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Optoelectronic devices are fabricated based on an optoelectronic conversion effect,
which is a developing research field of modern optoelectronic technology and microelec-
tronics technology [1]. In the 21st century, the global optoelectronic device manufacturing
industry has achieved rapid development, and the market of optoelectronic devices is
growing year by year. Optoelectronic devices are widely used in various fields such as
optical displays, organic solar cells, lasers, and waveguides. They are an important part of
information technology [2,3]. In order to expand the application scenarios and improve the
performance of optoelectronic devices, many scholars have conducted research in related
fields. This issue includes 12 papers that address various challenges and opportunities
in algorithms, materials, and structures of optoelectronic devices. For example, in the
field of optical displays, the response time and luminance of electronic paper could be
improved by optimizing algorithms [4]. In the field of solar cells and waveguides, the
conversion efficiency of solar cells and waveguide transmission distance could be improved
by designing new optoelectronic materials and device structures [5,6]. The latest research
advances in this Special Issue are as follows.

Electronic paper is a new device for image display by reflection, which is an im-
portant branch of optoelectronic devices [7]. The most widely used electronic paper is
electrophoretic display (EPD). At present, ionic liquid was used as a charge control agent
for electrophoretic particle modification, and high ionization 1-butyl-1-methylpiperidinium
bromide mono ionic liquid was grafted onto the CuPc surface; then, blue electrophoretic
particles were successfully prepared [8]. The modified blue particles had a high Zeta
potential and electrophoretic mobility. The preparation process was simple, and the pro-
duction cost was low, which contributed to the realization of a rich color display of EPDs.
Moreover, the optimization of algorithms could also be used to improve the performance
of EPDs. He et al. designed a driving waveform based on the principle of direct current
(DC) balance [9]. The luminance curves of a unified reference grayscale phase were studied,
and its driving time was obtained; at the same time, the duration of an erase stage was
redesigned according to an original grayscale. The results showed that the response time
could be effectively shortened. In addition, a three-color EPD could be prepared by adding
red particles to an EPD [10]. In order to solve the problem of red ghost images, Wang et al.
analyzed the spatial location distribution of red particles in grayscale transformation [11].
The key factors of red ghost images generation were investigated, and a driving wave-
form was proposed based on the optimization of erase and activation stages. Residual
red particles on the top of microcapsules were eliminated in a red erase stage, and a high
frequency voltage was used to activate the particles. The red ghost images were effectively
suppressed. Similarly, some scholars found that black and red particles could be separated
by a damping oscillation voltage sequence. The red particles were purified, and the red
saturation of the pixels increased [12]. However, EPDs have the defects of a low refresh
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rate, and it is difficult to realize the full color display. A new type of optoelectronic device,
electrowetting display (EWD), has attracted the attention of related scholars. EWDs have
the advantages of an extremely short response time and full color display [13]. In order
to improve the performance of EWDs, pixel structures, driving algorithms, and display
systems were optimized. Tian et al. established a three-dimensional EWD simulation model
through Comsol Multiphysics simulation software and proposed a new multi-electrode
pixel structure [14]. The structure was composed of four square sub-electrodes. First,
oil was broken by applying a voltage to an outer sub-electrode. Then, the voltage was
applied sequentially to its two adjacent sub-electrodes. Oil could be rapidly driven to
a saturation contraction state. The simulation results showed that the response speed
could be effectively improved by the proposed structure. For the driving algorithm of
EWDs, a driving waveform based on a threshold voltage and an exponential function
was proposed by Long et al. [15]. The threshold voltage was obtained by measuring the
relationship between DC voltages and luminance. Oil splitting could be inhibited by the
exponential function voltage, thus improving the aperture ratio. Furthermore, a separated
reset waveform was proposed to inhibit oil backflow [16], and an instantaneous negative
voltage could be achieved by adjusting a common electrode plate. So, trapped charges
could be quickly released by the negative voltage. For the display system, a dynamic
adaptive display system was proposed [17]. The driving model was dynamically adjusted
according to the display contents. The luminance was increased for still images and the
refresh rate was increased for dynamic images. The above research contributed to the
realization of high-performance EWDs and promoted the development of optoelectronic
devices in the field of optical displays.

In the field of lasers, the linewidth is one of key parameters for the performance
of lasers [18]. Currently, the most commonly used measurement method is the delayed
self-heterodyne/homodyne based on an unbalanced interferometer, which has the defects
of a long time consumption and noise [19]. Zhao et al. designed a short fiber-based
linewidth measurement scheme [20]. The effect of a noise floor on the linewidth was
measured and analyzed, and the application of short delay fiber lengths in delayed self-
heterodyne laser linewidth measurements was investigated. The experimental results
showed that the accuracy of the linewidth measurements was effectively improved. Due
to the advantages of an ultra-short pulse width and ultra-high peak power, lasers can be
used to process silicon [21]. However, the lattice temperature variation characteristic of
silicon was difficult to study. Yang et al. developed a simulation model of a picosecond
laser heating silicon based on a two-temperature model equation and the Fokker–Planck
equation [22]. The effect of picosecond lasers with different pulse widths on silicon was
measured. It was proved that the silicon processing efficiency was significantly improved.
In the field of solar cells, a low optoelectronic conversion efficiency was the main reason
for their limited application. The optoelectronic conversion efficiency of perovskite solar
cells (PSCs) increased from 3.8% to 23% within a decade, which demonstrated the great
potential of PSCs [23]. In order to further improve the conversion efficiency, the effect of
non-plasmonic and plasmonic metal particles on the photocurrent density and open-circuit
voltage of PSCs was examined. The electron transport layers of plasmonic PSCs were
prepared in different deposition parameters, and an efficient localized surface plasmon
resonance-based plasmonic PSC was successfully developed [24]. The surface morphology
and optoelectronic properties of PSCs were investigated by testing the light-harvesting
efficiency and steady-state photoluminescence. The light scattering and charge separation
of PSCs were improved. The experimental results demonstrated that the performance of
solar cells could be improved by adding plasmonic particles to photo anodes.

Waveguide is a kind of medium device which can confine a light wave in or near
its surface and guide the directional propagation of the light wave [6]. It is commonly
used in optoelectronic integrated devices. In order to reduce transmission losses, Yin et al.
designed and fabricated a polymer/silica hybrid waveguide thermo-optical variable optical
attenuator (VOA), covering the O-band [25]. It was prepared by a simple and low-cost
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direct ultraviolet lithography process. The response speed and bandwidth were improved
by applying multimode interferences in the Mach–Zehnder interferometer VOA. A power
equalization function could be achieved by integrating VOA and coarse wavelength di-
vision multiplexing. In addition, the performance of the waveguides could be improved
by designing new structures. Surface plasmon polaritons (SPPs) were introduced into the
waveguide design by Wang et al. [26]. The strong coupling effect could be observed in
silicon waveguide mode and metal SPP mode, and excellent waveguide characteristics
could be achieved. Therefore, a hybrid waveguide based on metal SPPs was proposed. The
waveguide consisted of two silver nanowires and a rectangular silicon waveguide, which
achieved good waveguide characteristics with a long transmission distance and a small
normalized effective mode area. Similarly, new structures could be used to enhance the
performance of resistive memories and electro-optic (EO) modulators. The effect of the
barium carbonate film thickness on the performance of resistive memories was studied;
then, a parallel dual microdisks memory resonator was proposed [27]. A two-port network
was constructed by the parallel alignment of resistance memory components and bus
waveguides. The resistive memory is the most promising next-generation nonvolatile mem-
ory because it has the advantages of a low power consumption, high scalability, and high
compatibility. As for an EO modulator, it is a device which uses EO crystals to modulate
the phase, amplitude, intensity, and polarization state of optical signals [28]. Wang et al.
designed a thin-film lithium niobate EO modulator based on photolithography-assisted
chemo-mechanical etching (PLACE) technology [29]. The fiber-to-fiber insertion loss was
reduced, and the bandwidth was increased. PLACE technology had the advantages of a
competitive production rate and high fabrication uniformity, which expanded the applica-
tion scenarios of optoelectronic integrated devices.

Optoelectronic devices are playing an indispensable role in production and daily
life. The development of society has higher requirements for optoelectronic devices. This
Special Issue presented the latest research methods and achievements of optoelectronic
devices in the fields of optical displays, lasers, solar cells, and waveguides. The luminance,
conversion rate, and waveguide transmission capability can be effectively improved by
applying new materials and designing new driving algorithms and device structures. It
provided the possibility for the realization of large-scale photonic integrated devices, such
as artificial neural networks, optoelectronic integrated circuits, etc.
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