fluctuates drastically, the length of the truncation window becomes smaller, and
the mutation characteristics of the intercepted signal are analyzed detailed and thoroughly. When
the output signal fluctuates steadily, the length of the truncation window becomes larger, and the
intercepted signals are analyzed swiftly and roughly. The variable length of the truncation window
ensures the confidence of the variance and shortens the data processing time without losing the signal
characteristics. Experimental and simulation results show that the PID-DAVAR adaptive algorithm
can shorten the data processing time by 50%. The tracking error of the noise coefficients of angular
random walk, bias instability, and rate random walk is about 10% on average, and the minimum
error is about 4%. It can accurately and promptly present the dynamic characteristics of the MEMS
gyroscope’s random noise. The PID-DAVAR adaptive algorithm not only satisfies the requirement of
variance confidence but also has a good signal-tracking ability.

Keywords: MEMS gyroscope; dynamic Allan variance; gyroscope array; Allan variance

1. Introduction

MEMS gyroscope plays an important role in industrial equipment, inertial naviga-
tion systems, and other fields because of their small size and low power consumption [1].
However, the complexity of MEMS gyroscope processing and the variability of the operat-
ing environment result in a lot of random noise in the gyroscope’s output signal, which
seriously affects the performance of MEMS gyroscopes [2,3]. Therefore, to improve the
accuracy of the MEMS gyroscope, it is necessary to comprehensively analyze the random
noise characteristics of the MEMS gyroscope and assess its performance. At present, the
random error modeling methods of MEMS gyroscopes mainly include the autocorrelation
analysis method, power spectral density method, and Allan variance analysis method.
Among them, the autocorrelation analysis method requires too much data acquisition time
and has a poor analysis effect on error. The power spectral density method is applicable to
frequency domain analysis, the power spectral density curves of errors are easy to overlap,
making it difficult to separate errors [4,5]. It is worth noting that when the method converts
the frequency domain results into time domain characteristics, further analysis and pro-
cessing lead to a large workload and time-consuming. The Allan variance analysis method
is simple in its calculation and can identify noise and quantify the statistical contribution
of each kind of noise in random error. The DAVAR method is a combination of Allan
variance and window function, it can not only identify the random error of MEMS gyro
array, but also show the stability of random error over time. Reference [6] systematically
introduced the basic theoretical knowledge of Allan variance modeling inertial sensor
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error term and expounded the implementation effect in different levels of inertial sensor
modeling. Reference [7] proposed a fast DAVAR algorithm in the case of missing data. The
results showed that the fast DAVAR method could significantly reduce the calculation time.
Reference [8] extended fast DAVAR to discontinuous time series. The improved DAVAR
could not only handle discrete data but also consume less computing time. Reference [9].
Proposed an improved fast DAVAR algorithm based on selected correlation time τ. When
the amount of data was large, the consumed time was 1/186 that of the ordinary DAVAR
algorithm, which greatly reduced the calculation time. Reference [10] proposed a time-
varying window dynamic Allan variance method based on fuzzy control. Experimental
results showed that the method could effectively identify the characteristics of fiber optic
gyroscopic dynamic signals, and the performance evaluation index improved by at least
30%. Reference [11] improved the dynamic Allan variance by establishing a dynamic noise
model and using a new truncation window based on entropy features. The results showed
that the dynamic Allan variance could extract noise features well.

In order to solve the problems of low accuracy, long data processing time, and poor
tracking ability of noise characteristics when using the traditional DAVAR method to
analyze MEMS gyro’s noise, a PID-DAVAR adaptive algorithm combining PID principle
and DAVAR is designed. The gyro’s angular rate signal is dynamically intercepted in
real-time, and the length of the truncation window is adaptively adjusted according to
the characteristics of the gyro’s output signal. The adaptive adjustment of window size
not only meets the requirement of variance confidence, but also shortens the running time
owning good signal tracking ability, and high efficiency.

This article is organized as follows. In Section 2, principles of Allan variance and the
character analysis of five random noise terms are introduced. In Section 3, principles of dy-
namic Allan variance are introduced in detail. In Section 4, by introducing the PID principle,
the PID-DAVAR adaptive algorithm is proposed, and the calculation process of the algo-
rithm is gradually introduced. In Section 5, the effectiveness of the PID-DAVAR adaptive
algorithm is verified by vibration experiments. The conclusion is given in Section 6.

2. Allan Variance Principle
2.1. Principle of Conventional Allan Variance

Allan variance is a time-domain analysis method proposed by David Allan of the
National Bureau of Standards (NBS) in the mid-1960s as a single data analysis method,
can also be added as a frequency domain analysis technique [12]. It can analyze the gyro
parameters and identify error terms, calculate and characterize all kinds of noise in the
output signal of MEMS gyroscope [13,14].

The sampling period of the MEMS gyroscope is set as τ0, a total of N angular rate data
were sampled, and N data were evenly divided into D(D = N/m) groups, each consisting
of m(m ≤ (N − 1)/2) data. The average value of each group is:

ωi(m) =
1
m

m

∑
j=1

ω(i−1)m+j, (i = 1, 2, · · · , D) (1)

The estimation formula of Allan variance [15,16] is:

σ2(τ) =
1
2

〈
(ωi+1(m)−ωi(m))2

〉
=

1
2(D− 1)

D−1

∑
i=1

[ωi+1(m)−ωi(m)]2 (2)

where 〈 〉 represents the overall average of the data, the correlation time is τ = mτ0, ωi(m) is
the average angular rate of the group i, and i is the grouping number (i = 1, 2, · · · , D− 1).

2.2. Characterization of Five Typical Random Noise Terms

The error of MEMS gyroscope is generally divided into deterministic error and random
error. The deterministic error is compensated by experimental calibration, while the random



Micromachines 2023, 14, 792 3 of 15

error is accidental and random, which changes with time. To reduce the influence of
random error on the gyroscope, the noise characteristics are identified by Allan variance,
and the software algorithm is used to compensate, so as to improve the accuracy of the
gyroscope [17,18]. Typical MEMS gyroscope random errors include quantization noise
(QN), angular random walk (ARW), bias instability (BI), rate random walk (RRW), and
rate ramp (RR) [19]. The relationship between these five types of noise terms and Allan
variance is derived in Equations (3)–(7).

1. Quantization noise refers to a high-frequency noise generated during the conversion
of digital signals to analog signals. The Allan variance is expressed as:

σ2
QN(τ) =

√
3Q
τ

(3)

2. Angle random walk is high-frequency noise caused by MEMS gyro angular rate
random white noise integration. The Allan variance is expressed as:

σ2
ARW(τ) =

N2

τ
(4)

3. Bias instability refers to the low-frequency bias drift caused by the flicker noise of
electronic circuits, environmental noise, and other components. The Allan variance is
expressed as:

σ2
BI(τ) =

2B2ln2
π

≈
(

B
0.6648

)2
(5)

4. Rate random walk refers to the random error generated by integrating the power
spectral density of the bandwidth angular acceleration signal. The Allan variance is
expressed as:

σ2
RRW(τ) =

K2τ

3
(6)

5. Rate ramp refers to the extremely slow monotonic change of the MEMS gyroscope
during the long-term output process. The Allan variance is expressed as:

σ2
RR =

R2τ2

2
(7)

Assuming that these five random error sources are independent of each other, the total
Allan variance is the sum of the variances of various error sources, namely:

σ2
all =

3Q2

τ2 +
N2

τ
+

(
B

0.6643

)2
+

Kτ2

3
+

R2τ2

2
(8)

Equation (3) is fitted by the least square method, and the total Allan standard deviation
σall is:

σall ≈
2

∑
i=−2

Aiτ
i/2 (9)

According to the fitting coefficient, the parameter estimation can be obtained, as shown
in Table 1.
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Table 1. Parameter estimation and slope of noise term.

Main Noise Terms Parameter Estimation Slope Value

Quantization Noise A−2/
√

3 −1
Angular Random Walk A−1 −1/2

Bias Instability 1.505A0 0
Rate Random Walk

√
3A1 1/2

Rate Ramp
√

2A2 1

3. Principle of DAVAR

The conventional Allan variance is generally used to analyze the stability of the
error signal [20], which is suitable for the ideal time-varying signal analysis and process.
However, in the actual inertial navigation application environment, the signal shows
obvious instability in a very short time. To accurately analyze the random noise in the
MEMS gyroscope’s signal, the DAVAR method is used to analyze the gyroscope’s output
signal, and accurately represent the real-time characteristics of the MEMS gyroscope’s
random noise [21,22]. The specific steps are shown in Figure 1, and described as follows:

(1) Fix an analysis point, let t = t1;
(2) Take the analysis point t1 as the center, the fixed length L(t1) is selected to intercept

the original output signal;
(3) Take the signal intercepted in step (2) as the research object, the Allan variance σ2(t1, τ)

is calculated;
(4) Continue to select another time analysis point, namely t = t2. The selection of t2

should make the intercepted signal data overlap with the intercepted data of the
previous time analysis point t1, repeat steps (2)~(4) to obtain Allan variance σ2(t2, τ).
Analogously, piecewise estimation is performed through a moving window, and the
Allan variance set σ2(tN , τ) is obtained by multiple calculations;

(5) The Allan variance set σ2(t1, τ), · · · , σ2(tN , τ) are arranged in chronological order,
which corresponds to different time analysis points t and different interception inter-
vals τ. It is reflected in the form of a 3D graph, which characterizes the stability of
real-time measurement of the MEMS gyroscope’s signal.
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Considering the continuous situation, assuming that y(t) is the angular rate data
collected by the MEMS gyroscope, the output signal y(t′) is intercepted in the window
interval (t− L/2) ≤ t′ ≤ (t + L/2), and the truncated signal is expressed in mathematical
form as:

yL
(
t, t′
)
= y

(
t′
)

PL
(
t− t′

)
(10)

where, yL(t, t′) is truncated data of MEMS gyro’s signal. L is the length of the truncation
window, it is assumed to be odd. PL(t) is the function of truncation window length, as
shown in Equation (11).

PL(t) =
{

1 , |t| ≤ L/2
0 , else

(11)

No matter which window form is selected, t always represents the center of the
rectangular window. By convoluting truncated data yL(t, t′) and the Allan window Aτ(t′),
a continuous growth process is constructed. It can be written as:

∆
(
t, t′, τ

)
= Aτ

(
t′
)
∗ yL

(
t, t′
)
=
∫ +∞

−∞
Aτ

(
t′ − t′′

)
yL(t, t′′ )dt′′ (12)

where, the star sign stands for convolution, and Aτ(t′) is the Allan window, defined as:

Aτ

(
t′
)
=

{
− 1

τ , 0 ≤ t′ ≤ τ;
1
τ , −τ ≤ t′ < 0;

(13)

where the variables in Equation (13) need to meet the conditions: t− (L/2− τ) ≤ t′ ≤
t + (L/2− τ), 0 < τ ≤ τmax.

τmax is the maximum observation interval. Here, we can set τmax as:

τmax =

⌊
L
3

⌋
(14)

In Equation (14), b c is the symbol that is rounded down to the nearest integer. Substi-
tuting Equation (12) into Equation (2), it can be written as:

σ̂2
y (t, τ) =

1
2

〈
∆2(t, t′, τ

)〉
=

1
2(L− 2τ)

t+L/2−τ∫
t−L/2+τ

∆2(t, t′, τ
)
dt′ (15)

The dynamic Allan variance is the expected value of Equation (15), that is:

σ2
DAVAR(t, τ) = E

[
σ2

y (t, τ)
]
=

1
2

E
[〈

∆2(t, t′, τ
)〉]

(16)

4. Dynamic Allan Variance Based on Adaptive PID Principle
4.1. PID Principle in PID-DAVAR Adaptive Algorithm

The traditional DAVAR method used a rectangular window with a fixed window
length to intercept the output signal of the MEMS gyroscope. However, DAVAR with a
fixed window length is difficult to meet the requirements of MEMS gyroscope’s signal
accuracy identification in the whole time domain. If the data intercepted by the window
is long, the dynamic tracking ability of the DAVAR method will be greatly weakened,
resulting in a small gap with the Allan variance, which cannot represent the characteristics
of random noise in detail and is insensitive to the tracking of burst signals; If the data
intercepted by the window is short, although it can achieve good tracking effect, it will
lose a certain confidence of variance, resulting in a large analysis error [23,24]. Therefore, a
method of adjusting the length of the DAVAR window based on the adaptive PID principle
is proposed. The length of the truncation window is adjusted adaptively to achieve better
tracking ability and ideal variance confidence [25,26].
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PID is a linear combination of the proportion (P), integral (I), and differential (D) of
the error in the feedback system. The error e(t) is obtained by subtracting the input value
x(t) from the actual output value y(t). It can be expressed as:

e(t) = x(t)− y(t) (17)

The ideal PID principle can be expressed as:

u(t) = KP

[
e(t) +

1
TI

∫
e(t)dt + TD

de(t)
dt

]
(18)

where, u(t) is the output value at a time t, KP is the proportional coefficient, TI is the
integral time constant, and TD is the differential time constant. The error e(t) is used as the
input and u is used as the output.

Because Equation (18) contains mathematical algorithms such as integral and differen-
tial, it is difficult to program in the computer control system, so it needs to be transformed
into a discrete control algorithm. Therefore, Equation (18) is transformed into a transfer
function form:

G(s) =
U(s)
E(s)

= KP

(
1 +

1
TIs

+ TDs
)

(19)

Equation (18) is discretized, and many sampling time points KT are used instead of
continuous time t. The integral part is added, and the differential part is expressed by
increment. Let t ≈ kT, so that:

t∫
0

e(t)dt ≈ T
k

∑
j=0

e(jT) = T
k

∑
j=0

e(j) (20)

de(t)
dt
≈ e(kT)− e((k− 1)T)

T
=

e(k)− e(k− 1)
T

(21)

Among them, k(k = 0, 1, 2, 3, . . .) is the sampling time point. T is the sampling period.
In order to represent clarity and reduce the calculation time, the value of T is reduced, and
then e(kT) ≈ e(k) in Equation (21).

Substitute Equation (20) and Equation (21) into Equation (18) to get:
E(k) = [e(k)− e(k− 1)]

u(k) = KP

[
e(k) + T

TI

k
∑

j=0
e(j) + TD

T E(k)

]
(22)

Simplifying Equation (22) can be redescribed as:
E(k) = [e(k)− e(k− 1)]

u(k) = KPe(k) + KI
k
∑

j=0
e(j) + KDE(k) (23)

Equation (23) can also be called position PID control. Where, u(k) is the output of the
kth sampling, e(k) is the error of the kth sampling, e(k− 1) is the error of the (k − 1)th sam-
pling, KI = KP

T
TI

is the integral coefficient, and KD = KP
TD
T is the differential coefficient.
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It can be seen from Equation (23) that the biggest disadvantage of using this algorithm
to program is that each output of the system is closely related to the cumulative error at
all times. Each calculation needs to accumulate an error at each time, resulting in a large
amount of calculation and waste of computing resources. In order to avoid the above
problems, using incremental PID algorithm, it can be seen from Equation (23):

E(k− 1) = [e(k− 1)− e(k− 2)]

u(k− 1) = KPe(k− 1) + KI
k
∑

j=0
e(j) + KDE(k− 1) (24)

By subtracting Equation (23) from Equation (24):

∆u(k) = Kp[e(k)− e(k− 1)] + KIe(k) + KD[e(k)− 2e(k− 1) + e(k− 2)] (25)

where, ∆u(k) is the increment of the output value at the kth sampling, and e(k− 2) is the
error at the (k − 2)th sampling. The incremental PID algorithm does not need cumulative
calculation and only needs one calculation cycle to correct the error. The whole system has
strong fault tolerance, convenient implementation, and wide application.

4.2. PID-DAVAR Adaptive Algorithm

In order to better analyze the dynamic characteristics of the MEMS gyroscope’s random
noise [27], the PID-DAVAR adaptive algorithm is proposed. It can automatically adjust the
length of the truncation window according to the fluctuation of the MEMS gyro’s signal [28].
The adaptive calculation is performed every t0 time. The deviation index ε of the data
needs to be calculated in this truncation window before PID-DAVAR adaptive algorithm.

ε = σ− dave (26)

where, σ is the standard deviation of the data in the truncation window, dave and is the
average value of the data in the truncation window.

The specific flow chart is shown in Figure 2. The premise of the PID-DAVAR adaptive
algorithm is to input the measured MEMS gyroscope original signal, sampling time T,
set the initial window length L0, and the initial deviation index ε0 = 0. The deviation
index εk is calculated by Equation (26). The deviation index εk can be regarded as e(k) in
Equation (25). The difference between εk and εk−1 is multiplied by Kp as the proportional
term of the output of the PID-DAVAR adaptive algorithm. The integral term and differential
term are also replaced by the deviation index εk. The output of the PID-DAVAR adaptive
algorithm is added to the previous window length Lk−1 to obtain the current window
number Lk. According to the length of current windows Lk, the Allan variance at tk can
be calculated. ∆t is the time interval between two adjacent truncation windows. When
tk < T the tk is shifted by ∆t and continues to enter the calculation cycle of Allan variance.
When tk ≥ T all the calculated Allan curves are superimposed in chronological to obtain
the DAVAR 3D diagram.

When the fluctuation deviation index ε is large, the output data of the MEMS gyroscope
fluctuates violently. At this time, the length of the truncation window is reduced, the
instability of the data is accurately characterized, and a better tracking effect is achieved.
When the fluctuation deviation index ε is small, the output data of the MEMS gyroscope is
stable. At this time, the length of the truncation window should be increased, which not only
highlights the stationary characteristics of the data but also ensures the variance confidence
of DAVAR. This algorithm can adaptively adjust the length of the window according to
the fluctuation characteristics of the data, realizing the real-time tracking of unstable data
and ensuring the variance confidence of DAVAR. Meanwhile, it also reduces the amount of
calculation, shortening the running time and improving computational efficiency.
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5. Experimental

In order to verify the PID-DAVAR adaptive algorithm, experiments were performed at
a room temperature of 25 ◦C. The MEMS gyroscope with the model MGZ211HC was placed
on the vibration tester platform to collect the dynamic output signal. The STM32F2103MCU
communicated with the MGZ211HC gyroscope through full-duplex SPI communication.
The sampling frequency was set to 100 Hz and the sampling interval was 0.01 s. In order to
ensure the integrity of the data, the data was continuously collected and sent to the PC for
recording in real-time by USART. The experimental device and output signal are shown in
Figures 3 and 4.

The MEMS gyroscope’s original output signal is shown in Figure 4. The vibration
platform starts to vibrate at t = 40 s, the vibration frequency is 60 Hz, and the duration is
30 s. The second and third vibrations started at t = 230 s and t = 460 s, respectively. The
vibration frequencies are 65 Hz and 70 Hz, and the duration times are both 50 s. Then,
DAVAR is used to analyze the vibration data, and the length of the truncation window is
set to L = 1001 and L = 3001, the traditional DAVAR method and the PID-DAVAR adaptive
algorithm are analyzed respectively. The results are shown in Figure 5.
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As can be seen in Figure 5, the MEMS gyroscope’s output signal behaves differently
for varying window lengths. When the truncation window of length L = 1001, the data
fluctuation is not stable, and the curve has more inflection points, the difference between the
maximum and minimum values of Z-axis data fluctuation is 418.28. When the truncation
window of length L = 3001, the fluctuation of the data becomes stable and the curve
is smooth, the difference between the maximum and minimum values of Z-axis data
fluctuation is 275.19. When the length of the truncation window is adaptive, the output
signal of the MEMS gyroscope changes drastically under vibration. In the absence of
vibration, the signal is stable and the curve is smooth, the difference between the maximum
and minimum values of Z-axis data fluctuations is 386.71.
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As the length of the truncation window is adaptively adjusted, the number of windows
changes with the DAVAR calculation process as shown in Figure 6. Kurtosis is used to
represent the degree of fluctuation of data. At t = 41 s–76 s, t = 234 s–291 s, and t = 63 s–519 s,
the length of the truncation window gradually decreases with the fluctuation of the kurtosis.
The larger the kurtosis value, the smaller the corresponding truncation window length to
ensure the dynamic tracking effect of the gyroscope’s signal. By automatically adjusting the
length of the truncation window, the algorithm accurately and clearly shows the unstable
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characteristics of the MEMS gyroscope’s signal, shortens the running time, and improves
the operating efficiency.
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Taking the data in t = 234 s–291 s as an example, the tracking ability and data processing
time of the fixed window and adaptive window are compared in Table 2. The CPU model
used in this paper is Intel (R) Core (TM) i3-10100F, and the RAM of the machine is 32.0 GB.

Table 2. Mutation Point and Total Time Comparison Table.

Window Length Mutation Start
Point (s)

Mutation End
Point (s) Total Time (s)

Mutation Reference Value 237.3 286.3
1001 231.6 289.7 20.87
3001 218.8 296.5 89.46

Adaptive Window 235.5 285.4 8.65

It can be seen from Table 2 that the starting point of data mutation under the PID-
DAVAR adaptive algorithm is t = 235.5 s, which is closest to the mutation reference value
t = 237.3 s. It shows that the PID-DAVAR adaptive algorithm has a better tracking ability
for abrupt signals than fixed window DAVAR. The total time is 8.65 s, which is nearly
10 times less than the fixed window DAVAR. It can be seen that the PID-DAVAR adaptive
algorithm can not only characterize the fluctuation and mutation characteristics of MEMS
gyroscope signals but also shorten the time of data processing.

In order to verify the tracking ability of the PID-DAVAR adaptive algorithm to random
error, angle random walk, bias instability, and rate random walk are selected for identifi-
cation analysis. Figure 7 shows the variation curves of noise coefficients under different
window lengths.

As the gyroscope is in a static state (t = 0–40 s, t = 77–233 s, t = 292–465 s, t = 520–600 s)
in Figure 7, the coefficient of each noise is small without obvious fluctuation. As the shaker
starts to vibrate at 60 Hz, 65 Hz, and 70 Hz (t = 41–76 s, t = 234–291 s, t = 463–519 s), the
noise terms of the gyroscope change significantly. When the shaker stops vibrating, all the
noise terms of the gyroscope are restored to the previous state. When L = 1001, the three
noise coefficients of the gyroscope change significantly under dynamic conditions, and it is
difficult to accurately locate the mutation point of the signal. When L = 3001, the three noise
coefficient curves of the gyroscope are relatively smooth, and it is difficult to determine the
specific location of the mutation. Using the PID-DAVAR adaptive algorithm, the mutation
trend is slow and the steady state can be restored at the fastest speed. The algorithm can
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not only clearly obtain the position of the mutation point, but also accurately express the
variation characteristics of the noise coefficient under dynamic conditions.
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The angular rate signal of MGZ211HC gyro acquired at room temperature and sta-
tionary state is calculated by Allan variance. The calculated angular random walk, bias
instability, and rate random walk are used as reference values. In order to verify the
tracking ability and variance confidence of the PID-DAVAR adaptive algorithm, 100 sets of
sample data are selected to calculate the average value of the three noise coefficients, which
are compared with the reference values. The comparison results are shown in Table 3.
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Table 3. Noise coefficients on different window lengths.

Title 1 N/(◦)·h−1/2 B/(◦)·h−1 K/(◦)·h−3/2

Reference Value 1.72 18.89 102.28
1001 2.01 14.71 91.04
3001 1.99 7.86 34.07

Self-Adaptation 1.79 15.32 95.76

When L = 1001, the length of the truncation window is fixed to 1001 data. At this
time, fewer data are selected, which leads to obvious changes in the coefficients of angular
random walk, bias instability, and rate random walk. The values are: 2.01(◦) · h−1/2,
14.71(◦) · h−1, and 91.04(◦) · h−3/2. These three coefficients have large errors compared
with the standard values. Therefore, the setting of this window length does not guarantee
the MEMS gyro variance confidence. When L = 3001, the length of the truncation window
is fixed to 3001 at this time. Due to the large number of selected data, the angle random
walk, bias instability, and rate random walk coefficients do not change significantly, and
the values become smaller, which are 1.99(◦) · h−1/2, 7.86(◦) · h−1, and 34.07(◦) · h−3/2,
respectively. Compared with the reference value, the error between the two is larger and
the calculation time is prolonged. Therefore, the setting of this window length cannot
accurately represent the dynamic characteristics of the MEMS gyroscope’s random noise.
When the window length is adaptive, the length of the truncation window is variable.
The larger the fluctuation of the data, the shorter the window length, and vice versa. The
coefficients of angular random walk, bias instability, and rate random walk are closer to
the reference value. Their values are 1.79(◦) · h−1/2, 15.32(◦) · h−1, and 95.76(◦) · h−3/2,
which differ from the reference value by 0.07(◦) · h−1/2, 3.57(◦) · h−1, and 6.62(◦) · h−3/2

respectively. The errors are 4%, 19%, and 6% respectively, and the average error is about
10%. By using adaptive window length based on the adaptive PID principle, PID-DAVAR
adaptive algorithm can describe the dynamic characteristics of MEMS gyro’s random
noise precisely with fewer computing resources, ensuring the confidence of variance and
high efficiency.

6. Conclusions

Random noise is a key factor affecting the performance improvement of the MEMS
gyroscope. It is necessary to dynamically analyze and identify various noise items in
MEMS gyroscope. In order to dynamically analyze the random noise characteristics of
the MEMS gyroscope, PID-DAVAR adaptive algorithm is proposed in this paper. The
PID-DAVER adaptive algorithm combines the PID principle and the DAVAR method to
realize the adaptive adjustment of the truncation window’s length. The algorithm can
adjust the length of the truncation window according to the size of the data fluctuation
kurtosis. The larger the kurtosis is, the shorter the length of the truncation window, and
the better the tracking effect of the abrupt signal. The smaller the kurtosis is, the longer the
truncation window length is, and the signal is stable and the curve is smooth. According
to the experimental results, the noise coefficient calculated by the PID-DAVAR adaptive
algorithm is more accurate than the traditional DAVAR method. The average error of the
coefficients of angular random walk, bias instability, and rate random walk is only 10%,
and the minimum coefficient error reaches 4%. It only takes 8.65 s to calculate and draw the
DAVAR three-dimensional diagram of 60,000 data. The algorithm saves a lot of computing
resources and shortens the calculation time. It is beneficial to realize real-time online
analysis and error compensation of MEMS gyro dynamic noise. The PID-DAVAR adaptive
algorithm effectively guarantees the variance confidence of the MEMS gyroscope’s signal
processing and improves the tracking ability of signal mutation. In practical applications,
especially when inertial navigation devices such as MEMS gyroscopes and fiber optic
gyroscopes work in harsh environments, the PID-DAVAR adaptive algorithm provides
further technical support for the dynamic analysis of gyro random error terms. When the
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amount of data to be processed is large or the power storage of mobile devices is small, this
method can also play a certain role in the dynamic analysis of gyro error terms.
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