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Abstract: Many efforts have been devoted to the forecasting of the capillary force generated by
capillary adsorption between solids, which is fundamental and essential in the fields of micro-object
manipulation and particle wetting. In this paper, an artificial neural network (ANN) model optimized
by a genetic algorithm (GA-ANN) was proposed to predict the capillary force and contact diameter
of the liquid bridge between two plates. The mean square error (MSE) and correlation coefficient
(R2) were employed to evaluate the prediction accuracy of the GA-ANN model, theoretical solution
method of the Young–Laplace equation and simulation approach based on the minimum energy
method. The results showed that the values of MSE of capillary force and contact diameter using
GA-ANN were 10.3 and 0.0001, respectively. The values of R2 were 0.9989 and 0.9977 for capillary
force and contact diameter in regression analysis, respectively, demonstrating the accuracy of the
proposed predictive model. The sensitivity analysis was conducted to investigate the influence of
input parameters, including liquid volume and separation distance, on the capillary force and contact
diameter. The liquid volume and separation distance played dominant roles in affecting the capillary
force and contact diameter.

Keywords: capillary force; liquid bridge; artificial neural network; genetic algorithm; energy
minimization

1. Introduction

The liquid bridges have aroused much attention owing to their applicability in indus-
trial applications, including direct scanning probe lithography [1], wafer packaging [2] and
3D printing of electrical circuits [3]. Compared with the volumetric gravitational force,
the capillary force generated by the liquid bridge is dominant at the microscopic scale,
guaranteeing the feasibility of manipulating micro-components. With the miniaturization
trend in the fields of biomedicine [4] and micro-assembly [5], the development of micro-
manipulation methods based on the capillary force is significant with some advantages,
including great cushioning owing to the liquid, being compatible with complex shapes and
self-centering [6].

A microscope 3D structure, “Micro scarecrow”, was constructed using the capillarity of
micro-drops [7]. To increase the range of changeable capillary force, Saito et al. [8] designed
a concave probe tip, which exhibited a larger pickup ability compared with a flat one.
Vasudev et al. [9] developed a microgripper based on electrowetting, which successfully
picks up and releases glass beads with a gravity of 77–136 µN by regulating the surface
voltage. The liquid meniscus was continuously regulated by pressure adjustment at the
capillary nozzle tip to realize capillary force control [10]. Hagiwara et al. [11] designed a
gripper that formed water droplets quickly and easily with the movement of a piston slider.
The gripper was used to pick up and place several microparts, including a cone, cube
and semicylinder, at the submillimeter scale. By controlling the temperature to condense
water on the gripper, the condensed droplets were successfully employed to grasp glass
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beads [12]. Apart from the single microgripper above, multiple-fingers microgrippers were
developed with enhanced manipulation capacity. Shigeta et al. [13] proposed a multi-
needle gripper that consisted of cylindrically arranged needles. Results were described for
the controllable pose of a picked chip resistor. In a further study [14], the orientation of the
rectangular micropart was related to the gripper tip shape quantitatively. A double-nozzle
gripper was developed to pick up the microparts with different shapes, such as cubes,
triangular prisms and helical springs [15].

During the micromanipulation processes, capillary force quantification is critical. The
liquid contact area affects the manipulation process of self-alignment of micro parts [16].
Orr et al. [17] solved the Young–Laplace equation using elliptic integrals for an axisym-
metric liquid bridge profile between a sphere and a plane. The gravitational influence
and the accuracy of the circle approximation of the bridge meniscus shape were evaluated.
Willett et al. [18] developed approximations for calculating the capillary force and rupture
distance between spheres with equal or unequal radii by numerical integration. The cap-
illary force and rupture distance were studied by three approaches, including numerical
solutions of the Young–Laplace equation, ellipse approximation and curve-fitting to the
experimental dataset [19]. De Souza et al. [20] investigated the capillary force between
plates using different substrate materials to explore the effect of contact angle hysteresis
(CAH). The hysteresis of capillary force was directly associated with the measured CAH.
Under different cyclic loading speeds, Shi et al. [21] found that a hysteretic loop consisted
of four stages, including two pinned (stretching and compression), receding and advancing
phases. The advancing angle increased with increasing loading speed while the receding
angle decreased. An expression considering the movement of the radial contact line was
proposed to describe the correlations. Chen et al. [22] investigated the effect of surface
roughness on the liquid bridge shape using the established the volume of fluid model.
Theoretical models were constructed based on several assumptions and simplifications,
leading to inherent errors between theoretical calculations and experimental values. A
predictive model of the capillary force and contact diameter with higher accuracy is needed.

As a powerful data-driven prediction model, artificial neural network (ANN) is profi-
cient in the fitting of non-linear relationships, resulting in extensive applications including
solid waste treatment [23], thermal deformation prediction of machine tools [24], axial flow
fans optimization [25] and porosity estimation in the geological modeling [26]. Especially
in the field of image processing [27,28], ANN was employed as a useful tool. Outputs that
were close to real values could be obtained by a well-trained ANN. Ahadian et al. [29]
investigated the capillary rise time by employing the ANN model. The results show that
the proposed ANN approach could predict the capillary rise time with higher accuracy
than the Lucas–Washburn equation. Taghipour-Gorjikolaie et al. [30] used the ANN for
the prediction of contact angles and sliding angles on the coated metal surface. It was
found that the regression index was 0.9874 for contact angles and 0.992 for sliding angles,
exhibiting the high accuracy of ANN prediction. Compared with the results using the
response surface methodology method, the constructed ANN model has better accordance
with experimental data in terms of optimizing the wettability of rice leaf surfaces [31]. The
viscosity and thermal conductivity of various fluids [32–34] were predicted by employing
the ANN technique.

In this paper, an ANN model optimized by the genetic algorithm (GA) was constructed
to predict the capillary force and contact diameter between two plates. A comparison with
the theoretical calculation using the shooting method and simulation approach based on
the minimum energy method was conducted to verify the accuracy of the ANN model.
The effects of input parameters, including liquid volume and separation distance, on the
capillary force and contact diameter, were discussed in detail.
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2. ANN Model and GA Optimization
2.1. ANN Model

Figure 1 shows the constructed three-layer (one input layer, one hidden layer and one
output layer) neural structure, the connection between layers and the forward propagation
of the ANN. The input layer includes four neurons of liquid volume, separation distance,
contact angle and surface tension. The output layer consists of two neurons of capillary
force and contact diameter. The number of neurons in hidden layer n was determined by
the GA optimization.
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Figure 1. ANN neuronal structure.

The activation function of the hidden layer f 1 and the output layer f 2 were defined
as follows:

f1(x) =
1

1 + e−x , f2(x) = x (1)

The weights and biases between the input layer and hidden layer and the output of
hidden layer h were shown.
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The weights and biases between the hidden layer and output layer and the output of
output layer t were
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The initialization method of weights is Glorot uniform distribution [35], defined as
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where Ni is the number of neurons in last layer and No is that in next layer. In the present
ANN structure: w1 ∼ U(−

√
6/17,

√
6/17) and w2 ∼ U(−

√
6/15,

√
6/15). The biases b1

and b2 were initially set to zero.
To judge the difference between predicted values t and the actual values y, mean

square error (MSE) was used as the loss function, defined as follows:

loss = MSE =
1
N ∑N

i=1 (yi − ti)
2 (5)

where N is the number of samples. The difference between t and y is smaller, as the MSE is
smaller, indicating the higher accuracy of ANN prediction.

The correlation coefficient R2 was used to check the performance of ANN [36]. The
accuracy of the predictive outputs is measured by R2, which is written as

R2 = 1−∑N
i=1 (yi − ti)

2/∑N
i=1 (yi − yi)

2 (6)

where yi is the average of actual values.
To decrease MSE, w and b need to be adjusted to suitable values using a training

algorithm. The adaptive moment estimation (Adam) algorithm [37] was employed. Adam
algorithm has some advantages, such as easy implementation, high computational effi-
ciency and little memory requirements. Adam algorithm works by dynamically adjusting
the learning rate using first-order moment estimation and second-order moment estimation
of the gradient.

The first-order partial derivation of loss to w and b, the gradient g, is obtained by the
back propagation.

The biased first0 and second-moment estimate, m and n, was updated for timestep t:

mt = µ ∗mt−1 + (1− µ) ∗ gt, nt = v ∗ nt−1 + (1− v) ∗ g2
t (7)

where µ and v are the exponential decay rates for the first- and second-moment estimates,
respectively. The values of µ and v are set to 0.9 and 0.999, respectively.

The bias-corrected moment estimates m̂ and n̂ were updated as follows:

m̂t =
mt

1− µt , n̂t =
nt

1− vt (8)

Large correction is posed to the moment estimates in the initial period. The correction
declines with the increasing timestep, which is helpful for convergence. δ is updated by the
following equation:

δt = δt−1 − α ∗ m̂t√
n̂t + ε

(9)

where α is the initial learning rate, and ε is a small positive number that is set to 10−7,
preventing the divisor from being 0. The value of α is set by the GA. If α is too large, the
changes in updated parameters will be too great, resulting in the oscillation of loss. If α is
too small, the learning process will be slow.

The dataset is divided into two parts: the training set and the testing set. The training
set is used to train the network (update w and b), and the testing set is used to test the
actual performance of the network (calculate MSE and R2). ANN is trained by a complete
dataset once it is termed an epoch. The number of epochs is defined as ep. If ep is too small,
the ANN will not be well trained, leading to a large difference between predictive values
and actual values. If ep is too large, the network will be overfitted with poor generalization
performance, which means the network has good performance on the training dataset
while bad performance on the testing dataset.

An epoch contains several iterations. During an iteration, the number of samples
passed to ANN at once is termed the batch size, bs. When bs is too small, the gradient will
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change dramatically, causing difficulty in convergence. If bs is too large, the convergence
will become slow.

Therefore, the GA is used to determine the four parameters mentioned above (n, α, ep
and bs). The values of n, α, ep and bs were set in the range of 1–20, 0.001–0.1, 500–2000 and
1–102, respectively.

2.2. Optimization of ANN Using GA

GA is a stochastic global search optimization algorithm [38], which is employed to
optimize the ANN model. The procedures include encoding, decoding, selection, crossover
and mutation.

The mapping from the solution of the problem to the chromosome is called encoding.
The inverse transformation is termed decoding. The values of four parameters were all
defined by 24-bit binary. These binary strings are combined into a chromosome, represent-
ing an individual in the population. The encoding and decoding procedures are shown in
Figure 2. If one parameter δ ranges from U1 to U2, the corresponding decoding equation is

δ = U1 + (∑k
i=1 bi ∗ 2i−1) ∗ U2 −U1

2k − 1
(10)

where bi is the i-th value of the binary string. For n, ep and bs are integers; the final results
of them need to round.
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The selection operation is implemented by the roulette wheel algorithm. The minimal
MSE of the ANN output is considered as the fitness function, which is to measure the
merit of individuals in the population. The MSE of all individuals constitute set S. The
probability pk that the k-th individual is selected is expressed as

pk =
smax − sk + ε

∑
pop
i=1 (smax − si + ε)

(11)

where smax is the maximum in S, pop is the population size and ε is set to 10−4, preventing
pk from being 0. When the MSE of one individual gets smaller, pk is larger. The number of
selections is equal to pop to maintain the population, which is set to 30.

Crossover and mutation operations empower the GA with a local random search
capability, which helps to avoid being caught in the local minimum in the evolution
processes. The single-point crossover is employed. A crossover point is randomly set in
two parental chromosomes. The ligand chromosomes are exchanged with each other from
the crossover point to form two new offspring individuals. Two parental chromosomes are
randomly paired as well. The new offspring’s chromosomes inherit the characteristic of
their parental chromosomes.

Mutation introduces innovation in the population and improves the changeability of
chromosomes. A single-point mutation is adopted, which works by changing the binary
string value from 1 to 0 or from 0 to 1 at a random position on one chromosome. The
probabilities of crossover and mutation are set to 0.6 and 0.1, respectively. The processes
of optimizing ANN with GA are shown in Figure 3. Python programming language was
employed in this study. The main evolution procedures are the following:
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Step 1 Generating initial population. The initial population consisting of 20 chromosomes is
randomly generated. Each chromosome represents a set of values of n, α, ep and bs. The
present generation i is initially set to 0. The total generation number Gen is set to 100.

Step 2 Training ANN. i adds one. ANN is trained and MSE is calculated under the condition
that each chromosome is represented.

Step 3 Optimization. The processes of selection, crossover and mutation are conducted as
i is not equal to Gen+1.

Step 4 Generation of the best ANN parameters. Step 2 and step 3 are repeated until i is equal
to Gen+1. The chromosome with minimum MSE is selected as the optimal set of
values of n, α, ep and bs.
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3. Experiments
3.1. Experimental Setup

An experimental setup was established to control the formation and elongation of a
liquid bridge, as shown in Figure 4. The capillary force between two identical silicon wafers
was measured using an analytical balance with a resolution of 10−5 g. The contact diameter
was calculated by processing the liquid bridge images captured by the microscopes. The top
silicon wafer and the bottom wafer were attached to the PMMA substrates separately. The
top substrate was glued to a single-probe microgripper controlled by a four-axis precision
stage with a resolution of 0.125 µm. The bottom substrate was placed on the analytical
balance with a cubic foam pad. The instruments above were installed on a vibration
isolation table to reduce the vibration transmission.

The properties of liquids, including ethylene glycol (EG), 50 wt% EG and glycerol,
were listed in Table 1. µ, γ, ρ, θs and θr is the viscosity, surface tension, density, static angle
and receding angle, respectively. θs and θr were calculated using a contact angle goniometer
(JC2000D1, POWEREACH). The stretching speed U was 10 µm/s. All experiments were
conducted at an ambient temperature of 20 ± 2◦.
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Table 1. Experimental liquids and physical properties.

Liquids µ (Pa s) γ (mN/m) ρ (g/cm3) θs (◦) θr (◦)

Ethylene glycol 0.021 48.4 1.11 41.7 34.4
50 wt% ethylene glycol 0.004 57 1.07 50.3 40.4

Glycerol 0.243 63.4 1.26 42.6 33.3

The capillary length λc (defined as λC =
√

γ/ρg), the capillary number Ca (defined
as Ca = µU/γ), and the Weber number We (defined as We = ρU2L/γ, where L is the
characteristic length which was considered to be 1 mm) were calculated, as shown in
Table 2. λc was larger than the radius of the droplet used, indicating the surface tension
was dominant, and the influence of gravity was negligible. Ca and We were much less than
1, indicating that the inertial force and viscous force could be neglected [39].

Table 2. Rheological properties of experimental liquids.

Liquids λc (mm) Ca We

Ethylene glycol 2.109 4.34 × 10−6 5.28 × 10−4

50 wt% ethylene glycol 2.331 7.02 × 10−7 2.67 × 10−3

Glycerol 2.266 3.83 × 10−5 5.18 × 10−5

The experimental procedure was expounded as follows. A droplet was distributed to
the bottom wafer surface with a pipette. The top wafer was controlled to move downward
to contact the droplet and stop when a liquid bridge was formed. After a few seconds,
the top wafer was moved upward at the speed U until the liquid bridge rupture. During
the stretching process, the reading of the balance was recorded to reflect the value of
capillary force.

3.2. Experimental Data

Liquid volume V, separation distance H, surface tension γ and contact angle θ are
critical parameters to capillary force F and contact diameter D in the liquid bridge system.
Figure 5 shows the values of F and D of 50 wt% EG, EG and glycerol, respectively. A total
of 128 groups of experimental results were obtained.
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4. Results and Discussions
4.1. ANN Training

A total of 128 groups of experimental data were shuffled and divided into two datasets,
102 for training and 26 for testing. Both the input and the output parameters have been
normalized to improve the convergence of ANN:

pa = (pa− X)/Xstd (12)

where pa is a parameter of datasets, X is the mean value of datasets and Xstd is the standard
deviation of datasets.

Four parameters of ANN were determined by GA optimization of n = 13, α = 0.0748,
ep = 1754 and bs = 76, compared with the general values of four parameters of ANN (n = 10,
α = 0.001, ep = 2000 and bs = 32). The ANN using determined parameters and general
parameters were defined as GA-ANN and gANN, respectively.

Figure 6 shows the regression of training dataset for GA-ANN and gANN. The
predicted values of GA-ANN exhibited better consistency with the equality line compared
with gANN for capillary force and contact diameter shown in Figure 6a,b, respectively.
The values of R2 of capillary force and contact diameter for GA-ANN were 0.9993 and
0.9988, respectively. The R2 value of capillary force for gANN was 0.9796, and that of
contact diameter was 0.9824. Therefore, the GA-ANN model predictions are closer to the
real values of the training dataset than the gANN model.
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4.2. Modeling
4.2.1. Theoretical Model

Figure 7 shows the liquid bridge model between two plates without the gravity effect,
where θ1, θ2 are the contact angles on the top plate and bottom plate, respectively, H is the
separation distance between plates and R1 is the contact radius of the liquid bridge on the
top plate, R2 on the bottom plate. The symmetric axis of the liquid bridge is defined as
Z-axis. The shape of the liquid bridge profile is meniscus due to the pressure difference
between the inside liquid pressure (Pi) and the outside air pressure (Po). The meniscus
profile is axisymmetric and expressed by the coordinates (X, Z). A (XA, ZA) and B (XB, 0)
are the coordinates of nodes where the profile terminates on the top and bottom plates.

Micromachines 2023, 14, x FOR PEER REVIEW 9 of 17 
 

 

Figure 6 shows the regression of training dataset for GA-ANN and gANN. The pre-

dicted values of GA-ANN exhibited better consistency with the equality line compared 

with gANN for capillary force and contact diameter shown in Figure 6a,b, respectively. 

The values of R2 of capillary force and contact diameter for GA-ANN were 0.9993 and 

0.9988, respectively. The R2 value of capillary force for gANN was 0.9796, and that of con-

tact diameter was 0.9824. Therefore, the GA-ANN model predictions are closer to the real 

values of the training dataset than the gANN model. 

  

Figure 6. Regression of training dataset: (a) capillary force and (b) contact diameter. 

4.2. Modeling 

4.2.1. Theoretical Model 

Figure 7 shows the liquid bridge model between two plates without the gravity effect, 

where θ1, θ2 are the contact angles on the top plate and bottom plate, respectively, H is the 

separation distance between plates and R1 is the contact radius of the liquid bridge on the 

top plate, R2 on the bottom plate. The symmetric axis of the liquid bridge is defined as Z-

axis. The shape of the liquid bridge profile is meniscus due to the pressure difference be-

tween the inside liquid pressure (Pi) and the outside air pressure (Po). The meniscus profile 

is axisymmetric and expressed by the coordinates (X, Z). A (XA, ZA) and B (XB, 0) are the 

coordinates of nodes where the profile terminates on the top and bottom plates. 

 

Figure 7. Model of the liquid bridge between plates.

The top plate is identical to the bottom plate in the model, so it is deduced that

θ1 = θ2, R1 = R2, XA = XB (13)
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The liquid volume V is calculated by integration:

V =
∫ ZA

0
πX2dZ (14)

The capillary force acting on the bottom plate can be expressed as the sum of the
Laplace pressure force FL and surface tension force FS. FL derives from the pressure
difference, and the vertical component of surface tension force consists of FS. Thus, the
capillary force is given as

F = FS + FL = 2πR2γ sin θ2 + πR2
2∆P (15)

where ∆P is the hydrostatic pressure difference between liquid and air, which is constant at
any local point. Based on the built coordinate system, a YoungLaplace equation depicting
the profile of the liquid bridge is written as follows:

X′′

(1 + X′
2
)

3/2 −
1

X(1 + X′
2
)

1/2 =
∆P
γ

(16)

where X′ = dX/dZ, X′′ = d2X/dZ2, γ is the surface tension of the liquid.
To calculate the capillary force, Equation (16) is solved as a two-point boundary

value question. Two boundary conditions derived from the nodes on the plates are given
as follows:

X′
∣∣X=XA = θ1, X′

∣∣X=XB = θ2 (17)

A shooting method is adopted as follows: (1) Equation (16) is solved numerically with
a given XA1, ∆P1 and ∆P2 based on the boundary condition θ1. Two candidate θ2 could
be obtained. If the target θ2 is within the range of the two candidates θ2, ∆P1 and ∆P2 will
be adjusted to a fixed value based on a dichotomy search method, which will result in a
candidate V1. Similarly, for a given XA2, a candidate V2 can be obtained. If the target V
is within the range of two candidates V, the profile of the liquid bridge would be further
adjusted to reach the target V. XB is obtained in the solution process and compared with
XA. If XB is not equal to XA, it indicates that the solution is non-stable; otherwise, the
solution is the stable and correct solution.

4.2.2. Simulation Model

An alternative way was adopted to calculate the capillary force and contact diameter
based on the minimum energy method. The simulation is conducted using the software
package Surface Evolver (SE). The gravity effect was not considered in the simulation
model. The total energy of a liquid bridge system consists of three parts: the solid–liquid
(Aslγsl), the solid–gas (Asgγsg) and the liquid–gas (Algγlg) interfacial energies, where A and
γ are the area and surface tension of the interface, respectively. Thus, the total interfacial
energy E of the liquid bridge system is expressed as

E = Aslγsl + Asgγsg + Algγlg (18)

Figure 8 shows the evolution processes of the liquid bridge between plates. In the SE
model, a finite-element method is employed. The surfaces of the liquid bridge and top and
bottom plates are represented as a mesh of triangles, which were connected in an arbitrary
topology, as depicted in Figure 8a. Toward the goal of minimum total energy, the capillary
bridge deformed and evolved by obeying several constraints, including constant volume
and contact angles, as shown in Figure 8b. The stopping criteria for evolution is set as the
absolute difference of E between two adjacent evolutions is smaller than 10−6. Figure 8c
shows that a stable liquid bridge with minimal energy is established.
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Figure 8. Surface evolution of the liquid bridge system: (a) initial definition, (b) deformation of
evolution and (c) finished evolution with a stable liquid bridge.

The capillary force F generated by the liquid bridge is calculated as

F = γlgl sin θ2 − ∆pAb (19)

where ∆p, l and Ab are the pressure difference, contact line length and the contact area of
the liquid bridge on the bottom plate, respectively. Their values can be obtained from the
evolved SE model, as well as the contact diameter.

4.3. Comparison of GA-ANN, gANN, Simulation and Theoretical Solutions

Figure 9 shows the predicted values by GA-ANN, gANN, simulation and theoretical
solutions. The contact angle used in the SE and theoretical solution methods are receding
angle θr because of contact angle hysteresis (CAH) [20]. In general, the predicted capillary
force by the four methods exhibited good agreement with the experimental values on the
27 testing samples, as shown in Figure 9a. All four methods can be used to predict the
capillary force with good accuracy.

Predictions of GA-ANN match the experimental results more closely than that of
gANN. Table 3 shows that the MSE values of capillary force are 10.3 and 244.706 for GA-
ANN and gANN, respectively. It indicates that the ANN is a promising method to predict
the capillary force. The ANN model trained by GA has a better predictive ability than the
general one.

Table 3. Values of MSE and R2 for different models.

Models MSE of Capillary Force MSE of Contact
Diameter R2 of Capillary Force R2 of Contact

Diameter

GA-ANN 10.3 0.0001 0.9989 0.9977
gANN 244.706 0.0011 0.9748 0.9764

SE solutions 865.883 0.0268 0.9109 0.4389
Theoretical solutions 860.581 0.0265 0.9114 0.4468

Compared with the ANN predictions, the results of SE and theoretical solutions exhibit
a larger difference from the experiments. The MSE of capillary force by SE solution is
865.883, while that by theoretical solution is 860.581. The difference between predictions
and experimental values can be explained by the error in contact angles used between the
constructed models and the real liquid bridge. In SE and theoretical models, the contact
angles are set to a constant, while the contact angles are varied with the stretching process
of the liquid bridge [40]. Additionally, the results of SE solutions are consistent well with
theoretical solutions, as demonstrated in reference [41].
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Predictions of the GA-ANN, gANN, SE and theoretical solutions in terms of contact
diameter are plotted in Figure 9b. ANN methods (GA-ANN and gANN) show good
consistency with experimental values. However, contact diameter values predicted by SE
and theoretical solutions exhibit large errors with experimental values. That is foreseeable
due to the effect of CAH. By calculating the MSE of contact diameter, the GA-ANN is
proved to be the most accurate predictive method of the four methods, and the value of MSE
is 0.0001. This indicates the powerful prediction capability of ANN and the effectiveness of
GA optimization.

In Figure 10, the regression comparison between GA-ANN, gANN, SE and theoret-
ical solutions is presented. When R2 gets closer to 1, the prediction gets more accurate.
R2 of capillary force for GA-ANN, SE and theoretical solutions are 0.9989, 0.9109 and
0.9114, respectively. In terms of contact diameter, R2 of SE and theoretical solutions are
0.4389 and 0.4468, respectively, indicating SE and theoretical solution methods are not
suitable for predicting contact diameter. Inversely, R2 of contact diameter for GA-ANN is
0.9977, which shows the strong prediction ability of ANN.
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4.4. Effects of Input Parameters on Capillary Force and Contact Diameter

The trends of capillary force F and contact diameter D with liquid volume V, separation
distance H are depicted in Figure 11. All data were obtained from the constructed GA-ANN
model. The values of F increase with ascending V, whereas the opposite impact appears
along H. The effect of V is mainly due to the fact that D gets larger with increasing V,
which results in ascending F according to the trend of D in Figure 11a and Equation (16).
Likewise, the separation distance gets larger, leading to the decrease of D, and F gets smaller
eventually, as shown in Figure 11b. The prediction results by GA-ANN are consistent with
theoretical analysis.
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Figure 11. Capillary force and contact diameter versus input parameters: (a) changing V with various
H (θ = 36◦, γ = 50 mN/m), (b) changing H with various V (θ = 36◦, γ = 50 mN/m).

Sensitivity analysis is conducted to quantitively evaluate the effect of input parameters
based on the connection weight approach [31]. The influence of parameters in the model is
judged by calculating the products of input–hidden weight and hidden–output weight and
summing them, which is defined as

Si,k = ∑n
j=1 w1

ijw
2
jk (20)
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The percentage of the absolute sums is calculated as

p =

∣∣Si,k
∣∣

∑4
k=1
∣∣Si,k

∣∣ × 100% (21)

Table 4 shows the values of the weight of the constructed ANN model. The results
show that liquid volume and separation distance dominate the outputs rather than the
contact angle and surface tension. For capillary force, the effect of liquid volume is the
most significant, while for contact diameter, the separation distance is dominant.

Table 4. Weights of GA-ANN.

Neuron Number

Weight

Liquid
Volume (x1)

Separation
Distance (x2)

Contact
Angle (x3)

Surface
Tension (x4)

Capillary
Force (t1)

Contact
Diameter (t2)

1 0.272 2.657 3.642 −1.608 −0.34 1.218
2 −0.234 −3.530 −0.280 1.944 0.073 −1.300
3 0.702 −1.779 1.869 −1.682 0.450 −0.802
4 1.818 −1.430 0.163 −1.043 −0.801 0.219
5 1.769 −1.570 −0.290 −0.597 −0.060 0.425
6 −3.487 1.240 −0.307 0.159 2.647 0.817
7 −2.176 1.248 0.141 0.214 2.013 1.052
8 2.566 −4.556 0.490 1.668 0.039 −0.464
9 1.481 −1.650 0.520 1.775 −0.811 0.865

10 0.593 2.880 −0.978 −1.805 −0.639 −0.288
11 0.978 −4.842 −0.817 −0.700 −0.909 −0.123
12 −1.150 2.577 0.790 −0.118 0.489 0.409
13 0.614 −0.858 3.061 −1.881 −0.120 −0.636

Sum of products for
capillary force −17.970 10.159 −0.076 2.239 - -

Importance of
capillary force 1 2 4 3 - -

Percentage 59.0% 33.3% 2.4% 7.3% - -

Sum of products for
contact diameter −4.975 12.646 2.093 −0.747 - -

Importance of
contact diameter 2 1 3 4 - -

Percentage 24.3% 61.8% 10.2% 3.7% - -

5. Conclusions

In this paper, an artificial neural network (ANN) model with three layers was de-
veloped to predict the capillary force and contact diameter of the liquid bridge between
two plates. Four parameters, including liquid volume, separation distance, contact angle
and surface tension, were employed as input parameters of the ANN model. The optimal
ANN parameters determined by the genetic algorithm (GA-ANN) were that the number
of hidden layer neurons was 13, the learning rate was 0.0748, the number of epochs was
1754, and the batch size was 76. Compared with the theoretical solution method of the
Young–Laplace equation and simulation approach based on the minimum energy method,
the ANN prediction model was more accurate by calculating the mean square error (MSE)
and correlation coefficient (R2). In terms of GA-ANN, the MSE of the capillary force and
contact diameter was 10.3 and 0.0001, respectively. The regression analysis showed that
for GA-ANN, R2 of the capillary force was 0.9989, and that of the contact diameter was
0.9977. The sensitivity analysis showed that the capillary force was subject to liquid volume
while the contact diameter was subject to the separation distance. The developed ANN
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model enabled the precise prediction of the capillary force and contact diameter, providing
a powerful tool for studying liquid bridges.
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Nomenclature

Symbol Name
n Number of neurons in the hidden layer
f Activation function
w Weight
b Bias
h Output of hidden layer
t Predicted value of ANN
y Actual value of dataset
R2 Correlation coefficient
α Initial learning rate
ep Number of epochs
bs Number of samples passed to ANN at once
p Selected probability in the GA optimization process
pop Population size in GA
Gen Total generation number
µ Viscosity
γ Surface tension
ρ Density
θs Static contact angle
θr Receding contact angle
U Stretching speed
λc Capillary length
L Characteristic length of system
V Liquid volume
H Separation distance
F Capillary force
D Contact diameter
GA-ANN ANN optimized by GA
gANN ANN employing general parameters
Abbreviation Name
CAH Contact angle hysteresis
ANN Artificial neural network
GA Genetic algorithm
MSE Mean square error
EG Ethylene Glycol
Ca Capillary number
We Weber number
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