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Abstract: A graphene oxide (GO)/poly 3-methyl aniline (P3MA) photodetector has been developed
for light detection in a broad optical region: UV, Vis, and IR. The 3-methyl aniline was initially
synthesized via radical polymerization using an acid medium, i.e., K2S2O8 oxidant. Consequently,
the GO/P3MA composite was obtained through the adsorption of GO into the surface of P3MA. The
chemical structure and optical properties of the prepared materials have been illustrated via XRD,
FTIR, SEM, and TEM analysis. The absorbance measurements demonstrate good optical properties
in the UV, Vis, and near-IR regions, although a decrease in the bandgap from 2.4 to 1.6 eV after the
composite formation was located. The current density (Jph) varies between 0.29 and 0.68 mA·cm−2

(at 2.0 V) under dark and light, respectively. The photodetector has been tested using on/off chopped
light at a low potential, in which the produced Jph values decrease from 0.14 to 0.04 µA·cm−2,
respectively. The GO/P3MA photodetector exhibits excellent R (and D) values of 4 and 2.7 mA·W−1

(0.90 × 109 and 0.60 × 109 Jones) in the UV (340 nm) and IR (730 nm) regions, respectively. The R
and D values obtained here make the prepared photodetector a promising candidate for future light
detection instruments.

Keywords: graphene oxide; poly 3-methyl aniline; photodetector; light sensing; optoelectronic

1. Introduction

The last decade has witnessed the rapid progress of optoelectronic devices owing to
their crucial impact on several industries, such as light images in cameras, controlling the
intensity of street lighting, spaceships, military laser equipment, and highly technology con-
trolled windows, imaging, UV radiation monitoring, and wearable devices [1–7]. Among
these devices, photodetectors must be suitable for various fields. Indeed, photodetectors
display outstanding detection ability covering a broad spectral range. Such a device is
highly dependent on the activated photons reaching its surface, which will produce free
electrons able to polarize the surface and induce a current density (Jph) [4,5]. For the
majority of recent semiconductors, this is directly proportional to light intensity, where
the elevation of the photon flux liberates more electrons on the surface. This explains the
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free electrons’ dependency on the Jph as well as their capability in imaging the resonance
motion. The Jph plays a major role in determining both R and D [8].

Metal compounds have been widely used as photodetector-based materials [1,4,6–9].
However, their photodetection ability is highly affected by two main factors. Firstly, the
amplification of the active sites in these materials that significantly improve their photore-
sponse. Additionally, the close control of these materials’ surface area through a change
in their geometry, i.e., nanorods, nanowires, nanotubes, and nanosheets, ensures a better
photoresponse [10–12].

In this regard, earlier studies using inorganic oxide as photodetector-based material
have been established. Wang et al. [13] studied the dependency of CuO nanowires on the
surface area in the IR domain. A small Jph value (20 µA) at an elevated bias voltage of +5 V
has been located. Bai et al. [14] revealed slight enhancement of the Jph values (≈107 µA) at
+1 V after adding ZnO into CuO. Some studies analyzed a CdS-ZnO composite; however, a
weak Jph was obtained [15]. On the other hand, Hong et al. [16] studied Si heterojunctions,
where an increase in the Jph of up to 4.5 µA has been observed while applying a 0 V
bias. In addition, TiO2 material has been considered for light detection. Nevertheless, its
efficiency was limited and did not exceed 1% [17].

In this regard, many researchers have been interested in the use of oxides, sulfides,
and nitrides with polymer materials [16,17]. Such a mixture of materials reveals better
stability, sensitivity, and composite contacts for optoelectronic devices [18,19]. Furthermore,
they are cost-effective for mass production, and have a simple synthesis method [20,21].

Several studies have investigated polymers’ efficiency for optoelectronic applications.
A promising photo-answer has been revealed, where an electron–hole pair generated by
light in polymer originate an electron able to oscillate on the photodetector surface result-
ing in Jph. For instance, poly-3-hexylthiophene material exhibited an excellent photore-
sponse while applied inside the retina [22]. Moreover, some composites related to poly-
methyl methacrylate (PMMA) have the same activity for photodetector applications [14] and
polyvinylpyrrolidone/CsPbBr3 composited have been inspected. Nevertheless, the obtained
Jph does not exceed 0.01 mA [23]. This behavior appears in benzodithiophene/fluorine,
which demonstrates enhanced optical properties [24]. Additionally, Jph was found equal
to 0.001 mA at 0 V using triphenylamine [25]. Indeed, the Jph measured using polymers
varies between 0.001 to 0.1 mA·cm−2 and exhibits a weak responsivity and no reproducibility.
Thus, despite the different results obtained, some hindrances are faced when applying poly-
mers as photodetector-based material, such as having a better Jph and the ability to extend
photodetection to more than a single optical domain.

In this work, GO/P3MA optoelectronic photodetector (with a high number of active
surface sites) is fabricated. Then, to aid in the deposition of GO 2D sheets using the
adsorption deposition method, glass/P3MA was utilized. The GO/P3MA composites
were analyzed using a variety of analytical techniques to confirm the crystalline and
chemical properties, Moreover the optical behavior is tested under optical measurements.
Using a CHI608E PowerStation, the electrical measurements were taken. The GO/P3MA
composite’s response to light and darkness, light of wavelengths between 340 and 730 nm,
and on/off chopped light were all investigated in this work. Based on the findings, we also
proposed a tenable mechanism for light sensing. The developed photodetector displayed
an exceptional capacity to detect light in a variety of domains, such as UV, Vis, or NIR, with
high R and D values. Moreover, in on/off chopped light conditions, the optoelectronic
device demonstrated a robust reaction to light, with good reproducibility.

2. Experimental Part
2.1. Materials

Methyl aniline, ammonium persulfate ((NH4)2S2O8), and HCl were obtained from
Winlab, Walford. Graphite powder, H2O2, H3PO4, H2SO4, and KMnO4 are obtained from
El-Naser Co., Cairo, Egypt.
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2.2. Preparation of P3MA

The polymerization of 3-methyl aniline from an acid medium (0.5 M HCl) is a valuable
technique for synthesizing P3MA. This process occurs through the initiation of (NH4)2S2O8
as an oxidant on the surface of a glass slide, which led to the formation of a P3MA thin-film.
Then, this film was dried at 60 ◦C for 5 h.

2.3. Preparation of GO/P3MA

GO/P3MA was prepared through graphene oxide adsorption on the surface of P3MA.
The polymer film was cast with graphene (pH 6) for 6 h (the required time for GO to be
well adsorbed inside the network of the polymer). Indeed, GO preparation is demonstrated
through a modified version of the famous Hummer method [26,27], where 0.5 g graphite
powder was stirred with highly concentrated acids (H2SO4 and H3PO4). Then, KMnO4
is added to this suspended solution causing the oxidation of the graphite surface and the
formation of the GO. Then, 4 mL H2O2 was added to remove the excess KMnO4. Finally, a
yellowish-brown color was observed, signifying GO formation. In this work, the solution
is treated with an acid residue ensuring a pH 6 is reached.

2.4. Characterization Process

The chemical structure was considered using FTIR and XRD measurements. For this
process, a 340 Jasco spectrophotometer (Tsukuba, Japan) and PANalytical Pro (Almelo,
Netherlands), set up for FTIR and XRD measurements, respectively, are used. The sam-
ple morphology has been studied via a scanning electron microscope (SEM) (ZEISS,
Oberkochen, Germany) and a transmission electron microscope (TEM) (JEOL JEM-2100)
(both devices from Oberkochen, Germany). The optical investigation of the prepared sam-
ples has been established through UV/Vis spectrophotometer (Birkin Elmer, OH, USA).

2.5. The Electrical Measurements

The electrical measurements were performed through an electrochemical workstation
(CHI608E). The polymer film, GO/P3MA, was coated with a silver paste on both sides of
the film. The electrode area is about 1.2 cm2, while the illumination area is 1.0 cm2. The
measurements are applied at 100 mV·s−1 at room temperature (see, Figure 1). The light
source is a metal halide lamp (400 W, China). The responsivity and reproducibility of the
film are confirmed.
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Figure 1. The electrical measurements of GO/P3MA as a photodetector.

3. Results and Discussion
3.1. Characterization and Analysis

The morphologies of the prepared P3MA materials are confirmed using SEM analysis
under different magnifications (see Figure 2a,b). SEM images demonstrate the formation of
a highly smooth polymer film with a great porosity. The polymer particles have an average
size of 75 nm. Such a highly smooth surface and porosity qualify this polymer as suitable
to form a composite network with additional materials [28,29].
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Figure 2. SEM of (a,b) P3MA and (c,d) GO/P3MA at different scales.

After the adsorption of GO on the surface of P3MA, the morphology of the polymer
is greatly changed, in which 2D nanosheets are smoothly formed and well adsorbed
on the surface. This coverage with 2D GO appears through the sheet’s localization on
the polymer surface. These sheets work well as a light detector; the prepared polymer
composite combines both properties of GO and P3MA materials. This consequently highly
ameliorates the optical property of the prepared composite.

The TEM images of the prepared GO and GO/P3MA composite are shown in Figure 3a
and b, respectively. The formed GO materials present two-dimensional (2D) behavior due
to their formation in single and/or multi sheets (see, Figure 3a). The thickness of these
sheets is very small, confirming the 2D behavior of these prepared materials.
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After the polymer formation, the graphene composite is also formed through the
adsorption and penetration of the GO inside the porous of the polymer network. Figure 3b
confirms such behavior, where the GO material is located in the dark grey areas and the
polymer materials appear in a faint grey color. On the other hand, the located polymer
displays a nonuniform shape, well connected to the 2D graphene material. Such geometry
increases the contact of the prepared composite. This ensures better optical properties.

The optical absorbance of the prepared P3MA and GO/P3MA is shown in Figure 4a.
The absorbance of the materials increases largely with GO composite. The composite
has a two-absorbance peak at 340 (UV) and 630 nm (Vis). The broad peak in the Vis
region extends to the near IR region. Both observed peaks are for the electron transition
between the occupied and unoccupied bands [30–32]. The wide extension of these peaks
indicates the great absorbance of the composite, which covers optical regions from UV to
near IR. The large peaks near the IR region are assigned to the transition and vibration
motion of the electrons [33]. These properties confirm that the prepared materials qualify
as photodetectors.
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The absorbance enhancement is established through the reduction of the bandgap,
which decreases from 2.4 to 1.6 eV after the composite formation. This very small and
the excellent bandgap value (1.6 eV) for the GO/P3MA confirms the qualification of this
material for photodetector applications.

αhν = A
(
hν− Eg

)1/2 (1)

α =

(
2303

d

)
A (2)



Micromachines 2023, 14, 606 6 of 12

The Tauc equation (Equations (1) and (2)) [34] represented in Figure 4b is the main
equation for the bandgap calculation. This equation depends on the parameters; A, h,
ν, and α, which correspond to absorbance, Planck constant, frequency, and absorption
coefficient, respectively.

The chemical property of P3MA is shown in Figure 4c. The main function groups
C=C quinoid, C=C benzenoid, N-H, and C-N are confirmed at 1467, 1301, 3401, and
1105 cm−1, respectively. These peaks have also been located in the GO/P3MA composite
with slight shifts in their positions attributed to the incorporation of the GO into the
prepared composite originating from the connections groups of the nanocomposite [35].
The main O-H and C–O epoxide groups of GO appear at 3400 and 1155 cm−1, respectively.

The XRD analysis has been utilized to determine the chemical structure of the prepared
materials (see Figure 4d). The P3MA (black curve) has semi-sharp peaks at 18.1◦, signifying
the semi-crystalline nature of this polymer. This peak is related to the growth direction
(110). After composite formation with GO, the main characteristic peak of GO has been
located at 10.8◦ for the growth direction of (001), indicating the highly crystalline nature of
GO 2D materials. This reflects the enhanced crystallinity in the GO/P3MA composite [36].
The size of THE prepared GO is calculated through Scherrer’s formula, Equation (3) [37,38];
from this equation, the GO material has a particle size of 42 nm.

D = 0.9λ/W cos θ (3)

This equation depends on the parameters λ and θ, corresponding to the wavelength,
and Bragg angle, correspondingly. These two factors produced the third one, W (full width
half maximum).

3.2. Electrical Measurements

The electrical measurements of the GO/P3MA photoelectrode were performed at
room temperature through an electrochemical workstation (CHI608E using at 100 mV·s−1

and potential (−2.0 to 2.0 V). A metal halide (400 W) was used as a light source. The effects
of on/off light conditions and monochromatic wavelengths were also considered.

Figure 5a exhibits the electrical measurements of the prepared GO/P3MA photo-
electrode under dark and light conditions. The produced Jph values increase from 0.29
to 0.68 mA·cm−2 (at 2.0 V) under dark and light conditions, respectively. Such great en-
hancements demonstrate the high sensitivity of the prepared GO/P3MA photoelectrode to
the incident photons. These latest effects are examined through the splitting of the outer
level energy levels of the GO/P3MA materials, in which the electrons clouds form the
conducting band of the GO materials (lower energy level value). With the increase in the
produced electrons, the Jph values rise, illustrating the photoelectrode sensitivity [30,39–41].

The reproducibility of the produced Jph values has been investigated through the
current–voltage relationship (repeated three times) under light irradiation (see Figure 5a).
The produced Jph demonstrates almost the same values. This behavior reveals the great
light sensing stability of the prepared photoelectrode. The slight changes in the Jph val-
ues could be negligible, as they could have originated from the effects of environmental
gas, such as CO2 or O2 (active gases) adsorbed on the photodetector surface during the
measurements [42].

The impact of light from a small potential value until 300 s have been studied (see,
Figure 5b). The produced Jph values showed an increase from 0.04 to 0.14 µA·cm−2 under
off/on light illumination, respectively. The rise and decay time is about 50 s. Moreover, the
response time is about 9 s. This behavior confirms the stability and sensitivity of the pre-
pared photoelectrode [43], owing to the high stability of the P3MA polymer. Furthermore,
the great optical properties of the prepared photodetector in broad optical regions motivate
the stability and then reproducibility of the developed photodetector.
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Figure 6a illustrates the GO/P3MA photodetector dependency on the incident photons
examined on a monochromatic wavelength filter (340, 440, 540, and 730 nm). The important
effect of the light wavelengths appears through the different Jph values. The photodetector
has an optimum Jph value at 440 nm, then this value decreases with increasing monochro-
matic wavelength. The great Jph value at 440 and 340 nm is related to the effect of photons
on the prepared GO/P3MA photodetector in the spectral domain with high-frequency val-
ues. The photons’ frequency has the ability to excite electrons from the lower to the higher
band of the photodetector materials. On the other hand, the photodetector demonstrates
an important Jph value at 730 nm, revealing its sensitivity through a broad light region
from UV to near IR. In addition, such behavior shows the importance of photogenerated
electrons in these optical regions [44,45].
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The efficiency of the prepared GO/P3MA photodetector has been determined via
measuring the responsivity (R) and detectivity (D) (Figure 7). Indeed, the GO/P3MA
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photodetector’s external quantum efficiency (EQE) is an important parameter of light-
sensing that could be calculated from the Jph values. These parameters are evaluated at
light intensity of 100 mW·cm−2 and 1.0 V where the active area of the photodetector is
about 1.0 cm2.
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The photoresponsivity (R) for the GO/P3MA is determined through the Equation
(Equation (4)) [46]. This equation depends on the current density in light (Jph) and in dark
(Jo), and light power (P) values.

R =
Jph − Jo

P
(4)

The GO/P3MA photodetector shows great R values of 4 and 4.4 mA·W−1 in the UV
and Vis regions, respectively. These values are related to the optical photons arriving
on the photodetector, which excite electrons that are collected on the upper surface of
GO materials. This process consequently increases the produced Jph value and thus the
produced R values.

D = R
√

A /2 e Jo (5)

On the other hand, the specific detectivity (D) value depends on the R values of the
GO/P3MA photodetector. Equation (5) [47] mentions such a relationship between D and R
values. This equation is dependent on the surface area (A) of the photodetector and the
charge of an electron (e), in addition to the Jo of the dark current. The prepared GO/P3MA
photodetector displays a great D value of 0.90 × 109 and 0.98 × 109 Jones in the UV (340 nm)
and Vis (440 nm), respectively. Similarly, the photodetector demonstrates promising values
of 0.63 × 109 and 0.60 × 109 Jones at 540 and 730 nm, respectively.

These R and D values confirm the great and wide sensitivity of the GO/P3MA pho-
todetector in a wide optical spectrum. The R value of this study is compared with previous
literature (see Table 1). Though this comparison, the prepared GO/P3MA has excellent
optical sensitivity to the light in a broad optical region.

In this regard, Equation 6 is used to determine the GO/P3MA photodetector’s external
quantum efficiency (EQE) [48,49] (see Figure 8). This efficiency depends on the R and λ

values. The EQE value has been optimized to 1.4% at 400 nm. This value is promising
where it represents the unique kind of charges able to transfer between the two electrodes.

EQE = R
1240
λ

100 (6)



Micromachines 2023, 14, 606 9 of 12

Table 1. Comparison of the R value obtained in the present study with previous R values from earlier
work.

Structure Wavelength (nm) Bias (V) R (mA·W−1)

Graphene/GaN [50] 365 7 3 × 10−3

GO/Cu2O [51] 300 2 0.5 × 10−3

ZnO-CuO [52] 405 1 3 × 10−3

CuO nanowires [13] 390 5 -

TiN/TiO2 [17] 550 5 -

ZnO/Cu2O [14] 350 2 4 × 10−3

TiO2-PANI [53] 320 0 3 × 10−3

CuO/Si Nanowire [16] 405 0.2 3.8 × 10−3

ZnO/RGO [54] 350 5 1.3 × 10−3

Se/TiO2 [55] 450 1 5 × 10−3

TiO2/NiO [56] 350 0 0.4 × 10−3

GO/P3MA (this work) 440 2 4.4
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4. Conclusions

A GO/P3MA nanocomposite has been developed and applied as a photodetector in a
broad optical spectrum. The preparation process of P3MA has been established through a
polymerization reaction on a glass substrate, and the GO 2D sheets were adsorbed on this. The
GO/P3MA nanocomposite was characterized using XRD and FTIR to confirm its chemical
structure as well as its functional groups. The morphology of the composite is evaluated,
wherein the GO 2D sheets form a composite with the polymers at the nanoscale level of the
polymer particles. The GO/P3MA nanocomposite displays an excellent optical property that
extends through the UV, Vis, and IR regions and a small bandgap of 1.6 eV. The GO/P3MA
photodetection ability has been studied under the light and dark effect, on/off chopped light,
and monochromatic spectra. The Jph values increase from 0.29 to 0.68 mA·cm−2 (at 2.0 V)
under dark and light, respectively. An excellent D value of 0.90 × 109 and 0.60 × 109 Jones and
R values of 4 and 2.7 mA·W−1 in the UV and IR regions, respectively, have been found. Our
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group is focused on designing a prototype of this photodetector for commercial applications
in highly technological devices such as cameras, rockets, and spacecraft.
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