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Abstract: In this paper, the fluorescence properties of ZnOQD-GO-g-C3N4 composite materials
(ZCGQDs) were studied. Firstly, the addition of a silane coupling agent (APTES) in the synthesis
process was explored, and it was found that the addition of 0.04 g·mL−1 APTES had the largest
relative fluorescence intensity and the highest quenching efficiency. The selectivity of ZCGQDs for
metal ions was also investigated, and it was found that ZCGQDs showed good selectivity for Cu2+.
ZCGQDs were optimally mixed with Cu2+ for 15 min. ZCGQDs also had good anti-interference
capability toward Cu2+. There was a linear relationship between the concentration of Cu2+ and the
fluorescence intensity of ZCGQDs in the range of 1~100 µM. The regression equation was found to be
F0/F = 0.9687 + 0.12343C. The detection limit of Cu2+ was about 1.74 µM. The quenching mechanism
was also analyzed.

Keywords: nanocomposites; fluorescence probe; metal ion; fluorescence properties

1. Introduction

ZnO is an eco-friendly oxide semiconductor, and compared with traditional CdSe
or CdTe quantum dots, it is an inexpensive luminescent material, which makes it more
attractive in practical applications [1–3]. Over the past few years, a variety of physical
and chemical synthesis techniques have been developed to synthesize ZnO QDS. Various
chemical methods have been developed to synthesize ZnO nanocrystals, and many research
groups have used the sol–gel method to improve the process of obtaining ZnO quantum
dots with different sizes and fluorescence characteristics [4]. ZnO quantum dots have
been widely used in the photoelectric field [5–7], biomedical field [8] energy electrochem-
ical field [9–12], fluorescence imaging [13], gas sensing [14] selective detection [15], and
other fields.

Graphene oxide (GO) is a carbon-based nanomaterial widely used for adsorption and
catalytic degradation due to its high specific surface area and tunable structure [16]. It is
also a promising nanomaterial for a wide range of applications, including but not limited
to energy storage [17,18], electrical sensors [19,20], and antimicrobial activity [21,22]. GO
exhibits excellent performance in photocatalytic activity due to its high electron mobility,
good electrical conductivity and chemical stability. GO can be involved in the synthesis of
various composite materials, such as nanoparticles, polymers, and novel metal–organic
frame-derived materials, which can be used in separation [23], catalysis [24], electrochemi-
cal devices [25], and coatings [26].

In recent decades, a type of non-metallic semiconductor graphitic carbon nitride (g-
C3N4) has attracted great attention among researchers worldwide because it has good
photocatalytic activity under visible light irradiation and shows great potential in vari-
ous environmental remediation applications. As a visible light-responsive non-metallic
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organic semiconductor, it has been widely used in sewage treatment [27], CO2 reduc-
tion [28,29], hydrogen production from water photolysis [30,31] energy conversion [32,33],
and other fields.

Yang [34] et al. established a highly efficient and stable Al3+ fluorescent probe using
the fluorescent “on” mode of zinc sulfide crystal composite zinc oxide quantum dots
(ZnS/ZnOQDs). The as-synthesized ZnS/ZnOQDs exhibited fluorescence enhancement
for Al, confirming the availability of fluorescence sensing probes.

Copper is a toxic heavy metal element. Cu2+ is involved in many reaction activities in
the human body and plays an important role in various physiological processes such as
the formation of red blood cells and the normal growth and maintenance of brain tissue,
kidney, heart, and other organs of the body [35]. However, the content of Cu2+ is also
a double-edged sword, and the excess or deficiency of Cu2+ can lead to the disorder of
cellular homeostasis and damage the central nervous system. The abnormal accumulation
of Cu2+ will lead to the appearance of some human diseases, including Alzheimer’s disease,
Parkinson’s disease, Menkes disease, and Wilson’s disease. If Cu2+ is deficient in the human
body, gastrointestinal diseases and abnormal bone growth will occur [36].

Copper accumulation in the body will produce certain harm [37]. In addition, heavy
metal ions affect the activities of proteins and enzymes in the human body and accumulate
in some organs, resulting in chronic poisoning [38]. Heavy metal pollution seriously
endangers human health, which has raised great concern in the world. Therefore, it is of
great significance and urgency to develop a rapid and sensitive detection method for heavy
metal ions for environmental and public safety.

The traditional detection methods of heavy metal ions include electrochemical analy-
sis [39,40], atomic absorption spectroscopy [41], atomic emission spectroscopy, inductively
coupled plasma mass spectrometry [42], and surface-enhanced Raman spectroscopy [43,44],
but these methods have the problems of cumbersome detection steps, high instrument
costs, difficulty in real-time detection, and low sensitivity. Their application in the field of
heavy metal ion detection is greatly restricted [45]. Compared with traditional detection
methods, fluorescence analysis methods have the advantages of high resolution, good
sensitivity and rapid response, and have strong potential for application. In most cases, the
fluorescence intensity of fluorescent probes is related to metal ions, so it is relatively easy to
qualitatively and quantitatively analyze heavy metal ions by measuring the fluorescence
intensity [46]. Therefore, it is of great significance to develop fluorescent probes that can
selectively detect important metal ions such as copper.

In this paper, the selectivity of ZnOQD-GO-g-C3N4 composite materials (ZCGQDs)
for metal ions and the mixing time, anti-interference ability, linear relationship, and fluo-
rescence quenching mechanism of ZCGQDs composite materials and the target metal ion
Cu2+ were analyzed, which provides a new idea for the research of zinc oxide quantum
dots.

2. Experimental
2.1. Experimental Reagents

The inorganic compounds containing Al3+, Ba2+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+,
Fe3+, Hg2+, Mn2+, Mg2+, Ni2+, Pb2+. AlCl3, BaCl2, CaCl2, CdCl2·25H2O, CoCl2·6H2O,
CuCl2·2H2O, CrCl3·6H2O, FeCl2·4H2O, Fe(NO3)3 9H2O, HgCl2, Mn(NO3)2·4H2O,
Mg(NO3)2·6H2O, NiCl2·6H2O, and Pb(NO3)2 were purchased from Sinopharm Chem-
ical Reagent Co., Ltd. (Huai’an, China).

2.2. Metal Ion Detection
2.2.1. Selective Detection of Metal Ions Based on ZCGQDs

a. The inorganic compounds containing Al3+, Ba2+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+,
Fe3+, Hg2+, Mn2+, Mg2+, Ni2+, and Pb2+ were used as metal ion sources, dissolved in
deionized water to prepare 50 mM solutions of different metal ions;
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b. A pipette was used to accurately pipette 0.005 mL of different metal ion solutions of
the same concentration configured in step a;

c. Then, 4.995 mL of the prepared ZCGQDs composite sample was taken;
d. Various metal ions were added to the ZCGQDs composite sample to obtain a 50 µM

colloidal solution of different metal ions and left for 20 min;
e. A quartz cuvette was used, with a diameter of 1 cm and transparent on all sides, and

the different metal ion colloid solutions in step d were added;
f. The mixed colloidal solutions were scanned to obtain their fluorescence spectra and

intensity values. To reduce systematic errors, each mixed colloidal solution was
scanned three times, and the average was calculated as the final intensity result.

The fluorescence intensities of different mixed colloidal solutions were compared to
determine the selectivity of the fluorescent probes for metal ions.

2.2.2. Determination of the Linear Relationship between ZCGQDs and Target Metal
Ion Cu2+

In order to explore the selectivity of the prepared ZCGQDs complexes to Cu2+, the
relationship between Cu2+ concentration and the change in the fluorescence intensity of
the ZCGQDs complexes was investigated.

Experimental process:

a. Cu2+ was derived from the CuCl2·2H2O inorganic compound, which was dissolved
in deionized water, and several solutions with different concentrations of Cu2+ were
prepared using the stepwise dilution method;

b. A pipette was used to accurately pipette 0.005 mL of Cu2+ solutions at the different
concentrations configured in step a;

c. Then, 4.995 mL samples of the ZCGQDs composites were taken;
d. Different concentrations of Cu2+ solution were added to the ZCGQDs composite

sample, mixed and shaken well to obtain a colloidal solution, which was left for
15 min;

e. A quartz cuvette was used, with a diameter of 1 cm and transparent on all sides, and
the colloidal solutions with different concentrations of Cu2+ in step d were added;

f. The mixed colloidal solutions were scanned to obtain their fluorescence spectra and in-
tensity values. In order to reduce systematic errors, each mixed colloidal solution was
scanned three times, and the average intensity value was used as the representative.

2.3. Experimental Optimization

The addition of metal ions can cause the fluorescence intensity of ZCGQDs complexes
to weaken, resulting in a fluorescence quenching phenomenon. Among these metal ions,
the fluorescence intensity of the solution changed most significantly after the addition
of Cu2+.Using this principle, the ZCGQDs complexes were used as fluorescent probes
to detect Cu2+. However, it should be noted that there were differences in experimental
settings, and different quenching efficiencies were obtained. We optimized the experiment
in two aspects: (a) the addition of different concentrations of APTES in the preparation of
ZCGQDs complexes; (b) the mixing of ZCGQDs complexes and Cu2+ at different times.

3. Results and Discussion
3.1. Effect of APTES Concentration Used to Synthesize ZCGQDs

In order to explore the effect of the addition of different concentrations of APTES
on the quenching efficiency during the preparation of synthetic ZCGQDs complexes,
the experiments were conducted as follows: (a) During the preparation of the ZCGQDs
composites, 0.02 g·mL−1, 0.04 g·mL−1, 0.06 g·mL−1, and 0.08 g·mL−1 of a silane coupling
agent (APTES) were added; (b) the ZCGQDs complexes were scanned with a fluorescence
spectrophotometer to obtain their fluorescence spectra and fluorescence peak intensity
values; (c)The fluorescence intensity changes of the solutions before and after the addition
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of Cu2+ were measured, and the fluorescence intensity values were labeled as F0 and F,
respectively; the corresponding fluorescence quenching rates were represented by F0/F. To
reduce systematic errors, the above procedure was repeated three times and the average
fluorescence intensity values were calculated.

From Figure 1a, it can be concluded that with the increase in the APTES concentration,
the fluorescence intensity of the ZCGQDs complexes increased. However, when the APTES
concentration increased to a certain extent, the fluorescence intensity decreased instead
of increasing. The reason may be that the luminescence of ZnOQDs in the visible light
range is due to the deep-level emission caused by lattice defects. This is mainly caused
by two kinds of defects: (1) Starting from the lower part of the conduction band, the
electrons gradually leap toward the OZn and Oi deep body defects; (2) starting from the
deep body defect VO, the electrons gradually leap to the upper end of the valence band.
Therefore, there should be a certain concentration range and an optimum value. As shown
in Figure 1a, which illustrates the change in the APTES concentration and the fluorescence
intensity of the ZCGQDs complexes, the wavelength blue shift occurred when the APTES
concentration exceeded 0.02 g·mL−1, which indicates that the appropriate increase in the
APTES concentration was beneficial to the ZCGQDs complexes. The surface quickly formed
a coating, which in turn reduced the agglomeration of the ZCGQDs complexes. By adding
0.04 g·mL−1 APTES, the fluorescence intensity was the highest.
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Figure 1. (a) Fluorescence emission spectra of ZCGQDs; (b) relative fluorescence intensity with the
addition of 20 µM Cu2+ to ZCGQDs.

Figure 1b shows the relative fluorescence intensity values after the addition of equal
amounts of Cu2+ (20 µM) to the complexes formed by different concentrations of APTES
and ZCGQDs. With the increase in the APTES concentration, the agglomeration degree of
the ZCGQDs complexes weakened, the relative fluorescence intensity increased, and the
quenching efficiency increased. However, when the APTES concentration increased to a cer-
tain extent, the relative fluorescence intensity did not increase but decreased. The excessive
increase in the APTES concentration caused the coating layer of the ZCGQDs complexes
to be too thick, thus destroying the fluorescence emission of the quantum dots caused by
surface defects, decreasing the relative fluorescence intensity, and reducing the quenching
efficiency. Notably, 0.04 g·mL−1 APTES had the highest relative fluorescence intensity and
the highest quenching efficiency. Therefore, the concentration of 0.04 g·mL−1 APTES was
selected to synthesize the ZCGQDs complexes for subsequent experimental analysis.

3.2. Effect of Mixing Time of ZCGQDs and Cu2+

As shown in Figure 2, nine time points were selected from 5 to 45 min to determine the
extent of the fluorescence quenching of Cu2+ and ZCGQDs complexes at different mixing
times [47,48]. In the range of 5–15 min, the quenching efficiency enhanced with increasing
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time and remained basically stable after 15 min. The highest efficiency was reached at
15 min. In order to improve the fluorescence properties of the ZCGQDs complexes in
subsequent experiments, a fixed mixing time of 15 min was selected.
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3.3. Selectivity of ZCGQDs to Metal Ions

Equal concentrations of various metal ions were added to the ZCGQDs composite
sample to obtain a 50 µM colloidal solution of different metal ions and allowed to stand for
15 min [49]. The changes in the fluorescence intensity of the ZCGQDs complexes before and
after the addition of Cu2+ were measured. The fluorescence intensity values were marked
as F0 and F, and the corresponding fluorescence quenching rate was expressed as F0/F. In
order to reduce the systematic error, the above process was repeated three times, and the
fluorescence average intensity values were calculated.

Figure 3a,b show the effects of different metal ions on the fluorescence intensity of
the ZCGQDs complexes under the same concentration conditions. It was found that Cu2+

resulted in a marked fluorescence quenching phenomenon on the ZCGQDs complexes,
and the as-prepared ZCGQDs complexes exhibited good selectivity toward Cu2+.
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3.4. Anti-Interference Performance of ZCGQDs on Cu2+

Different metal ions of equal concentration were prepared and added to ZCGQDs
composite samples, and the mixtures were shaken to obtain the colloidal solutions of
the different metal ions. Then, Cu2+ was added to the solutions and shaken well, and
the mixtures were left to stand for 15 min to test their anti-interference performance [47].
The changes in the fluorescence intensity of the ZCGQDs complexes before and after the
addition of Cu2+ were measured. The fluorescence intensity values were marked as F0
and F, and the relative fluorescence intensity (marked as F0/F) was used to represent the
corresponding fluorescence quenching rate. In order to reduce the systematic error, the
above process was repeated three times, and the average fluorescence intensity values were
calculated. As shown in Figure 4, Cu2+ still exhibited strong fluorescence quenching under
the same concentration of different metals, and the fluorescence quenching efficiency did
not significantly change compared with Cu2+ without interference, which indicates that the
prepared ZCGQDs composites had good anti-interference capability toward Cu2+.
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3.5. Linear Relationship between ZCGQDs and Cu2+ Concentration

The stepwise dilution method was used to obtain the Cu2+ solutions of different
concentrations, which were added to the ZCGQDs composite samples, mixed, and shaken
to obtain the colloidal solutions of copper ions, and the solutions were allowed to stand
for 10 min [48,49]. The changes in the fluorescence intensity of the ZCGQDs complexes
before and after the addition of Cu2+ were measured. The fluorescence intensity values
were marked as F0 and F, and the relative fluorescence intensity (marked as F0/F) was used
to represent the corresponding fluorescence quenching rate.

From Figure 5a, it can be concluded that the fluorescence intensity of the ZCGQDs
complexes decreased sequentially with the increase in Cu2+ concentration. This shows
a linear relationship between the concentration of Cu2+ and the fluorescence intensity of
ZCGQDs complexes. As seen in Figure 5b, the linear regression equation for the concen-
tration of Cu2+ between 1 and 100 µM is F0/F = 0.9788 + 0.12283C (R2 = 0.9951), where
C represents the concentration of Cu2+ in the solution and R2 represents the correlation
constant. Using this equation, the limit of detection for Cu2+ was obtained, which was
about 1.74 µM.
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3.6. Analysis of Fluorescence Quenching Mechanism of ZCGQDs

Copper ions had a marked fluorescence quenching effect on the ZCGQDs complexes,
and there was a strong linear relationship between the Cu2+ concentration and the relative
fluorescence intensity of the ZCGQDs complexes.

Figure 6a,b shows the particle dispersion maps before and after the addition of Cu2+

to the ZCGQDs composite solution. A comparison was made using transmission electron
microscopy and aggregation phenomenon was observed in the ZCGQDs composite, with a
consequent weakening of the fluorescence intensity. Thus, the aggregation phenomenon in
the ZCGQDs composite induced fluorescence quenching (AIQ) of the ZCGQDs complex,
which was caused by Cu2+.
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The addition of metal ions can lead to fluorescence quenching of quantum dots. There
are two mechanisms for this phenomenon. One is dynamic quenching, that is, after the
quenching agent is added, it can carry out frequent energy transfer between the fluorescent
material and reduce the fluorescence lifetime of the material. The other is static quenching,
in which the two are mixed together to form a corresponding non-fluorescent complex that
shows exactly the specific absorption peak when exposed to UV light.

As shown in Figure 7, after the different concentrations of Cu2+ were added to the
ZCGQDs solutions, their ultraviolet absorption spectra were plotted, and no obvious
difference was observed. This indicates that the sol system formed a new non-fluorescent
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complex, and the reason for the fluorescence quenching of ZCGQDs complexes by Cu2+

was the dynamic quenching caused by energy transfer.
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4. Conclusions

In this paper, the fluorescence performance of ZCGQDs was analyzed, and it was
found that the addition of metal ions would cause the fluorescence intensity of ZCGQDs
complexes to weaken, resulting in fluorescence quenching. The fluorescence quenching
phenomenon produced by Cu2+ was the most obvious. Using this principle, the ZCGQDs
complexes were used as fluorescent probes to detect Cu2+. The mixing time of 15 min
makes the most obvious fluorescence burst of Cu2+ on ZCGQDs with good anti-interference
performance. There was a linear relationship between ZCGQDs and Cu2+ in the range of
1–100 µM, with F0/F = 0.9687 + 0.12343C, so the detection limit of Cu2+ was obtained, which
was about 1.74 µm. In addition, the characterization of the materials using transmission
electron microscopy and UV spectroscopy proved that Cu2+ induced the fluorescence
quenching of ZCGQDs complexes, which involved the induced aggregation quenching
and dynamic quenching.
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