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Abstract: This paper presents a performance prediction method for piezoelectric injection systems,
based on finite element simulations. Two indexes representing the system performance are proposed:
jetting velocity and droplet diameter. By combining Taguchi’s orthogonal array method and finite
element simulation (FES), a finite element model of the droplet injection process, with different
parameter combinations, was established. The two performance indexes, jetting velocity and droplet
diameter, were accurately predicted, and their variation with time were investigated. Finally, the
accuracy of the predicted results of the FES model was verified by experiments. The errors of the
predicted jetting velocity and droplet diameter were 3.02% and 2.20%, respectively. It is verified that
the proposed method has better reliability and robustness than the traditional method.

Keywords: additive manufacturing; piezoelectric injection system; FES; jetting velocity; droplet
diameter

1. Introduction

Additive manufacturing (AM) enables the design of parts that cannot be easily fab-
ricated with traditional manufacturing techniques, and offers great opportunities for a
wide range of applications in industries including aerospace, automotive, defense, and
biomedical [1]. Additive manufacturing, also known as 3D printing, is divided into two
methods: drop-on-demand (DOD) and continuous drop [2]. Since the DOD method pro-
duces individual droplets through rapid changes in the volume of the cavity [3], it can
reduce material waste, while having high print quality [4]. Non-contact piezoelectric injec-
tion, a DOD mode droplet injection process, is characterized by its fast response time and
the ability to change the diameter and injection speed of droplets in real time, by adjusting
the frequency [5]. Achieving droplet injection, accuracy and uniformity of piezoelectric
injection is of great importance, because of the increasing quality requirements for droplet
injection in manufacturing processes [6].

Despite the many advantages of piezoelectric jetting, problems such as over-jetting or
discontinuities may arise, due to a variety of factors such as material properties, substrate
characteristics, and process parameters [7]. Among the many factors affecting the quality of
jet printing, process parameters (jetting velocity, jet height, and substrate morphology, etc.)
are preferred for optimizing the non-contact piezoelectric jetting process. Among them,
the injection speed affects not only the volume and diameter of the droplet, but also the
shape and uniformity of the droplet when they are injected onto the substrate surface. In
the piezoelectric injection system, the dimensional parameters of the nozzle and needle
are the key to the droplet jetting velocity; the larger the nozzle diameter, the faster the
jetting velocity. All other things being equal, the greater the nozzle angle, the slower the
jetting velocity. [8]. Many studies still optimize and design piezoelectric injection system
parameters through experience.

Some researchers have conducted experiments on the parametric design of nozzles
and needles. Based on the basic principles of fluid dynamics, Bartolo et al. [9] used compu-
tational fluid dynamics modeling to measure material properties (viscosity); Mao et al. [10]
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proposed a soft fluidic roller, using a simple structure composed of a bendable and twistable
electrohydrodynamic (EHD) pump and a layer of natural latex; K.S. Kwon et al. [11] mea-
sured process parameters (contact angle) using fluid dynamics modeling; Mao et al. [12]
studied a bendable and twistable electrohydraulic pump, by means of digital fabrication;
and M. Tsai et al. [13] investigated the effect of pulsed voltage on droplet injection behavior.

In this paper, two metrics are proposed to describe the performance of piezoelectric
injection systems, namely the jetting velocity and the droplet diameter. Finite element
models, with different combinations of parameters, are designed using the orthogonal
experimental method. The variation law of the performance indexes with time is predicted
by the established finite element models. Finally, the predicted results of the finite element
simulations are compared with the experimental results, to verify the validity and accuracy
of the proposed model.

2. Finite Element Modeling and Simulation of Droplet Ejection Process
2.1. The Process of Building the Finite Element Model
2.1.1. CAD Model

The physical, three-dimensional and two-dimensional simplified drawings of the
model of the piezoelectric-driven droplet injection system designed in this paper, are
shown as (a), (b), and (c) in Figure 1, respectively. Where (d) is the structural diagram of
the core components of the system (nozzle and needle). In this paper, the nozzle design
parameters N4, Np, Nc, and Np are selected as the parameters to study the design of the
droplet injection system, representing the needle diameter, nozzle diameter, nozzle angle,
and piezoelectric-driven needle motion speed parameters, respectively.
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Figure 1. Design of the studied piezoelectric ejection system and dimensions of core components
(nozzle and needle). (a) Physical drawings, (b) three-dimensional drawings, (c) two-dimensional
simplified drawings, (d) two-dimensional drawings of core components.

2.1.2. Theoretical Model

In this paper, a multi-coupled phase change model of fluid flow was developed, using
the ANSYS Fluent software. The software uses the VOF algorithm to simulate and analyze
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the fluid flow [14]. In the VOF algorithm, the incompatible fluid components share a
common set of momentum equations, and the tracking of the interphase interface in the
computational domain is achieved by introducing a variable Q, which represents the phase
volume fraction [15].

0 (outside the liquid)
Q=4¢ 0<Q<1 (ontheinterface) 1)
1 (inside the liquid)

Many studies [16-19] have been conducted to obtain the performance of piezoelectric
injection based on Weber number, We, and Ohnesorge number, Oh.

2
_ vl
we = £ 2)
oh=_1t ®)

\/poL

where p, i and o are the density, viscosity, and surface tension of the fluid, respectively,
L is the characteristic length, equal to the diameter of the nozzle, and v is the velocity of
the droplet.

The finite element simulation can be set to a computational environment close to the
experimental conditions, thus ensuring that the results of the numerical calculations are
closer to the experimental results. In the developed model, the following assumptions
were made:

(i) the fluid is an incompressible Newtonian fluid,
(if) thejetting time is short and the influence of temperature gradient can be ignored.

Since the heat exchange in incompressible fluids is small and negligible, the controlling
equations for the droplet ejection process are established using the mass and momentum
equations, without considering the law of conservation of energy, and the evolution of the
flow field is simulated as follows [20]:

Continuity equation

aui o
Fro 0 4)
Navier-Stokes (momentum) equation
1 K2 _ aj
pr+pV u+F—at+(u V)u 5)

where p is the density of the fluid, p is the pressure, y is the viscosity of the fluid, u is the
velocity, du /dt represents the dependent component of inertial force on the fluid, F is the
mass force per unit mass fluid in momentum, and Vp is the pressure term which exists in
the form of the pressure gradient.

2.1.3. Generate Meshes and Boundary Conditions

In the model developed in this study, only one half of the problem under study needs
to be modeled since it is symmetric (geometry, materials, loads, and boundary conditions).
As shown in Figure 2, the FE model is meshed using triangles and quadrilaterals.
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Figure 2. The studied model: (a) areas and boundaries of the FE model, and (b) FE mesh.

The specific parameters of the fluid material used in this study, at 27 °C, are shown in
Table 1. The pressure at the inlet was kept constant at 0.05 MPa, and the needle stroke was
0.1 mm, during the whole injection process, without considering heat transfer.

Table 1. Fluid material parameters.

Parameter Fluid Viscosity Fluid Density Surface Tension

Value 0.02 Pa.s 1.45 g/cm3 0.05 N/m

2.2. Finite Element Model

In this paper, the validity of the proposed finite element model is verified by comparing
the simulation results with literature data. Second, the velocity of the P point during
the simulation is compared with the experimental measurements, to verify the accuracy.
Figure 3 shows the progressive evolution of the droplet shape during the finite element
simulation. It agrees well with the experimental observations in the literature [21].

(©)

Point P

0.0  2.0x10* 4.0x10* 6.0x10* 8.0x10* 1.0x107 1.2x107
Jetting time (s)

Figure 3. Evolution of droplets with time.

Due to the relatively large number of DESD parameters affecting DEB during piezo-
electric injection, it is impractical to build the full combination of N4, Np, N¢, and Np
(Figure 1). The sampling method can be used to draw samples from the overall population
for model prediction, and cover the whole experimental area with a reasonable number of
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samples. It is known from the literature that there are many different sampling methods,
commonly used methods include stratified sampling, Taguchi sequential sampling, and
random sampling [22,23]. Since a Taguchi orthogonal array is considered useful for study-
ing when there are interactions between variables, results can be obtained by evaluating
a small number of samples [24]. Therefore, a Taguchi orthogonal array (L25) is used to
create the 30 cases [25]. Table 2 summarizes all combinations of design parameters and
their corresponding values of jetting velocity and droplet diameter. In this study, the same
fluid material, boundary conditions, and mesh size were used in all cases, to calculate the
droplet diameter and jetting velocity.

Table 2. Design of parameter combinations based on Taguchi orthogonal method.

Data Case Needle Nozzle Nozzle Needle Jetting Droplet
N Diameter Diameter Taper Speed Velocity Diameter
0. _ _
(mm) (mm) ©) ms—1 ms—1 (um)
Na N Nc Np

1. 1 0.04 60 0.3 413 320
2. 1 0.08 75 0.4 4.21 419
3. 1 0.12 90 0.5 3.36 376
4, 1 0.16 105 0.6 2.79 326
5. 1 0.20 120 0.7 2.34 313
6. 1.25 0.04 75 0.7 12.80 247
7. 1.25 0.08 90 0.3 3.52 436
8. 1.25 0.12 105 0.4 2.86 381
9. 1.25 0.16 120 0.5 2.36 338
10. 1.25 0.20 60 0.6 3.78 487
11. 1.5 0.04 90 0.6 16.13 340
12. 1.5 0.08 105 0.7 7.78 317
13. 1.5 0.12 120 0.3 2.13 378
14. 1.5 0.16 60 0.4 3.58 568
15. 1.5 0.20 75 0.5 3.35 476
16. 1.75 0.04 105 0.5 11.00 281
17. 1.75 0.08 120 0.6 6.69 331
18. 1.75 0.12 60 0.7 8.96 520
19. 1.75 0.16 75 0.3 2.85 546
20. 1.75 0.20 90 04 2.83 445
21. 2 0.04 120 0.4 10.33 223
22. 2 0.08 60 0.5 11.37 614
23. 2 0.12 75 0.6 8.21 525
24. 2 0.16 90 0.7 6.78 427
25. 2 0.20 105 0.3 2.12 461
26. 1 0.04 60 0.7 15.25 296
27. 1.25 0.16 75 0.5 3.53 453
28. 1.5 0.08 90 0.3 4.08 439
29. 1.75 0.2 105 0.6 3.76 384
30. 2 0.12 120 04 3.73 398

Figures 4 and 5 show the results of finite element simulations of velocity variation and
droplet diameter during the injection, for case 7. The velocity is measured by placing a
virtual probe at point p, and the droplet diameter is measured by calculating the number of
meshes occupied by the liquid in the air domain. When the needle moves to the lowest
point, the velocity at point p at that moment is defined as the jetting velocity. Figure 4
shows that the velocity at point p increases and then decreases. Figure 5 shows that the
droplet diameter first increases, until the droplet is completely detached, and then the
droplet diameter remains essentially constant.
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Virtual Probe
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(@ (©

Figure 4. Velocity variation of the virtual probe (point P) in case 7 at different moments:
(a) time = 0.0002 s, (b) time = 0.0004 s, (c) time = 0.0006 s, (d) time = 0.0008 s, (e) time = 0.001 s,
(f) = 0.0012 s.

Figure 6 shows the variation pattern of the jetting velocity for cases 1, 6, 13, 19, 25,
and 30, and Figure 7 shows their droplet diameter variation patterns, and also includes the
velocity cloud and volume fraction cloud at the time of droplet detachment from the nozzle,
indicating that the jetting velocity and droplet diameter variation patterns are different for
each case. From the figure, it can be seen that the jetting velocity of case 7 is 3.52 m/s and
the droplet diameter at the time of detachment is 436 pm.
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Figure 5. Results of finite element simulation of droplet diameter at different times in case 7:
(a) time = 0.0002 s, (b) time = 0.0004 s, (c) time = 0.0006 s, (d) time = 0.0008 s, (e) time = 0.001 s,

(f) = 0.0012 s.
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Figure 6. (a—g) Variation in jetting velocity with time, for different cases
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Figure 7. Variation in droplet diameter with time, for different cases. (a) variation of droplet diameter
with time for different cases, (b) case.l, (c) case.7, (d) case.13, (e) case.19, (f) case.25, (g) case.30.

3. Experimental Verification

In this study, a piezoelectric injection monitoring system consisting of a piezoelectric
driver, a high-speed camera, an LED, and a host computer was developed, as shown in
Figure 8. The image of the piezoelectric injection process is captured by a high-speed
camera, and image processing is performed to calculate the displacement of the droplet.
The image processing technique can calculate the number of pixels, combine it with the
time recorded by the camera, and then obtain the jet speed, according to the displacement
time equation. The droplet diameter can also be obtained by acquiring the number of pixels
in the area [26,27].

FTONTrT
L Material
8 rescrvoir

Piezoelectric f
actuator

Strobing
LED

Figure 8. Piezoelectric injection monitoring system.

Case 27 was used as an example for validation. A needle with a diameter of 1.25 mm,
and a nozzle with a diameter of 0.16 mm and a taper of 75°, were used in the experiments,
and the specific parts are shown in Figure 9. Several measurements and calculations were
performed for different injection velocities and droplet diameters. Five sets of experiments
were conducted in this study, and each set of experiments recorded data for two different
displacements and times, and finally the jet velocity was calculated according to the



Micromachines 2023, 14, 738

9o0f12

equation. The specific experimental results are shown in Table 3, and the images captured
in the second group of experiments are shown in Figures 10 and 11. To ensure the accuracy
of the experimental results, the results of the five sets of experiments were averaged, and
the average value of the jetting velocity for case 27 was 3.64 m.s~ L. Similarly, the average
value of the droplet diameter obtained was 463.2 um.

Figure 9. Different sizes of nozzle and needle samples.

Table 3. Statistics of the experiment.

. . Droplet Jetting
Group Num Displacement Time Diameter Velocity
(m) (s)
(um) (m/s)
1 0.055 0.01573
Group 1 2 0.066 0.01890 483 3.51
3 0.058 0.01673
Group 2 4 0.069 0.01993 432 3.58
5 0.060 0.01699
Group 3 6 0.072 0.02042 466 3.69
7 0.073 0.01946
Group 4 8 0.085 0.02269 458 375
9 0.078 0.02251
Group 5 10 0.091 0.02630 477 3.66
Average 463.2 3.64
value

Figure 12 shows the comparison of the simulation and experimental results. In sum-
mary, the jetting velocity predicted by the finite element model established in this paper, is
3.64 m.s~!, with an error of 3.02% from the experimental results, and the droplet diameter
predicted by the model is 463.2 um, with an error of 2.20% from the experimental results,
which proves that the finite element model proposed in this paper can predict the jetting
velocity and droplet diameter accurately.
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(b) The displacement of the 16.73ms
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(a) Initial state of the droplet (¢) The displacement of the droplet at 19.93ms

Figure 10. Displacement of the second group of experiments at different moments. (a) initial state of
the droplet, (b) the displacement of the 16.73 ms, (c) the displacement of the droplet at 19.93 ms.

Figure 11. The diameter of droplets at different moments in the second set of experiments
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Figure 12. Experimental and simulation comparison of jetting velocity and droplet diameter for
case 27.
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4. Conclusions

This paper presents a method for predicting the performance of piezoelectric injection
systems, based on finite element simulations. The obvious advantage of this approach is
that it is based on accurate finite element analysis rather than expensive, time-consuming,
and error-prone collected experimental data. Coupled modeling of the piezoelectric in-
jection process was performed using the ANSYS Fluent software, and quantitative and
qualitative validation of literature data and experiments were performed. Two system
performance metrics were proposed: jetting velocity and droplet diameter. A finite el-
ement model, with different parameter combinations, was designed, using the Taguchi
orthogonal array method. By comparing the predicted and experimental values of the
finite element simulation, the error of the jetting velocity was 3.02% and the error of the
droplet diameter was 2.20%, indicating that the method proposed in this paper can predict
the system performance.
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