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Abstract: The endothelialization of gas exchange membranes can increase the hemocompatibility of
extracorporeal membrane oxygenators and thus become a long-term lung replacement option. Cell
seeding on large or uneven surfaces of oxygenator membranes is challenging, with cell aerosolization
being a possible solution. In this study, we evaluated the endothelial cell aerosolization for biohybrid
lung application. A Vivostat® system was used for the aerosolization of human umbilical vein
endothelial cells with non-sprayed cells serving as a control. The general suitability was evaluated
using various flow velocities, substrate distances and cell concentrations. Cells were analyzed for
survival, apoptosis and necrosis levels. In addition, aerosolized and non-sprayed cells were cultured
either static or under flow conditions in a dynamic microfluidic model. Evaluation included immuno-
cytochemistry and gene expression via quantitative PCR. Cell survival for all tested parameters was
higher than 90%. No increase in apoptosis and necrosis levels was seen 24 h after aerosolization.
Spraying did not influence the ability of the endothelial cells to form a confluent cell layer and
withstand shear stresses in a dynamic microfluidic model. Immunocytochemistry revealed typical
expression of CD31 and von Willebrand factor with cobble-stone cell morphology. No change in
shear stress-induced factors after aerosolization was reported by quantitative PCR analysis. With this
study, we have shown the feasibility of endothelial cell aerosolization with no significant changes in
cell behavior. Thus, this technique could be used for efficient the endothelialization of gas exchange
membranes in biohybrid lung applications.

Keywords: cell aerosolization; cell atomization; human umbilical vein endothelial cells (HUVECs);
biohybrid lung; cell seeding; EndOxy

1. Introduction

Extracorporeal membrane oxygenation (ECMO) is used as a last resort to support the
lung function of patients with respiratory failure [1]. ECMO is often utilized as a short-term
solution; however, lung transplantation remains the only long-term therapy option [2].
The main reason for the inability to implement oxygenator systems as a permanent lung
replacement is the low hemocompatibility, which is indicated by high thrombo- and im-
munogenicity, of ECMO devices. The endothelialization of gas exchange membranes is a
promising approach to improve the hemocompatibility of ECMO devices [3–5]. The general
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feasibility of oxygenator membrane endothelialization (EndOxy) has been shown in several
studies [6–10]. Although a hollow-fiber design of the oxygenator membrane is currently
the state of the art, the authors hypothesize that the flat-sheet membrane oxygenator design
is an alternative option for EndOxy due to more evenly distributed wall shear stresses and
less friction between membranes or cells in the device. A spiral-coil design based on the
Kolobow oxygenator could be a possible design model for EndOxy, as this would allow
the seeding of cells on a flat membrane, followed by device assembly [11]. Regardless of
the design, high volumes of highly concentrated cell solutions are required to achieve a
confluent cell layer that can sustain high shear stresses inside the oxygenator. Additionally,
gas exchange membranes present a large uneven surface area reaching up to 2 m2, which
makes the even distribution of cells challenging [12]. Alabdullh et al. recently managed to
endothelialize a small oxygenator model with a surface area of 19 cm2, which is currently
the largest endothelialized model [13]. Although these results are promising, additional
challenges would appear during scaling up to a full-size oxygenator, such as the increased
membrane surface area and filling volume.

Cell aerosolization is an interesting approach, which could help overcome the obstacle
of cell seeding on gas exchange membranes. This method allows cell suspension to be
administered in a minimal amount of liquid with a better distribution of cells over large
and/or uneven surfaces [14–18]. A possible disadvantage of cell spraying can be the
shear, elongation and hydrostatic stresses that could result in cell death [19]. Several
studies reported on the general feasibility of the cell spraying [14,18,20–23]. Klopsch et al.
successfully reported spraying using the Vivostat® system in a codelivery system with
fibrin, endothelial cells (ECs) and mesenchymal stem cells for possible application in
cardiovascular-tissue engineering.

Thus, in the current study we aim to investigate the influence of cell spraying on EC
survival and behavior for subsequent biohybrid lung application. Cell survival depending
on several parameters (cell spraying concentration, working distance and flow rate) was
investigated via Live/Dead staining, whereas cell behavior was analyzed by measuring the
apoptosis and necrosis levels after atomization. In order to test endothelial cell behavior for
application in a biohybrid lung, non-sprayed and sprayed endothelial cells were seeded on
gas exchange membranes in a well-established dynamic microfluidic model system and
their cell behavior under flow was evaluated via immunocytochemistry and quantitative
PCR analysis.

2. Materials and Methods
2.1. Isolation and Culture of Human Umbilical Vein Endothelial Cells

Human umbilical vein endothelial cells (HUVECs) were isolated from umbilical cords,
according to established protocols [7]. Umbilical cords were kindly provided by the Clinic
for Gynaecology and Obstetrics RWTH Aachen University Hospital following approval by
the local ethics committee of the Medical Faculty of RWTH Aachen University Hospital (EK
067/18) and with informed written consent provided by the patients. Briefly, the umbilical
vein was washed with Dulbecco’s Balanced Salt Solution (DPBS, Thermo Fischer Scientific,
Darmstadt, Germany), followed by enzymatic dissociation of HUVECs by collagenase
solution (1 mg/mL, Sigma-Aldrich, Darmstadt, Germany). HUVECs were cultured in en-
dothelial cell growth medium 2 (EGM2, Promocell, Heidelberg, Germany) on gelatin-coated
(2%, Sigma Aldrich, Darmstadt, Germany) tissue-culture flasks (Greiner, Kremsmünster,
Austria) in a humidified incubator at 37 ◦C and 5% CO2. For all experiments, cells were
used in passage 2–3.

2.2. Spray Setup and Test Parameters

The Vivostat® system (Vivostat A/S, Lillerod, Denmark) is based on a pneumatic
atomizer principle and is depicted in Figure 1. with applicator unit APL404 and application
kit (spray pen VS 305).
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Figure 1. Vivostat® system with the application kit spray pen VS 305: (a) Side view; (b) Front view
(cross-section of the spray pen) with 1—air opening, 2 and 3—solution openings.

The Vivostat® delivery system is commonly used to apply various substances during
surgeries, most often in combination with fibrin. In this study, only the cell suspension was
used for spraying without the addition of fibrin. As previously described, the compressed
air flow comes from the spray pen tip opening 1 (Figure 1b), and the solution is emitted at
a constant flow rate from openings 2 and 3. In the current study, both solutions were kept
the same, as no mixture was necessary [24].

The investigated spray parameters are shown in Table 1. The low flow rate has been
previously defined as 0.7 mL/min, and the high flow rate is 1.4 mL/min [24]. For the
evaluation of the spray pattern, 100 µL ultra-pure water (Sartorius, Goettingen, Germany)
mixed with black ink (Pelikan, Hanover, Germany) was sprayed onto paper, followed
by the measurement of the surface area. For this, two diameters were measured from
each sprayed ellipse, and the mean surface area was calculated. Each measurement was
performed in three technical replicates (n = 3).

Table 1. Overview of investigated spray parameters for the evaluation of the spraying pattern.

Parameter Tested Values

Flow rate Low High
Working distance [cm] 1 3 5 7 9 11 13 15 25

2.3. Cell Spraying with the Vivostat System

For spraying, HUVECs were resuspended in EGM2 medium in a concentration of
0.5 × 106 cells/mL, 1 × 106 cells/mL, 2 × 106 cells/mL, or 5 × 106 cells/mL, depending on
experimental design. The cell suspension was transferred to a syringe (B.Braun, Melsungen,
Germany) and the cells were sprayed into an empty sterile urine beaker (Sarstedt, Nuem-
brecht, Germany), according to the spraying parameters. The sprayed cells were washed
with DPBS and used for cell viability and behavior studies or were seeded by pipetting
onto PDMS membrane for static, as well as dynamic cultivation.

2.4. Viability of Sprayed Cells

For subsequent evaluation of cell survival of the sprayed cells, cells were initially
stained with the cell-permeable dye Calcein AM (AAT Bioquest) before spraying. In viable
cells, Calcein AM is converted to a green fluorescent calcein after acetoxymethyl ester
hydrolysis by intracellular esterases.

Initially, HUVECs with a concentration of 1 × 106 cells/mL were resuspended in
4 µM Calcein AM in DPBS and incubated protected from light for 20 min at 37 ◦C and 5%
CO2. The cell suspension was centrifuged at 500× g for 5 min and resuspended in DPBS at
an according cell concentration to prepare the final cell spray solution. The sprayed cell
number and spray parameters for the viability test are shown in Table 2.
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Table 2. Overview of investigated spray parameters for the evaluation of cell viability.

Parameter Tested Values

Flow rate Low High
Working distance [cm] 3 9 15

Cell concentration [cells/mL] 0.5 × 106 2 × 106 5 × 106

After spraying, the cells were additionally stained with red fluorescent propidium
iodide (PI, Sigma Aldrich, Darmstadt, Germany) to differentiate between living (green)
and dead (red) cells. For the PI staining, the cell suspensions were diluted with 2 µg/mL PI
in DPBS and transferred to 24-well plates. Non-sprayed cells served as a control. For each
sample, five fluorescence images were taken with an upright fluorescence microscope (Axio
Zoom.V16 with AxioCam MRm and Zen blue 2.0 software, Carl Zeiss, Oberkochen, Ger-
many). The images were analyzed using the open-source CellProfiler software version 3.0.0
with the module IdentifyPrimaryObjects (global two-class threshold strategy according
to Otsu with a threshold smoothing scale of 1.3488) to determine the number of living
(green) and dead (red) cells as cell survival [25]. The relative survival rate was calculated in
relation to non-sprayed cells. Representative pictures of the live/dead staining are shown
in Figure S2.

2.5. Evaluation of Cell Behaviour

To evaluate the influence of spraying on cell health, assays for apoptosis (Caspase-
Glo 3/7 assay, Promega, Walldorf, Germany) and necrosis (ToxiLight BioAssay, Lonza,
Cologne, Germany) were performed, according to the manufacturers’ instructions. Based
on previous results, all assays were carried out with cells sprayed with the following spray
parameters: high flow rate and a working distance of 9 cm. Cells (n = 3) were sprayed at a
concentration of 2 × 106 cells/mL, diluted with EGM2 medium and seeded on RGD-coated
polydimethylsiloxane (PDMS) membranes for further static or dynamic cultivation.

2.5.1. Apoptosis Assay

The Caspase Glo 3/7 assay is a luminescent assay used to evaluate caspase-3/7 activity
as a measure for the induction of apoptosis. Non-sprayed cells and cells incubated for 4 h
with 1 µM staurosporine (Alfa Aesar, Kandel, Germany) served as controls. Apoptosis
was evaluated directly after spraying and 24 h later. For the latter, the sprayed cells were
seeded in a 12-well plate (Cellstar, Greiner, Kremsmünster, Austria) with a concentration of
1.5 × 105 cells/cm2. Caspase-Glo 3/7 reagent was added to each well and the cells were
incubated for 1 h at room temperature. Luminescence of the supernatant was measured
using a spectrophotometer (Infinite M200, Tecan, Crailsheim, Germany)

2.5.2. Necrosis Assay

The ToxiLight assay evaluates cell necrosis based on the release of adenylate kinase
from damaged cells. The enzyme actively phosphorylates ADP to form ATP and the
resultant ATP is measured using the bioluminescent firefly luciferase reaction. The assay
was performed directly after spraying and after 24 h. Non-sprayed cells and cells lysed with
ToxiLight 100% Lysis Control Set (Lonza, Cologne, Germany) served as controls. Briefly,
adenylate kinase reagent was transferred to each well and samples were incubated for
10 min at RT. Luminescence of the medium was measured using a spectrophotometer.

2.6. Static Culture of Endothelial Cells on Gas Exchange Membranes

Thin PDMS films (100 µm, Wacker Chemie, Munich, Germany) were thoroughly
cleaned using soap and absolute ethanol (Merck), rinsed with ultra-pure water (Sartorius,
Goettingen, Germany) and air-dried. Three circular samples of 20 mm diameter were
punched out of each membrane and glued to the bottom of 12-well plates with freshly mixed
two-component silicone rubber (ADDV M 4641, R & G Faserverbundwerkstoffe; mixing
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ratio 1:10). After curing for at least 24 h at room temperature, RGD peptides were conjugated
to the cell growth area of the PDMS films, as previously described [26], to generate RGD-
PDMS membranes. PDMS membrane is hydrophobic and does not support cell attachment,
hence it requires membrane functionalization. RGD is an amino acid sequence consisting
of arginine, glycine and aspartic acid which is found in many extracellular matrix proteins
and is a common binding motif for cellular integrins. Briefly, the PDMS membranes were
incubated with Sulfo-SANPAH solution (1 mmol/L, Thermo Fischer) followed by UV-light
exposure for 2 h. After the washing of the membrane with DPBS, the GRGDS coating was
applied to the membranes (1 mmol/L, Bachem) and they were incubated for 24 h at RT.
Coated membranes were washed with DPBS, disinfected twice with 70% ethanol for 10 min
and rinsed with sterile DPBS. For endothelialization, HUVECs (n = 3 independent donors)
were suspended in EGM-2 with 1% antibiotic-antimycotic solution (ABM, Thermo Fischer)
and transferred to each well at a concentration of 50,000 cells/cm2. Cells were incubated in
a humidified incubator at 37 ◦C and 5% CO2 and culture medium was exchanged daily.

2.7. Dynamic Culture of Endothelial Cells on Gas Exchange Membranes

Thin PDMS films were thoroughly cleaned using soap and absolute ethanol, rinsed
with ultra-pure water and air-dried. The membranes were mounted on commercially
available microfluidic devices (sticky µ-slides VI0.4, Ibidi) with six separate flow channels
and a chamber height of 530 µm (Figure 2a). The assembled devices were placed in an
oven at 60 ◦C for 8 h and allowed to cool to room temperature to prevent membrane
detachment. To enable cell attachment, RGD peptides were conjugated to the cell growth
area of the PDMS films, as previously described [26], to generate RGD-PDMS membranes.
The microfluidic channels were disinfected twice with 70% ethanol for 10 min, rinsed
with sterile DPBS and stored at 4 ◦C until usage. Three of the six channels were used for
endothelialization, each with a different biological donor (n = 3).
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Figure 2. Dynamic culture of endothelial cells in microfluidic slides with (a): Microfluidic device
with membrane mounted to the bottom side and six working channels; and (b): Bioreactor system
with peristaltic pump and medium reservoir placed in a controlled atmosphere (37 ◦C, 5% CO2).

For endothelialization of the coated membranes, non-sprayed and sprayed (with a
concentration of 2 × 106 cells/mL) HUVECs were suspended in EGM2 with 1% ABM
equilibrated to incubator conditions (37 ◦C and 5% CO2) and transferred to the respective
channel of the microfluidic device at a concentration of 2.1 × 106 cells/mL (equivalent
to 1.4 × 105 cells/cm2). Cell-seeded microfluidic devices were incubated in a humidified
incubator at 37 ◦C and 5% CO2, and the medium was exchanged every 60 min. After 4 h
of static culture, the endothelialized devices of each coated membrane were connected in
series to the respective bioreactor system. Dynamic culture was initiated by applying a
laminar flow of 7.43 mL/min to the cells corresponding to a physiological wall shear stress
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(WSS) of 5 dyn/cm2 (equivalent to 0.5 Pa) [27] and terminated after 24 h by either fixation
of the cells with ice-cold methanol for further immunocytochemical staining (ICC) or cell
lysis and RNA isolation.

2.8. Immunocytochemical Staining

After static and dynamic culture, the HUVECs were fixed with ice-cold methanol for
10 min at −20 ◦C followed by immunochemical staining with antibodies against CD31 and
von Willebrand factor (vWf), as previously described [6]. Briefly, the non-specific binding
sites were blocked with 3% bovine serum albumin (BSA, Sigma-Aldrich, Darmstadt, Ger-
many) in DPBS. The cells were incubated sequentially with primary antibodies against
CD31 (1:100 in 3% BSA solution, monoclonal, mouse, P8590, Sigma-Aldrich, Darmstadt,
Germany) and vWf (1:100 in 0.1% Triton-X (Sigma, Darmstadt, Germany) in DPBS solution,
monoclonal, rabbit, A0082, Dako, Glostrup, Denmark) as well as their corresponding sec-
ondary antibodies (Alexa Fluor 594, 1:400 in 3% BSA solution, goat anti-mouse, A11005,
and Alexa Fluor 488, 1:400 in 0.1% Triton-X solution, goat anti-rabbit, A11008, both Thermo
Fisher Scientific, Darmstadt, Germany) for 1 h each at 37 ◦C. Cell nuclei were counter-
stained with DAPI (Carl Roth, Karlsruhe, Germany). Samples were viewed by fluorescence
microscopy (AxioObserver Z1; Carl Zeiss with AxioCam MRm and AxioVision software,
Carl Zeiss, Oberkochen, Germany).

2.9. Quantitative PCR Analysis

The mRNA expression levels of KLF2, NOS3, VCAM-1, MCP-1, EDN1, TPA, TM, IL8,
NQO1 and HO1 were measured using quantitative real-time PCR and normalized to the
mRNA expression level of different reference genes. The most stable reference genes were
determined using the CFX Maestro Software 1.1 (Bio-Rad, Hercules, CA, USA). Based on
these results, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and TATA-binding
protein (TBP) were chosen as the most stable reference genes. Because normalization was
always performed against these two reference genes, we have introduced the term reference
gene index (ref. index). RNA was extracted using an RNeasy Kit (Qiagen, Hilden, Germany)
and quantified photometrically (NanoDrop, Thermo Scientific, Darmstadt, Germany). For
the RNA extraction, the medium was removed from the cells and RLT buffer (RNeasy
Kit, Qiagen, Hilden, Germany) was pipetted directly onto the cell layer for cell lysis
(within the microfluidic device or onto statically cultured membrane in well plates). After
a 10 min incubation, RLT buffer with the lysed cells was removed from the membrane
and the manufacturers protocol was followed by loading the lysed cell suspension onto
a separation column, completing several washing steps and performing RNA elution
with RNAse-free water. For each set of experiments, equal amounts of RNA were reverse
transcribed using a PrimeScript™ RT Reagent Kit (Takara Bio Europe, St-Germain-en-Laye,
France), and PCR reactions were performed using iTaq Universal SYBR Green Supermix
(Bio-Rad, Hercules, CA, USA), according to the manufacturers’ protocols. The specific
primers and annealing temperatures are listed in Table S1. All PCR reactions were run
on a CFX Connect Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) using
the following protocol: 40 cycles of 10 s denaturation at 95 ◦C followed by 10 s annealing
and 15 s amplification at 72 ◦C. PCR efficiency was determined from the uncorrected RFU
values using LinRegPCR version 2020.0 [28]. Relative quantification was performed using
the CFX Maestro Software 1.1 (Bio-Rad, Hercules, CA, USA). The evaluation algorithm was
based on the deltadelta ct method.

2.10. Statistical Analysis

All experiments were performed with three biological donors (n = 3). The results
are presented as mean ± standard deviation, and the data were analyzed using Excel
2016 (Microsoft) and Prism 9 (Version 9.4.0, Graphpad Software). A one sample t-test was
performed for the necrosis and apoptosis assay. A two-way ANOVA with Tukey´s multiple
comparisons test was carried out for survival rate evaluation and for quantitative PCR
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analysis. The statistical analysis was conducted in an explorative manner, and a p-value
below 0.05 was considered statistically significant (labeled with *).

3. Results
3.1. Spray Analysis

Characterization of the atomization device was performed to evaluate which spraying
parameters would be most optimal with regard to later application. For the endothelializa-
tion of gas exchange membranes, it is essential to be able to seed the cells on large surfaces
while maintaining continuous cell layer confluency. The mean surface area of the spraying
cone is given in Figure 3 for the different working distances while spraying with low or
high flow rates. A representative spray pattern with the following parameters is shown in
Figure S1: high flow rate, working distance of 9 cm. The sprayed surface area appears to be
smallest for working distances less than 7 cm, independent of the flow rate. For working
distances of 7–13 cm, the surface area stays constant at ca. 19 cm2 for the low flow rate
and at ca. 23 cm2 for the high flow rate. Interestingly, the surface area difference between
the low and high flow rates is highest when spraying with a working distance of 15 cm
(ca. 10 cm2). Even though the mean surface area for the working distance of 25 cm is
slightly larger for the low than the high flow rate, the evaluation remains difficult due to the
high standard deviation of the measurements. In general, solution sprayed with high flow
rate was able to produce a larger surface area ellipse. Because of this, atomization at high
flow rate would be the preferred method. However, examination of the cell survival after
spraying is necessary to decide whether a low or high flow rate should be the parameter.
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Figure 3. Mean surface area of the sprayed ellipse. Comparison of high and low spraying flow rate.

3.2. Cell Survival

The general suitability of the endothelial cell atomization and optimal spraying param-
eters were evaluated by measurement of the relative survival rate of the cells after spraying
with low or high flow rates with varying working distances. The absolute survival rate of
non-sprayed cell controls was not less than 96% for all non-sprayed controls. The results
are shown in Figure 4. Different HUVEC concentrations were tested to evaluate whether
the cell concentration influences the cell vitality after aerosolization. All results show a
mean survival rate of over 95%, except for the cell concentration of 0.5 × 106 cells/mL
during spraying at a high flow rate with a 3 cm working distance.
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In general, no significant differences in survival rate could be observed between the
cells sprayed with low or high flow rates. Due to this and previously shown results stating
that solutions sprayed with high flow rate are distributed over a larger surface, all further
experiments were performed using the high flow rate.

Another spraying parameter, working distance, significantly influences the relative
cell survival rate when spraying with a low cell concentration (0.5 × 106 cells/mL) at a high
flow rate. When spraying from a short distance (3 cm), 92.31 ± 5.03% of the cells survived
atomization. A relatively high amount of backsplash was observed during spraying from a
3 cm working distance with a high flow rate, which was not noticed in other conditions.
Most stable results when spraying with a high flow rate were achieved with a working
distance of 9 cm (99.34 ± 1.53% for 0.5 × 106 cells/mL, 99.23 ± 0.82% for 2 × 106 cells/mL,
98.44 ± 1.51% for 5 × 106 cells/mL). For this reason, the working distance of 9 cm was
chosen for all later experiments.

As to the differences between spraying with differently concentrated cell solutions, there
were no significant differences between spraying with 2 × 106 cells/mL and 5 × 106 cells/mL,
only atomization with 0.5 × 106 cells/mL resulted in lower survival rates after spraying
with a 3 cm working distance at a high flow rate. The cell spraying concentration of
2 × 106 cells/mL was chosen for later experiments to keep the cell concentration as low as
possible while achieving stable results with regard to cell survival.

3.3. Cell Behavior

The apoptosis and necrosis assays were used to evaluate the cytocompatibility of the
endothelial cell atomization process (Figure 5). Non-sprayed cells served as a control, and
both assays were performed directly after and 24 h after spraying.

The apoptosis assay detects caspase-3 and -7 activity (Figure 5a). Compared to the
apoptosis-induced control, both sprayed and non-sprayed cells showed a significantly lower
relative caspase-3/7 activity directly after the atomization process, as well as 24 h later
(0.09 ± 0.05 at 0 h to 0.19 ± 0.09 at 24 h for sprayed cells; 0.12 ± 0.05 at 0 h to 0.28 ± 0.17 at
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24 h for non-sprayed cells). Notably, there were no significant differences in the caspase-3/7
activity between sprayed and non-sprayed cells throughout the whole experiment.

Adenylate kinase is a protein that is released into cell culture medium after the loss
of cell membrane integrity during necrosis. In the current study, both sprayed and non-
sprayed cells showed significantly lower adenylate kinase activity in comparison to the
necrosis-induced control directly after and 24 h after the atomization (0.05 ± 0.03 at 0 h to
0.07 ± 0.05 at 24 h for sprayed cells; 0.07 ± 0.01 at 0 h to 0.13 ± 0.03 at 24 h for non-sprayed
cells) (Figure 5b). In general, cell spraying does not seem to induce necrosis in HUVECs,
as no differences could be shown in the adenylate kinase activity between sprayed and
non-sprayed cells.
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Figure 5. Apoptosis and necrosis of HUVECs (n = 3) after aerosolization. Non-sprayed cells served
as a control. (a): Apoptosis was analyzed directly after and 24 h after spraying by caspase 3/7 activity
and normalized to a staurosporine-incubated control; (b): Necrosis was evaluated directly after and
as 24 h after spraying by adenylate kinase activity and normalized to a 100%-lysis control. Significant
differences (p < 0.05) are marked with *.

3.4. Static and Dynamic Cultivation of Sprayed Cells

The ability of cells to maintain a confluent cell layer during dynamic cultivation is
essential for endothelialized oxygenator membranes. Thus, ICC staining against PECAM-
1/CD31 and vWF was performed to evaluate whether HUVECs are able to withstand wall
shear stress after the atomization process and to confirm the endothelial cell phenotype
(Figure 6). Sprayed and non-sprayed cells were compared for cultivation under static and
dynamic conditions.

CD31 expression displays cell–cell adhesions between the cells, and vWF is present
intracellularly in the cytoplasm in its granular form. After static cultivation, both sprayed
and non-sprayed cells display a confluent cell layer with CD31 expression verifying the
endothelial cell phenotype. Interestingly, sprayed cells show a lower vWF expression after
static cultivation than the non-sprayed cells. The sprayed cells are able to withstand a
wall shear stress of 5 dyn/cm2 and show vWF expression similar to non-sprayed cells
after dynamic cultivation. Both sprayed and non-sprayed endothelial cells showed a fully
confluent cell layer after dynamic cultivation under a wall shear stress of 5 dyn/cm2 on
gas exchange membranes showing typical cobblestone morphology.
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Figure 6. Immunocytochemical staining of non-sprayed and sprayed HUVECs after static and
dynamic cultivation with WSS of 5 dyn/cm2 against CD31 (red) and von Willebrand factor (vWF,
green). DAPI (blue)-stained cell nuclei. Representative pictures are shown.

3.5. Quantitative mRNA Analysis of Statically and Dynamically Cultivated Sprayed Cells

Endothelial cell behavior under static and dynamic conditions after atomization was
further analyzed by quantitative mRNA analysis. Results are shown in Figure 7.

The following markers were analyzed in the current study: KLF2 is a shear stress-
dependent transcription factor, which directly regulates the NOS3 gene, with EDN1 being
its opponent gene. TPA and TM (genes PLAT and THBD, respectively) are antithrombotic
proteins regulated by shear stress. Similarly, NQO1 and HO-1 (gene HMOX1) are shear
stress-dependent proteins with anti-oxidative effects. MCP1 (gene CCL2), IL8 (CXCL8),
and VCAM1 are proteins regulated by inflammatory processes. Our results for NOS3, TPA,
EDN1 and TM expression (Figure 7b,c,f,g) show no significant differences between statically
and dynamically cultured cells or between sprayed and non-sprayed cells. There are,
additionally, no significant differences in KLF2, NQO1 and HO-1 expression (Figure 7a,d,e)
after static and dynamic cultivation in both sprayed and non-sprayed cells. It must be
noted that one donor showed an unusually low KLF2, NQO1 and HO-1 expression under
dynamic conditions both with and without spaying in comparison to the other donors. In
our study, there were no significant differences in the expression of inflammatory markers
MCP1, IL8, and VCAM1 between sprayed and non-sprayed cells or between statically and
dynamically cultured cells (Figure 7h–j). In general, there were no significant changes in the
expression of several stress-dependent and inflammatory markers after cell aerosolization.
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Figure 7. Relative mRNA expression in HUVECs (n = 3) after aerosolization in static and dynamic
conditions with WSS of 5 dyn/cm2 with non-sprayed cells serving as a control. HUVECs were
analyzed for relative mRNA expression of (a): Krüppel-like factor 2 (KLF2); (b): Endothelin 1 (EDN1);
(c): Nitric oxide synthase 3 (NOS3); (d): Heme oxygenase 1 gene (HO1); (e): NAD(P)H quinone
dehydrogenase 1 (NQO1); (f): Thrombomodulin (TM); (g): Tissue plasminogen activator (TPA);
(h): Monocyte Chemoattractant Protein-1 (MCP1); (i): Interleukin 8 (IL8); (j): Vascular cell adhesion
molecule 1 (VCAM1) in relation to a reference gene index consisting of GAPDH and TBP. Data are
shown as mean ± SD and as black dots and squares representing the individual data points.
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4. Discussion

In this study, we used the Vivostat® system with the application kit spray pen VS 305
for EC aerosolization and proved its feasibility as an efficient technique for the endothelial-
ization of gas exchange membranes in biohybrid lung applications.

The spray analysis was first performed to find the most optimal spraying conditions.
The requirements for spraying are defined by one of the obstacles of oxygenator membrane
endothelialization: large membrane surface. To define the spraying parameters that would
allow coverage of the largest surface, the mean sprayed surface area was analyzed in
relation to working distance and flow rate. Our spray analysis defined the optimal spraying
conditions which would allow cell distribution over the largest surface as spraying with
a high flow rate at a working distance of 7–13 cm. Interestingly, spraying with a higher
working distance does not achieve distribution over a larger surface area, but results in
higher variations in surface area measurements that can be noticed by a high standard
deviation of the measurement. The spray analysis was performed using ultra-pure water
with ink in this study, but further measurements could be performed using cell culture
medium, as concentration of salts in the solution might have an impact on spray pattern.
The limitation of this study is the limited number of technical replicates performed during
spray analysis (n = 3), which would have to be increased if spraying at higher distances
was desired.

The cell survival test was performed to verify whether spraying with a high flow
rate from a medium working distance also provides the most optimal conditions for the
cells. Veazey et al. previously defined 50% cell viability as a minimal standard to achieve
adequate cell numbers in the area of deposition [29]. With more than 92% for all tested
conditions, the cell survival rate in our study is much higher than 50%, which proves that
the Vivostat® system is a suitable device for EC aerosolization. To our knowledge, the
Vivostat® system has been used previously only for the spraying of cells as a co-delivery
system in combination with fibrin [17,18,22,30]. In these studies, the main focus was clinical
application, without the evaluation of the cell survival rate after spraying. In our opinion,
cell survival is an important factor in the analysis of the cell delivery system for biohybrid
lung application as the ability of the cells to form and sustain a confluent cell layer after
seeding is essential for successful endothelialization of gas exchange membranes. The
lowest survival rate (ca. 92%) can be seen after spraying a low-concentrated cell solution
from a short distance. Even though this is, generally, a relatively high cell survival rate, in
the current study it is significantly lower than all other measurements of the cells sprayed
with a high flow rate. A possible reason for this might be the high amount of backsplash
that was noticed when spraying with a high flow rate from a short distance. This may have
caused insufficient medium supply and the drying out of the cells. As this effect was not
noticed when spraying with 2 × 106 cells/mL and 5 × 106 cells/mL, it is assumed that the
most optimal spraying cell concentration is one starting at 2 × 106 cells/mL.

Throughout the parameter testing, the most stable results were obtained when spray-
ing with a high flow rate from a medium working distance (7–13 cm). Therefore, these
spraying parameters were chosen for all further experiments.

Evaluation of cell behavior is of specific importance for biohybrid lung application
as it has been shown that necrotic cells can initiate pro-inflammatory cascades by actively
releasing inflammatory cytokines [31]. Most patients in need of a lung replacement suffer
from acute respiratory distress syndrome and are thereby prone to develop systemic
inflammatory distress syndrome [32]. An additional release of inflammatory cytokines
might worsen a pre-existing condition. Thus, we analyzed necrosis levels in the cells that
underwent the atomization process. As there was no increase in necrosis after spraying
in comparison to non-sprayed cells, we have proven that the cells would not induce
inflammation caused by necrosis. Additionally, we have shown that programmed cell
death, or apoptosis, was also not induced in cells after spraying. Apoptosis is known to
induce secondary necrosis; therefore, increased apoptosis levels would be undesirable
for cell seeding on oxygenator membranes [33]. In our previous study, we observed that
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human mesenchymal stem cells show increased apoptosis and necrosis levels after spraying
with a pressure atomizer. However, this result was not seen after spraying with an air
atomizer [14]. Additionally, mesenchymal stromal cells are larger than endothelial cells. To
our knowledge, endothelial cell behavior with regard to necrosis and apoptosis levels after
atomization has not been demonstrated previously.

In an oxygenator, the shear stresses on the membrane surface can reach between
20 dyn/cm2 and 120 dyn/cm2 [34]. Thus, the endothelial cells must withstand shear
stresses after atomization. We showed a confluent endothelial cell layer after 24 h dynamic
cultivation. This proves that the endothelial cells do not lose their ability to withstand at
least low to intermediate shear stress after spraying. The wall shear stress of 5 dyn/cm2

was chosen in the current study as physiological shear stress endothelial cells are known
to withstand in vivo [27]. In dynamic culture, there were no differences between sprayed
and non-sprayed cells in terms of CD31 and vWF expression or in cell orientation. This
indicates that cells did not sustain any significant changes that would influence their
behavior under dynamic conditions. The reduced vWF expression seen after spraying
under static conditions was ameliorated under dynamic conditions which are close to the
physiological situation. Weibel–Palade bodies (WPB) might have released vWF due to
endured stress during aerosolization, which can be seen in the statically cultured sprayed
cells. The following dynamic cultivation might support the production of new vWF in
WPBs after spraying, which can be seen in the dynamically cultured sprayed cells. Although
our study shows the first steps towards the evaluation of atomization as a cell seeding
process for biohybrid lung application, further investigation must be performed to evaluate
the ability of the sprayed endothelial cells to sustain higher shear stresses. However, as
this is an obstacle even for non-sprayed cells, certain pretreatment of the ECs or the gas
exchange membrane might be necessary to achieve this [10,35].

The regulation of several shear stress-dependent and inflammatory markers was
evaluated using quantitative PCR analysis. It has been previously shown that NQO1 and
HO-1 contain an antioxidant response element (ARE) in their promotors and are induced
by oxidative stress, as well as high shear stresses. NQO1 and HO-1 are both regulated
via nuclear factor erythroid 2-related factor 2 (Nrf2), which is a transcriptional factor
for ARE [36,37]. In our results, both NQO1 and HO-1 were not activated in endothelial
cells after aerosolization in comparison to non-sprayed cells in both static and dynamic
conditions. No significant differences were observed between statically and dynamically
cultured cells. This could be due to high donor variability, where one donor showed lower
NQO1 and HO-1 expression in dynamic cultures than the other two. In further studies,
donor variability should be evaluated with regard to stress-dependent marker expression.
It is well-known that transcription factor KLF2 is upregulated in endothelial cells after
dynamic cultivation [38,39]. KLF2 is included in the regulation of several stress-dependent
genes of vascular tone (NOS3, EDN1), thrombogenicity (TM, TPA), and inflammation
(MCP1, VCAM1). Expression of NOS3, TM, and TPA is induced by KLF2 whereas EDN1
is reduced [40]. Both inflammatory markers VCAM1 and MCP1 are downregulated by
high shear stresses [41,42]. As there were no significant changes in the expression of all
mentioned markers in the cells after aerosolization, we assume that the applied stresses
during spraying do not influence stress-dependent marker expression. For future studies,
we will consider including an inflammatory-induced control in the test setup to confirm the
basal non-inflammatory status of the cells. Interestingly, no effect on the expression of KLF2
or KLF2-dependent genes was observed in dynamically cultured cells as compared to static
cultures, which could be due to the RGD-coating on the gas exchange PDMS membranes. It
has been shown that RGD induces YAP/TAZ signaling, which can result in a reduction in
KLF2 expression [43,44]. An additional reason for no significant change in the expression of
the tested shear stress-dependent markers might be the low stiffness of PDMS membrane.
It has been previously shown that endothelial cells react to lower substrate stiffness with
changes in stress-dependent mechanosensitive pathways [45]. In general, we have proven
that endothelial cell aerosolization using the Vivostat® system does not result in a change
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in expression of several stress-dependent and inflammatory markers. An interesting aspect
to further investigate would be the differences in the protein expression of sprayed cells. It
has been shown that inhibited gene expression of VCAM-1 correlates with inhibited protein
expression [46]. Interestingly, MCP-1 protein expression levels do not directly correspond
to mRNA expression [47]. Measurement of soluble IL8 protein might be of special interest
for future studies as its expression is regulated by several signaling pathways [48].

Due to the small area of PDMS membrane in the presented microfluidic system, it is
not deemed possible to spray the cells directly onto the PDMS membrane, which is the
biggest limitation of this study. Our preliminary experiments showed that after spraying
directly onto the membrane, the assembly of the device was not possible as the sticky
µ-slides (Ibidi) only stuck to dry surfaces. Each channel in the microfluidic model has a
growth area of 0.6 cm2, and the smallest sprayed ellipse area was approximately 6.5 cm2.
Thus, the cells were sprayed into a sterile beaker and transferred onto the microfluidic
system via pipetting. Having proven the general feasibility of endothelial cell spraying in
the current study, the next step will be using the described method in a larger setup with a
possibility to spray directly onto the gas transfer membranes.

Although the microfluidic bioreactor system provides a reliable tool for primary
in vitro investigations, the requirements for potential clinical application must be consid-
ered. In the current study, HUVECs were used as a cell source, which is most likely not
a feasible option for autologous clinical application in a biohybrid lung. Additionally, as
HUVECs are a primary cell type, donor variation can occur, especially in molecular analysis.
Human-induced pluripotent stem-cell-derived endothelial cells (iPSC-ECs) present a more
promising cell source, as they could be produced autologously. In recent years, several
studies have investigated the use of iPSC-ECs in biohybrid lung application [9,10,13,35].
Using iPSC-ECs might also solve the issue of cell number availability for the gas exchange
membrane endothelialization. If using the same seeding density as in the current study
(1.4 × 105 cells/cm2), 2.8 × 109 cells would be necessary to coat an oxygenator membrane
with a 2 m2 surface area. Olmer et al. have developed a method for the scalable produc-
tion of iPSC-ECs, which would provide a solution for the presented challenge [49]. To
ensure even cell distribution on the membrane and allow quality control, automatized cell
aerosolization could be performed on an unfolded gas exchange membrane that is in air
contact during spraying. After the spraying, the cells would have to be cultured statically in
cell culture medium for about 2 h to ensure cell attachment. Then, the oxygenator assembly
could be performed in sterile conditions, followed by dynamic cultivation of the oxygenator
in in vitro conditions. This would allow the cells to adjust to the stresses in the device. As a
final step, the endothelialized oxygenator would be connected as a biohybrid lung, where
the medium solution is replaced by blood. Nevertheless, further studies must be performed
before the use of an endothelialized oxygenator in vivo is possible, i.e., investigation of
the maximal wall shear stress the cells can sustain, assembly and cell seeding process on a
full-size biohybrid lung model, and the long-term interaction of the endothelial cells on the
gas exchange membrane with the patient’s blood.

In conclusion, our study shows that the endothelial cells are able to withstand aerosoliza-
tion without any significant changes in cell survival and behavior. The cells were success-
fully cultured under dynamic conditions after spraying, which demonstrates the theoretical
potential of the cells to be used for oxygenator membrane endothelialization. According to
our results, the stresses the cells endure during aerosolization do not significantly influence
stress-dependent gene expression. Thus, endothelial cell aerosolization has been proven to
be a suitable cell seeding method for the endothelialization of gas exchange membranes.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi14030575/s1, Table S1: Used qPCR primers and their annealing
temperature. Figure S1: Representative picture of a spray pattern. Following parameters have
been used: high flow rate, working distance—9 cm. Figure S2: Representative pictures of the
Calcein-AM (green) and PI (red) staining for the evaluation of cell survival. Sprayed cell (right)
have been aerosolized with following parameters: high flow rate, working distance—9 cm, cell
concentration—2 × 106 cells/mL.
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