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Abstract: As an important deterministic error of the inertial measurement unit (IMU), the installation
error has a serious impact on the navigation accuracy of the strapdown inertial navigation system
(SINS). The impact becomes more severe in a highly dynamic application environment. This paper
proposes a new IMU calibration model based on polar decomposition. Using the new model,
the installation error is decomposed into a nonorthogonal error and a misalignment error. The
compensation of the IMU calibration model is decomposed into two steps. First, the nonorthogonal
error is compensated, and then the misalignment error is compensated. Based on the proposed
IMU calibration model, we used a three-axis turntable to calibrate three sets of strapdown inertial
navigation systems (SINS). The experimental results show that the misalignment errors are larger
than the nonorthogonal errors. Based on the experimental results, this paper proposes a new method
to simplify the installation error. This simplified method defines the installation error matrix as
an antisymmetric matrix composed of three misalignment errors. The navigation errors caused
by the proposed simplified calibration model are compared with the navigation errors caused by
the traditional simplified calibration model. The 48-h navigation experiment results show that the
proposed simplified calibration model is superior to the traditional simplified calibration model in
attitude accuracy, velocity accuracy, and position accuracy.

Keywords: IMU; calibration; polar decomposition; nonorthogonal error; misalignment error; installa-
tion error model

1. Introduction

The inertial measurement unit (IMU) is the core sensor of the strapdown inertial
navigation system (SINS). Its measurement accuracy is directly related to the navigation
accuracy of SINS. The IMU manufacturing and installation errors cause navigation errors
to accumulate over time [1,2]. The IMU calibration model is a mathematical relationship
that reflects the sensor errors and environmental factors. Establishing a suitable IMU
calibration model is a key technology for error compensation [3,4]. Therefore, it is necessary
to establish an IMU error compensation model which meets the accuracy requirements and
calibrate it accurately to improve the SINS accuracy [5–7]. The IMU mathematical model is
divided into the static mathematical model, dynamic mathematical model, and random
mathematical model. This paper mainly studies the static mathematical model.

The machining and assembly processes cause the sensitive axis of the gyroscope and
accelerometer not to coincide with the carrier coordinate system axis [8,9]. This leads to the
installation error. In the navigation-grade SINS, the installation error is a very important
parameter that affects the navigation output accuracy. In [10], the SINS carries out the
static navigation experiment. The results show that the attitude and velocity errors are
significantly reduced after compensating for the installation error. In [11], the influence of
a fiber-optic gyroscope (FOG) installation error on the attitude heading reference system
(AHRS) is simulated and analyzed. The results show that the attitude error caused by the
gyroscope installation error is related to the carrier motion environment. The more intense
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the carrier motion, the bigger the attitude error. What is more serious is that if the carrier is
in a rocking state, the installation error of the gyroscope will also stimulate other errors
in the system. For the installation error of the accelerometer, the more severe the linear
motion, the more obvious the velocity error caused by the accelerometer installation error.

Some researchers find a coupling between the accelerometer installation error and
the gyroscope installation error. In [12], it derives an IMU calibration model based on
the velocity error. Based on the observability analysis method, it is found that there are
three coupling relationships in the installation error parameters. The pulse output of the
accelerometer is added to solve the problem that the installation error parameters cannot
be fully identified. In fact, if the velocity and the attitude errors are used as observations at
the same time, this coupling relationship will disappear. In [13], it proposes a method of
constraining the carrier coordinate system. Assume that the x-axis of the carrier coordinate
system coincides with the x-axis of the acceleration coordinate system. This assumption
can reduce the number of installation error angles. At the same time, the coupling between
the accelerometer installation error and the gyro installation error is eliminated. However,
ref. [13] only studies the calibration scheme. It does not evaluate the impact of the simplified
model on the navigation accuracy of SINS.

Some researchers calibrate the navigation-grade SINS by simplifying the installation
error angles. In [14], it proposes a hybrid calibration scheme aiming at the high-precision
FOG IMU and ring laser gyroscope (RLG) IMU. It reduces the installation error angles of
the gyroscope calibration model from six to three. In [15], the ultrahigh precision IMU
calibration model is studied. Additional g sensitivity errors, accelerometer cross-coupling,
and lever arm errors are introduced. The model includes g sensitivity error, accelerometer
cross-coupling error, and lever arm error. Although the gyroscope installation error is
simplified, the filtering dimension is also as high as 51. In [16], the gyroscopes and the
accelerometers are almost orthogonal. It is defined as the x-axis of the inertial sensor
assembly (ISA) coinciding with the x-axis of the platform coordinate system. In this way,
the transformation matrices of the platform coordinate system relative to the accelerometer
coordinate system and the platform coordinate system relative to the gyroscope coordinate
system are simplified to lower triangular matrices. In [17,18], one axis of the accelerometer
coordinate system is assumed to coincide with one axis of the carrier coordinate system.
Thus, the installation error of the accelerometer assembly is represented by three small
angles, and the installation error of the accelerometer assembly is expressed with three
small angles. The accelerometer installation error matrix is simplified as a lower triangular
matrix to achieve a certain constraint. In [19], the multiposition calibration method is
optimized for the IMU nonlinear scale factor. However, in the deterministic error model,
the installation error number of the gyroscope and accelerometer are all simplified to three.
In [20–24], the installation error of ISA is also simplified. In commercial grade or tactical
grade SINS, simplifying the IMU installation error can meet the requirement of system
accuracy. Except for high-precision navigation-grade SINS, the simplified installation error
model has a serious impact on system accuracy. So, the indepth analysis of the installation
error matrix is important in engineering applications. This paper mainly focuses on the
following problems. How to describe the installation error of inertial sensor assembly
by mathematical model? What are the geometric characteristics of the installation error
matrix? How does the simplified installation error matrix affect the navigation system?

This paper introduces the polar decomposition [25] to decompose the IMU installation
error matrix. Through a series of matrix decompositions and equivalent transformations,
the mathematical calibration model is established. The installation error is decomposed
into a nonorthogonal error and a misalignment error. The installation error matrix is finally
decomposed into a symmetric matrix and an oblique symmetric matrix. In order to further
analyze the results after decomposition, three sets of IMU are calibrated by a three-axis
inertial-test turntable. We analyze the nonorthogonal and misalignment errors by introduc-
ing infinite norm and two-norm. The analysis results show that the misalignment error
is larger than the nonorthogonal error. This result is helpful to improve the production
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and assembly of IMU. For the SINS in which the misalignment error is larger than the
nonorthogonal error, a new simplified model of installation error is proposed. This sim-
plified model is verified by 48 h navigation experiments. The navigation accuracy of the
proposed model is better than the traditional simplified model in attitude, velocity, and
position.

The paper is organized as follows. Section 2 is an installation error analysis and
modeling. In Section 3, polar decomposition is introduced to decompose the installation
error matrix. The installation error model, based on polar decomposition, is obtained. This
method is also shown in geometric space. In Section 4, three sets of IMU are calibrated
by a three-axis inertial test turntable. The characteristics of the nonorthogonal error and
the misalignment error are analyzed. Section 5 presents a new simplified model of the
installation error. The proposed simplified model and the traditional simplified model are
compared in navigation simulation experiments. Section 6 is the conclusion.

2. Installation Error Model of the IMU

The frames used in this paper are provided in Table 1.

Table 1. Frame definition.

Frames Definition

b The body frame
a The accelerometer frame
g The gyroscope frame
ã The accelerometer installation frame
g̃ The gyroscope installation frame

Installation error matrix is a 3 × 3 matrix describing the accelerometer frame (or the
gyroscope frame) to the body frame. It is the mathematical representation of the installation
error. The accelerometer frame (a-frame) and the gyroscope frame (g-frame) coincide
with the body frame (b-frame) in ideal condition. However, there are deviations in the
actual installation. In the actual installation, the ã-frame or g̃-frame deviates from the
b-frame [26]. Suppose the origins of the ã-frame, g̃-frame, and b-frame are coincident.
Take the acceleration installation error modeling for an example. The actual installation of
accelerometers is shown in Figure 1.

Micromachines 2023, 14, x FOR PEER REVIEW 3 of 16 
 

 

by a three-axis inertial-test turntable. We analyze the nonorthogonal and misalignment 
errors by introducing infinite norm and two-norm. The analysis results show that the mis-
alignment error is larger than the nonorthogonal error. This result is helpful to improve 
the production and assembly of IMU. For the SINS in which the misalignment error is 
larger than the nonorthogonal error, a new simplified model of installation error is pro-
posed. This simplified model is verified by 48 h navigation experiments. The navigation 
accuracy of the proposed model is better than the traditional simplified model in attitude, 
velocity, and position. 

The paper is organized as follows. Section 2 is an installation error analysis and mod-
eling. In Section 3, polar decomposition is introduced to decompose the installation error 
matrix. The installation error model, based on polar decomposition, is obtained. This 
method is also shown in geometric space. In Section 4, three sets of IMU are calibrated by 
a three-axis inertial test turntable. The characteristics of the nonorthogonal error and the 
misalignment error are analyzed. Section 5 presents a new simplified model of the instal-
lation error. The proposed simplified model and the traditional simplified model are com-
pared in navigation simulation experiments. Section 6 is the conclusion. 

2. Installation Error Model of the IMU 
The frames used in this paper are provided in Table 1. 

Table 1. Frame definition. 

Frames Definition 
b The body frame 
a The accelerometer frame 
g  The gyroscope frame 
a The accelerometer installation frame 
g  The gyroscope installation frame 

Installation error matrix is a 3 × 3 matrix describing the accelerometer frame (or the 
gyroscope frame) to the body frame. It is the mathematical representation of the installa-
tion error. The accelerometer frame (a-frame) and the gyroscope frame ( g -frame) coin-
cide with the body frame (b-frame) in ideal condition. However, there are deviations in 
the actual installation. In the actual installation, the a-frame or g -frame deviates from 
the b-frame [26]. Suppose the origins of the a-frame, g -frame, and b-frame are coinci-
dent. Take the acceleration installation error modeling for an example. The actual instal-
lation of accelerometers is shown in Figure 1. 

 
Figure 1. Installation error of the accelerometer assembly. (a) Installation diagrammatic drawing of 
the accelerometer assembly; (b) Installation errors between the accelerometer exes and b-frame exes. 
Figure 1. Installation error of the accelerometer assembly. (a) Installation diagrammatic drawing of
the accelerometer assembly; (b) Installation errors between the accelerometer exes and b-frame exes.

Figure 1 shows the actual installation frame of the accelerometer assembly. The
three sensitive axes of the ã-frame are not orthogonal. The three axes of the b-frame are
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orthogonal and γa
ij(i, j = x, y, z, j = x, y, z) denotes installation error. The projections of the

accelerometer measurements on the three axes of the b-frame are shown in Table 2.

Table 2. Projections of accelerometer measurements.

x-Axis y-Axis z-Axis

Nb
xx = N ã

x cos γa
xz cos γa

xy Nb
xy = −N ã

y cos γa
yx sin γa

yz Nb
xz = N ã

z sin γa
zy

Nb
yx = N ã

x sin γa
xz Nb

yy = N ã
y cos γa

yx cos γa
yz Nb

yz = −N ã
z cos γa

zy sin γa
zx

Nb
zx = −N ã

x cos γa
xz sin γa

xy Nb
zy = N ã

y sin γa
yx Nb

zz = N ã
z cos γa

zy cos γa
zx

Table 2 shows the output of the accelerometer. Nb
ij(i = x, y, z, j = x, y, z) is the

projection from the i-axis of the ã-frame to the j-axis of the b-frame. γa
ij(i = x, y, z, j = x, y, z)

is the installation error of the accelerometer assembly. The specific force of the accelerometer
assembly in the ã-frame can be transformed into a specific force in the b-frame.

Nb = Cb
ãNã (1)

where Cb
ã represents the transformation matrix from the ã-frame to the b-frame.

Cb
ã =

 cos γa
xz cos γa

xy − cos γa
yx sin γa

yz sin γa
zy

sin γa
xz cos γa

yx cos γa
yz − cos γa

zy sin γa
zx

− cos γa
xz sin γa

xy sin γa
yx cos γa

zy cos γa
zx

 (2)

where γa
ij(i = x, y, z, j = x, y, z) is a small angle, cos γa

ij ≈ 1, and sin γa
ij ≈ γa

ij. The

accelerometer transformation matrix Cb
ã can be written as:

Cb
ã =

 1 −γa
yz γa

zy
γa

xz 1 −γa
zx

−γa
xy γa

yx 1

 (3)

The transformation relationship between ã-frame and b-frame isxb

yb

zb

 = Cb
ã

xã

yã

zã

 (4)

There is no installation error in the ideal condition. So, the a-frame and the b-frame
are coincident. The transformation relationship is written as:xb

yb

zb

 = Cb
a

xa

ya

za

 = I3×3

xa

ya

za

 (5)

The transformation matrix Cb
a is a unit matrix (Cb

a = I3×3). Equation (4) can also be
rewritten as: xb

yb

zb

 = Cb
ã

xã

yã

zã

 = (I3×3 + δCb
a)

xã

yã

zã

 (6)

δCb
a is the installation error matrix. It can be written as:

δCb
a =

 0 −γa
yz γa

zy
γa

xz 0 −γa
zx

−γa
xy γa

yx 0

 (7)
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Combine (5) and (6) together. Cb
ã is written as:

Cb
ã = Cb

a + δCb
a (8)

where Cb
ã represents the transformation matrix from the ã-frame to the b-frame. Cb

a rep-
resents the transformation matrix from the a-frame to the b-frame. δCb

a represents the
installation error matrix.

Similarly, the derivation process of the gyroscope installation error model is the same
as the accelerometer installation error model. Therefore, they have the same expression.

δCb
g =

 0 −γ
g
yz γ

g
zy

γ
g
xz 0 −γ

g
zx

−γ
g
xy γ

g
yx 0

 (9)

The transformation matrixes Cb
ã and Cb

g̃ are as follows:{
Cb

ã = Cb
a + δCb

a = I3×3 + δCb
a

Cb
g̃ = Cb

g + δCb
g = I3×3 + δCb

g
(10)

3. Polar Decomposition of Installation Error Matrix

In Section 2, the installation error is modeled for the accelerometer and gyroscope. The
transformation matrix Cb

ã(g̃) (Cb
ã(g̃) represents the transformation matrix from the ã-frame

or the g̃-frame to the b-frame.) and the installation error matrix δCb
a(g) (δCb

a(g) represents

the installation error matrix of the accelerometer or gyroscope.) are derived. Cb
ã(g̃) is

a direct transformation. In order to express this transformation more clearly, the polar
decomposition method is introduced to divide the transformation into two steps. In this
way, the compensation for the installation error also needs two steps.

The installation error is minimal. The rank of Cb
ã(g̃) is three. Cb

ã(g̃) is nonsingular, so it
can perform singular value decomposition. According to singular value decomposition
theory [27,28], Cb

ã(g̃) can be decomposed as:

Cb
ã(g̃) = UΣVT (11)

where U represents the left singular matrix and V represents the right singular matrix. U
and V are orthogonal matrixes. In Figure 1, the basis of the b-frame is a standard orthogonal
basis. U and V are unit orthogonal matrixes.

V is a unit orthogonal matrix. Therefore, VVT = VTV = I. Substitute VVT into (11),
and introduce the polar decomposition method [25]. Then

UΣVT = UVTVΣVT = (UVT)(VΣVT) (12)

Define Cb
b′ = UVT and Cb′

ã(g̃) = VΣVT. Equation (11) can be written as:

Cb
ã(g̃) = Cb

b′C
b′
ã(g̃) (13)

where the b′-frame is a rectangular Cartesian coordinate system.
According to (13), Cb

ã(g̃) can be decomposed into Cb′
ã(g̃) and Cb

b′ by polar decomposition.

Cb′
ã(g̃) represents the transformation matrix from ã-frame (or g̃-frame) to a rectangular

cartesian coordinate system. Cb
b′ represents the transformation matrix from the b′-frame to

the b-frame.
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The transposition of Cb′
ã(g̃) is

(Cb′
ã(g̃))

T
= (VΣVT)

T
= VΣTVT = VΣVT = Cb′

ã(g̃) (14)

From the derivation of (14), it can be seen that Cb′
ã(g̃) is a symmetric matrix. The

symmetric matrix Cb′
ã(g̃) represents the nonorthogonal properties of IMU. Suppose that the

three nonorthogonal angles are µx, µy, and µz.

µ = [µx µy µz]
T (15)

The column vector of Cb′
ã(g̃) is a unit vector. Cb′

ã(g̃) can be written as:

Cb′
ã(g̃) =


√

1− µ2
z − µ2

y µz µy

µz
√

1− µ2
z − µ2

x µx

µy µx

√
1− µ2

y − µ2
x

 (16)

where µx, µy, and µz are all small angles, and the high-order infinitesimal can be ignored.
Thus, Cb′

ã(g̃) can be written as:

Cb′
ã(g̃) ≈

 1 µz µy
µz 1 µx
µy µx 1

 = I + S(µ) (17)

where S(µ) is a symmetric matrix composed of three nonorthogonal angles.
Cb

b′ is the transformation matrix from the b′-frame to the b-frame. The orthogonal
small-angle transformation matrix is a skew-symmetric matrix. Therefore, Cb

b′ is a skew-
symmetric matrix [29,30]. The three misalignment angles between the b′-frame and the
b-frame are ηx, ηy, and ηz.

η = [ηx ηy ηz]
T (18)

The three misalignment angles are all small angles, and the high-order infinitesimal
can be ignored. Thus, Cb

b′ is written as:

Cb
b′ = I +

sin a
a

(η×) + 1− cos a
a2 (η×)2 ≈ I + (η×) (19)

where a = ‖η‖2 =
√
(η, η).

Through the above derivation, according to polar decomposition, the installation
error matrix is divided into the product of two matrices. The frame is transformed twice.
Substitute the transformation matrixes into (13) and ignore the small quantities of the
second order and above the second order.

Cb
ã(g̃) = Cb

b′C
b′
ã(g̃) = (I + (η×))(I + S(µ))≈I + S(µ) + (η×) (20)

Thus, Cb
ã(g̃) can be written as:

Cb
ã(g̃) =

 1 µz − ηz µy + ηy
µz + ηz 1 µx − ηx
µy − ηy µx + ηx 1

 (21)

In some references [31–33], the matrix is directly decomposed into the sum of the
symmetric matrix and skewed the symmetric matrix. In [29], the matrix is directly de-
composed into the product of the symmetric matrix and the skew-symmetric matrix. The



Micromachines 2023, 14, 697 7 of 15

above derivation process also proves that this modeling method is feasible. In summary,
the installation error matrix is decomposed into the product of two matrices by polar
decomposition. The modeling in the geometric space requires two steps. The first step
is to orthogonalize the nonorthogonal frame. The second step is to compensate for the
misalignment of angles.

In geometric space decomposing the installation error matrix by polar decomposition
carries out two steps. The first step is the orthogonalization of the nonorthogonal coordinate
system. It is shown in Figure 2a.
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A nonorthogonal coordinate system is o− xã(g̃)yã(g̃)zã(g̃), and o− xb′yb′zb′ is an orthog-
onal coordinate system. The essence of orthogonalization is to transform the nonorthogonal
coordinate system into the orthogonal coordinate system. In Figure 2a, it transforms
o − xã(g̃)yã(g̃)zã(g̃) into o − xb′yb′zb′ . The b′-frame is an orthogonal coordinate system.
There are misalignment angles between the b′-frame and the b-frame. The misalignment
relationship can be compensated by the transformation of the orthogonal small-angle trans-
form [29,30]. The principle of orthogonal small-angle transform is shown in Figure 2b. In
Figure 2b, the b′-frame needs to rotate three times. The three rotations correspond to rotate
one, rotate two, and rotate those. In this way, the orthogonalization and alignment of the
IMU are completed. The IMU-frame and the b-frame are coincident.

Cb
ã(g̃) is decomposed to a left singular matrix, right singular matrix, and singular

value matrix by polar decomposition. After a series of matrix transformations, the final
decomposition is the product of two matrices. This method of decomposing Cb

ã(g̃) into the
product of two matrices actually divides the installation error into two types. One type of
installation error is a nonorthogonal error. It describes the three axes of the accelerometer (or
gyroscope) assembly that are nonorthogonal. It cannot form a three-dimensional Cartesian
coordinate system when the accelerometers are installed. Another type of installation error
is a misalignment error. The b-frame is a fixed Cartesian coordinate system. Therefore,
even ã-frame or g̃-frame is an orthogonal installation, there may be misalignment errors
relative to b-frame. This method decomposes the direct transformation into two steps in
geometric space. The first step is the orthogonalization of the nonorthogonal coordinate
system. The second step is to solve the problem of misalignment.
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4. Calibration Experiment and Result Analysis
4.1. Calibration Experiment

According to [7], three sets of SINS were calibrated by a three-axis inertial test turntable.
Every system was calibrated twice based on the system-level calibration method. The SINS
and the three-axis inertial test turntable are shown in Figure 3.
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The three sets of SINS calibration results are shown in Table 3. The first group is the
result of the first calibration, and the second group is the result of the second calibration.
The installation error matrixes are decomposed by polar decomposition in Table 3. After
decomposition, we get three nonorthogonal angles and three misalignment angles. The
nonorthogonal angles and the misalignment angles in the first calibration are represented
by [µx1 µy1 µz1] and [ηx1 ηy1 ηz1], and [µx2 µy2 µz2] and [ηx2 ηy2 ηz2] represent
the nonorthogonal angles and misalignment angles in the second calibration. The absolute
values of the results are shown in Figures 4–6.

Table 3. The calibration results of the installation error.

Group System Accelerometer Installation Error (Rad) Gyroscope Installation Error (Rad)

First

1

 0.004957341 0.000536906
−0.004399740 −0.000577303
−0.000454405 −0.000290616


3×3

 0.004664025 0.000545686
−0.005649291 0.001499833
−0.001536893 −0.001331234


3×3

2

 −0.002218500 −0.000456892
0.000982279 0.000622934
0.000600170 0.000089965


3×3

 −0.001059488 −0.000409414
0.001572384 0.000707237
−0.000063701 −0.000187204


3×3

3

 −0.010023673 −0.004856166
0.010128350 0.000558046
0.000163198 0.000323968


3×3

 −0.010530742 −0.001310682
0.012094274 0.000338906
0.001226093 −0.001616381


3×3

Second

1

 0.004109660 0.000489211
−0.003552206 −0.000573132
−0.000425666 −0.000283261


3×3

 0.003820589 0.000494581
−0.004803553 0.001503636
−0.001498021 −0.001331522


3×3

2

 −0.002174314 −0.000427485
0.000948331 0.000633462
0.000563223 0.000128732


3×3

 −0.001024323 −0.000385621
0.001545636 0.000706864
−0.000091242 −0.000149967


3×3

3

 −0.010654688 −0.004695300
0.010764496 0.000577666
0.000312103 0.000366105


3×3

 −0.011171775 −0.001462344
0.012748961 0.000360389
0.001395436 −0.001673174


3×3
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4.2. Result Analysis

Compared to the calibration results in Figures 4–6, it can be seen that the misalignment
angle is larger than the nonorthogonal angle. To further analyze the two types of error an-
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gles, the L∞-norm and L2-norm are introduced to compare them. Taking the nonorthogonal
angle for example, its representations in the L∞-norm and L2-norm are shown in (22).{

‖µ‖∞ = max
{
|µx|,

∣∣µy
∣∣, |µz|

}
‖µ‖2 =

√
|µx|2 +

∣∣µy
∣∣2 + |µz|2

(22)

According to (22), L∞-norm and L2-norm are calculated for the two types of error
angles. The results are shown in Tables 4 and 5. And the L∞-norm values and L2-norm
values are drawn in Figures 7–9.

Table 4. The L∞-norm of nonorthogonal and misalignment errors.

Systems Sensors
First Group Second Group

µ (×10−3) η (×10−3) µ (×10−3) η (×10−3)

1
Acc 0.433959 4.678540 0.428196 3.830930

Gyro 0.495604 5.156660 0.501720 4.312070

2
Acc 0.618111 1.600390 0.612992 1.561320

Gyro 0.260017 1.315940 0.278448 1.284980

3
Acc 2.346480 10.076000 2.191600 10.709600

Gyro 0.781766 11.312500 0.788593 11.960400

Table 5. The L2-norm of nonorthogonal and misalignment errors.

Systems Sensors
First Group Second Group

µ (×10−3) η (×10−3) µ (×10−3) η (×10−3)

1
Acc 0.517447 4.706905 0.511908 3.860865

Gyro 0.703859 5.447858 0.707590 4.647160

2
Acc 0.717112 1.706343 0.724983 1.657342

Gyro 0.435125 1.400565 0.449806 1.362489

3
Acc 2.388136 10.384506 2.242499 10.998874

Gyro 1.010412 11.425290 1.026571 12.088289
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From Figures 7–9, we can see that the misalignment angles are larger than the
nonorthogonal angles, ‖µ‖∞ < ‖η‖∞. ‖µ‖2 < ‖η‖2. Taking the result of L2-norm as
an example, the two calibration results of each system are averaged. In the three systems,
the nonorthogonal errors of the accelerometer assembly are 12.13%, 42.88%, and 21.69%
of the misalignment errors, respectively, and the nonorthogonal errors of the gyroscope
assembly are 14.07%, 32.04%, and 8.67% of misalignment errors, respectively. Therefore, in
the production process of IMU, more attention should be paid to the misalignment errors of
IMU. That is the misalignment angles between the IMU coordinate system and the carrier
coordinate system.

5. Static Navigation Experiment and Result Analysis

In order to save time and cost, the calibration model of the SINS is often simplified.
In the traditional simplified models, the installation error matrix is often simplified as
an upper triangular or lower triangular matrix. This will affect the navigation accuracy
of SINS.

Through the analyses of installation error angles in Section 4, it is found that the
misalignment error angles are greater than the nonorthogonal error angles in the three
systems. Can we simplify the installation error matrix into an antisymmetric matrix
composed of three misalignment angles? If so, is it better than the traditional simplified
models? The paper will discuss and analyze the 48-h navigation experiments to verify
these questions.



Micromachines 2023, 14, 697 12 of 15

The simplified installation error model of the traditional lower triangular matrix [14–18] is:

δCb
a(g) =

 0 0 0
γ

a(g)
xz 0 0

−γ
a(g)
xy γ

a(g)
yx 0

 (23)

The simplified installation error model composed of the three misalignment angles is:

δCb
a(g) =

 0 −ηa(g)z ηa(g)y
ηa(g)z 0 −ηa(g)x
−ηa(g)y ηa(g)x 0

 (24)

where δCb
a(g) is the installation error matrix of the accelerometer assembly (or gyroscope

assembly). ηa(g)x, ηa(g)y, and ηa(g)z are misalignment angles.
In comparing the simplified model of the three misalignment angles with the tra-

ditional simplified model of the lower triangular matrix, the experiments analyze the
navigation errors caused by the installation errors. Ignore the influence of the other errors
on SINS. Navigation simulation experiments are carried out for the three systems. The
experimental results are shown in Table 6. We take system two as an example to show the
navigation errors caused by the simplified models. The navigation results are shown in
Figures 10–12.

Table 6. Experimental results.

Parameters

Navigation Errors of Sys. 1 Navigation Errors of Sys. 2 Navigation Errors of Sys. 3

Proposed
Method

Traditional
Method

Proposed
Method

Traditional
Method

Proposed
Method

Traditional
Method

Pitch (′) 2.977 4.762 2.550 4.787 9.519 18.623
Roll (′) 1.621 4.638 1.526 4.159 15.755 32.9173
Yaw (′) 8.341 33.899 1.569 11.367 20.614 81.979

Eastward velocity (m/s) 3.628 7.526 3.042 6.502 18.579 40.372
Northward velocity (m/s) 3.722 7.934 2.956 6.505 18.494 41.618

Longitude (′) 5.356 18.779 2.538 7.096 11.296 46.546
Latitude (′) 9.182 38.861 12.520 17.814 50.158 64.255

Position (n mile) 6.888 27.154 8.751 12.429 34.968 46.768
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Compared to the navigation results of the systems in Table 6, the errors of the simplified
model proposed in this paper are smaller than the error caused by the traditional simplified
model in attitude, velocity, and position. The attitude accuracy of the systems is increased
by 37.48–86.20%, the velocity accuracy is increased by 51.79–55.56%, and the position
accuracy is increased by 21.94–76.37%.

Therefore, it can be concluded that if the misalignment angles of the SINS are larger
than the nonorthogonal angles after singular value decomposition, the navigation errors
caused by the simplified model proposed in this paper are less than the navigation errors
caused by the traditional simplified model. The navigation errors of system three are
the largest of the three systems. By analyzing the error calibration results in Table 3, the
installation errors of system three are also much larger than that of system one and system
two. The simplified calibration model causes large navigation errors. This directly shows
that when the SINS installation error is large, the simplified model will also cause large
navigation errors.

6. Conclusions

Aiming at the IMU calibration modeling of SINS, this paper proposes a new installation
error model based on polar decomposition. This model divided the installation error
into nonorthogonal angles and misalignment angles. The geometric transformation of the
coordinate system was completed by the orthogonalization of the nonorthogonal coordinate
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system and the alignment of the misalignment coordinate system. Three sets of SINS were
calibrated by a three-axis inertial test turntable. From the calibration results, we could find
that the misalignment angles are all larger than the nonorthogonal angles. This indicates a
direction for improving the IMU manufacturing level.

In order to reduce the influence of the simplified calibration model on navigation
accuracy, a simplified model based on the misalignment angles is established. The calibra-
tion parameters of the three sets of SINS are substituted into 48 h navigation experiments
for verification. The experiment results show that the navigation errors caused by the
simplified model based on misalignment angles are smaller than those caused by the
traditional simplified model of the lower triangular matrix. This provides a reference for
the simplification of the SINS calibration model.
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