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Abstract: Wearable exoskeletons play an important role in people’s lives, such as helping stroke and
amputation patients to carry out rehabilitation training and so on. How to make the exoskeleton
accurately judge the human action intention is the basic requirement to ensure that it can complete
the corresponding task. Traditional exoskeleton control signals include pressure values, joint angles
and acceleration values, which can only reflect the current motion information of the human lower
limbs and cannot be used to predict motion. The electromyography (EMG) signal always occurs
before a certain movement; it can be used to predict the target’s gait speed and movement as the
input signal. In this study, the generalization ability of a BP neural network and the timing property
of a hidden Markov chain are used to properly fuse the two, and are finally used in the research of
this paper. Experiments show that, using the same training samples, the recognition accuracy of the
three-layer BP neural network is only 91%, while the recognition accuracy of the fusion discriminant
model proposed in this paper can reach 95.1%. The results show that the fusion of BP neural network
and hidden Markov chain has a strong solving ability for the task of wearable exoskeleton recognition
of target step speed.

Keywords: electromyography (EMG); lower limbs; speed recognition

1. Introduction

The robot is a product of multidisciplinary intersection; since its birth, it has shown
its unique advantages in every field, and gradually from the industry has expanded into
military, medical, daily health care and other fields [1]; among them, exoskeleton robots
have a broad range of application prospects in the medical health field, logistics and
industrial manufacturing [2–6]. Particularly in the medical field, patients can complete a
lot of physiological gait training with the help of the lower limb exoskeleton robot, in order
to achieve the purpose of reestablishing the correct movement pattern as early as possible
to participate in daily activities like healthy people [7].

The primary task for the exoskeleton to achieve the above functions is to accurately
recognize the wearer’s movements. Song et al. [8] designed a classifier to identify five
movement patterns including up the stairs, down the stairs, sit, stand and walk. Lopez-
delis et al. [9] achieved knee motion pattern classification. Xi et al. [10] designed a classifier
to recognize seven action patterns. Although a large number of studies have been able
to perfectly realize the recognition and classification of different action patterns, this is
not enough in real life. For example, a patient wants to walk slowly but the exoskeleton
attached to them can only recognize when he is walking rather than squatting. Then it
works at a speed that does not match the patient, which will have disastrous consequences.
This paper will use running as an example to solve the problem of recognizing different
speeds or magnitudes within the same movement mode.

The quality of the original information is directly related to the accuracy of hu-
man movement mode recognition and prediction. Andrea Bonci et al. [11] made a basic
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brain–computer interface (BCI) using EEG signals to research how targeted brain oscilla-
tion signals (or brainwaves) originate from a visual stimulus or a cognitive process and
how they get acquired, processed and translated into commands. Peng et al. [12] used
pressure as the original signal, then designed plantar pressure sensing shoes to collect
the plantar pressure of the human body under different movement modes and extracted
five characteristics. Zhang et al. [13] collected data under dynamic (walking) and static
(sitting, standing and lying) activities of the elderly by using IMU. Gupta et al. [14] chose
acceleration as the original signal; they used acceleration sensors tied to the waist to obtain
them. However, there is an important problem with the above works. The information
represented by pressure, acceleration and posture can only reflect the action information of
the current exoskeleton wearer, but cannot directly predict the action information of the
exoskeleton wearer.

In view of the above problem, this paper predicts human motion patterns based on
EMG information. The EMG signal is a physiological signal sent by the activity of muscle
neurons in the process of active human movements [15], which reflects neuromuscular
activity to a certain extent [16]. EMG signals are forward-looking, independent, abundant
and easy to operate [17,18]. Their prospectivity means that the occurrence of muscle action
lags behind the generation of the corresponding EMG signal, which enables us to use the
EMG signal as the input signal to control the exoskeleton and judge the user’s movement
intention in advance [19]. Based on the above advantages, EMG signals are superior to
other kinds of signals such as acceleration and pressure in human action pattern prediction.

Many algorithms have been successfully applied to human motion recognition based
on EMG signals. Chen et al. [20] used multi-feature fusion with random forest (RF) to
estimate ankle joint angle; Zhijun Li et al. [21] adapted a back propagation (BP) neural
network to control strategy to assist humans to climb stairs. Tang et al. [22] adapted a BP
neural network to learn the association between the sEMG signals and elbow angles under
different loads. However, the above works concentrated on recognizing relatively discrete
and discrepant motion. This paper’s main work is to study different speeds of the same
action. For disabled people, the change of their walking speed is continuous and slow, but
the above works do not fully exploit temporal information. This paper fully utilizes this
characteristic, creatively coming up with the BP Neural Network–Hidden Markov hybrid
model (BP-HMM), which improves the accuracy of step speed recognition.

2. Data Acquisition and Processing of Dual-Conduction Muscle Electrical Module

As shown in Figure 1, the EMG signal has a relatively mature processing flow in the
field of pattern recognition. Firstly, after the contact EMG signal sensor is attached to the
selected muscles of the experimenter, the original signals are collected at the same time
when the experimenter run on the treadmill at a specific speed. Secondly, the original signal
is pre-processed including filtering and segmentation. Then, the features of the processed
signals are extracted to obtain the training samples. Finally, the training samples are used
to train the built network model offline to obtain the pattern recognition model.
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Figure 1. Basic flow chart of step pattern recognition.

2.1. Experimental Facilities

In this study, the EMG signal acquisition of lower limb muscles is realized by the
dual-conductance muscle electrical module, as shown in Figure 2. This module includes
front-end analog circuit acquisition and back-end digital signal filtering processing. The
front-end acquisition circuit collects the muscle electrical signals of the human arm or
leg through two channels. After a series of signal amplification and filtering, the analog
acquisition signal is output by the output port. The waveform of the muscle electrical signal
can be observed directly through the filter. The back end uses a single chip microcomputer
for digital filtering and collects the value of muscle electricity for processing to obtain
power. Then it is sent to the host computer through Bluetooth 4.0. In the data collection,
the testers are required to run at the speeds of 3, 4, 5, 6, 7, 8 and 9 km/h on the treadmill in
this experiment. Compared with the complexity of the open-air environment, the indoor
treadmill can effectively ensure that the tester can complete the data acquisition at a stable
speed and change the speed of the treadmill instantaneously, so that the tester can change
the running speed in a short time. At this time, the signal collected by the sensor is the
signal with the tester’s speed changing. All the above signals will be stored as original data.

Figure 2. The physical diagram of the dual-conductance muscle electrical module.

2.2. Data Collection and Preprocessing

According to the related research of human muscle movement theory, the motion state
of human lower limbs is mainly a comprehensive result of the coordinated control of lower
limb muscles, and the interaction between the active muscles and the antagonistic muscles
to maintain the dynamic balance of the human body during exercise.
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According to Qin Geyu et al. [23], knee flexion in the lower limb joint model is mainly
composed of the following groups of muscles, including the vastus medialis muscle and
vastus lateralis muscle, semitendinosus and biceps femoris muscle, et al. In addition to the
above muscle clusters related to the knee joint, the ankle joint also plays an important role
in the movement of lower limbs, including the selection of medial gastrocnemius head,
lateral gastrocnemius head and soleus, et al. in the metatarsal flexor group of the ankle
joint. In this paper, the above part of the muscle groups involved in the lower limbs of the
human body during running are selected. According to the data and experimental results,
two groups of muscle groups including the extrafemoral rectus muscle and vastus medialis
that have a greater impact on the walking speed in the above muscle groups are selected as
the experimental objectives. Based on this, the relevant data are extracted for processing
and analysis to reduce the redundant signals that are weakly related to the walking speed,
which improves the accuracy and computational efficiency of the algorithm.

Due to the complexity of human muscle structure and the accuracy of the acquisition
equipment itself, the EMG signal is vulnerable to noise in the acquisition process. Noise
can be divided into high frequency noise and low frequency noise according to its own
frequency band. Low frequency noise includes electrical signals generated by human
tissues outside the target muscle group, and high frequency noise includes electromagnetic
interference in the experimental site and noise of the equipment itself. The dual-conduction
muscle electrical module used in this experiment has a certain hardware filtering function
but, in order to ensure the accuracy of the data, this experiment uses algorithm filtering
to carry out the secondary processing of the original data. In this paper, the wavelet
denoising method is used and wavelet dp5 is used as the fundamental wave to realize
signal denoising. Taking the rectus femoris muscle during walking as an example, the
signals before and after noise reduction are shown in Figure 3.

(a) Raw data (b) Wavelet denoised data

Figure 3. EMG signals before and after noise reduction. (The left image is the original signal and the
right image is the signal after db5 wavelet filtering).

For the data signal flow generated by the dual-conduction muscle electrical module,
this paper adopts the data segmentation method based on time window to extract the
phased effective numbers in the data flow. The time window plays an important role in the
processing of the EMG signal pattern. Many studies [24–26] have discussed this problem
in depth. Based on the above research, in gait recognition, we need to detect the initial
moment of gait and, on this basis, conduct window division. During the gait cycle division,
according to the research conclusion of Hao Jinghan’s gait cycle division based on a TK
energy operator algorithm and real-time monitoring results during data collection [27], it
is found that the gait cycle control between 1 and 1.3 s is the most accurate. Based on the
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above analysis, the EMG signal was processed by sliding window; the window is set at
200 ms (including 200 sampling points). As shown in Figure 3b, similar time domain and
frequency domain characteristics are displayed between the 100th to 200th and the 200th to
300th sampling points, etc. Combined with the selection of the length of sliding window
in [24–26], we choose 200 ms as the length of time window and the overlapping ratio is set
at 50%, which can not only ensure the efficiency of data use but also does not cause data
loss. In the process of data acquisition, the current sampling time is taken as the time node
and the data of the first 1 s are intercepted as the sliding time window.

EMG signal feature extraction methods are generally divided into time domain, fre-
quency domain and time–frequency domain. See Table 1 for some eigenvalues.

In this paper, we use principal component analysis, selecting 10 characteristics such
as root mean square, corrected average absolute value, zero crossing times and maximum
and minimum values for observation in the time domain. In the frequency domain, the
spectrum of the EMG signal can intuitively reflect the difference between different speeds.
Therefore, in this paper, four eigenvalues such as median frequency and mean frequency
are extracted from the spectrum of EMG signal as the observation eigenvalues in the
frequency domain. Since the dual-conduction EMG module can collect the EMG signals of
two muscle groups at the same time, combined with the characteristics of EMG signals of
different muscle groups, the rectus femoris and extrafemoral muscles are selected as the
signal sources in this experiment. Finally, the eigenvalue matrix of 2 × 14 is used as the
input sample of the model in this paper.

Table 1. List of characteristic values of typical EMG signals.

EMG Eigenvalue Name Feature Type Reference

Root mean square, RMS Time domain feature [28–30]
Mean absolute value, MAV Time domain feature [31,32]

Slope sign change, SSC Time domain feature [33]
Waveform length, WL Time domain feature [34,35]

Zero crossing, ZC Time domain feature [34,35]
Median frequency, MDF Frequency domain feature [36,37]

Mean power, MNF Frequency domain feature [37,38]

3. BP-HMM

The BP-HMM model consists of the BP neural network model and HMM. The BP
neural network is based on the error back propagation algorithm, which belongs to the
forward network to solve the nonlinear separability problem. The BP network is the core
part of the forward neural network and the essence of the artificial neural network. It is
widely used in pattern recognition, approximation, regression and other fields. HMM is
a statistical model. It is achieved by the following steps. Firstly, a hidden Markov chain
generates a state random sequence. Then each state in the state random sequence generates
the corresponding observation. Because the hidden state observation probability matrix
of HMM cannot be directly obtained, this paper firstly uses the BP neural network model
to identify the sample offline and obtains the observation probability matrix required by
the HMM model. Then, according to the observation value, the hidden state probability is
obtained by the Viterbi algorithm and the step speed is identified online. The accuracy of
step speed recognition can be improved by using this model.

3.1. BP Neural Network Model

The artificial neural network (Figure 4b) is a data processing model that simulates
biological neurons (Figure 4a). It is calculated by a large number of artificial neurons
connected with each other and changes its structure according to the external information.
The operation process is mainly to adjust the weights between neurons to model the input
data and ultimately has the ability to solve practical mathematical problems.
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(a) Biological Neuron Model (b) Artificial Neural Network Model

Figure 4. Biological and mathematical models of neural networks.

The BP algorithm is a supervised learning algorithm. Its purpose is to adjust the
network parameters by using the mean square error between the actual output and the
expected output of the network based on the gradient descent strategy, so that the error
between the expected output and the actual output is minimized. The input x1, x2, . . . , xN
are N eigenvalues extracted from the EMG signals in the previous section and the output
y1, y2, . . . , yM are M different step speeds to be identified. The network model structure is
shown in Figure 4b.

3.1.1. Definition of Variables

In Figure 4b, the number of input neurons is d = 28, the number of hidden neurons
is q = 10 and the number of output neurons is l = 7. The i-th neuron in the input layer is
denoted as xi, the h-th neuron in the hidden layer is denoted as bh and the j-th neuron in
the output layer is denoted as yj. The connection weight from xi to bh is ωih and from bh
to yj is ωhj. Both the transfer functions of the hidden layer and the hidden layer use the
sigmoid function.

3.1.2. Formula Derivation

Strict mathematical proof of the formula can be seen in Reference [39] and this paper
only makes a simple explanation.

For training sample (xk,yk), suppose the output ŷk = (ŷk
1, ŷk

2, . . . , ŷk
M) of BP network:

ŷk
j = f (β j − θj), j = 1, . . . , M, (1)

Define the deviation of the training sample in the network by mean square error:

Ek =
1
2

M

∑
j=1

(ŷk
j − yk

j )
2
, (2)

In each iteration, the generalized perceptron learning rule is used to update the
parameters. For any parameter u, the updating rule is:

u + ∆u→ u, (3)

Based on the gradient descent strategy, the parameters are adjusted in the negative
gradient direction of the target. For the error Ek given by formula (2), the learning rate is
set to be η:

∆ωhj = −η
∂Ek
∂ωhj

= −η
∂Ek

∂ŷk
j
·

∂ŷk
j

∂β j
·

∂β j

∂ωhj
, (4)

By definition β j:

bh =
∂β j

∂ωhj
, (5)
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By properties of sigmoid function:

gj = −
∂Ek

∂ŷk
j
·

∂ŷk
j

∂β j
= ŷk

j (1− ŷk
j )(y

k
j − ŷk

j ), (6)

By substituting Formula (5) and (6) into Formula (4), the learning formula in the BP
algorithm can be obtained:

∆ωhj = ηgjbh, (7)

Similarly, the following parameters can be obtained to obtain the learning formula:

∆θj = −ηgj, (8)

∆vih = ηehxi, (9)

∆γh = −ηeh, (10)

Among them:

eh = bh(1− bh)
l

∑
j=1

ωhjgj, (11)

3.1.3. Algorithmic Process

On the basis of the iterative calculation formula of the above parameters, the algorithm
flow of the classical BP neural network can be obtained as shown in Figure 5.

Figure 5. BP algorithm process.

3.2. HMM
3.2.1. External Representation of HMM

HMM is a classical statistical model of machine learning, which has been widely used
in the fields of language recognition, natural language processing and pattern recognition.
With the invention and rapid development of sensor technology, this model has also been
used in the field of human motion intention recognition. The hidden Markov model uses
the following representation [40]:

λ = {Q, V, π, A, B}, (12)
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where Q is the set of all possible hidden states, V is the set of all possible observed states,
π is the initial probability matrix, A is a state transition matrix and B is the observation
probability matrix, namely:

Q = {q1, . . . , qN}, V = {v1, . . . , vM}, (13)

In this paper, the characteristic values extracted from the EMG signal are the obser-
vation states and the step speeds are the hidden states. Therefore, N = 28, {q1, . . . , q28}
corresponds to 28 eigenvalues; M = 7, {v1, . . . , v7} represents, respectively, 3, 4, 5, 6, 7, 8,
9 km/h; π represents the initial probability matrix of the hidden state, namely the probabil-
ity of each step being selected in the first step. Due to the randomness of the experiment,
this paper selects uniform distribution as the initial probability matrix.

π = [
1
M

, . . . ,
1
M

]︸ ︷︷ ︸
M

, (14)

After a period of time T, the state sequence of length T is generated: I= {i1, i2, i3 . . . , iT}
and the corresponding observation sequence: O = {o1, o2, o3 . . . , oT}; Figure 6 shows the
relationship between the hidden state and the observed state with time.

Figure 6. State sequence and observation sequence in step speed detection.

3.2.2. Intrinsic Factors of HMM

The above mainly discusses the external representation of HMM and the following
mainly discusses its internal factors. Before discussing the intrinsic factors of the hidden
Markov model, two properties are listed as follows:

Homogeneous Markov property: the hidden state of the hidden state Markov chain
at any time only depends on the hidden state of the previous time and has nothing to do
with the earlier hidden state; this, of course, has nothing to do with the observation. This
property can be expressed by conditional probability as follows:

P(it|it−1, ot−1, it−2,ot−1, . . . , i1, o1) = P(it|it−1), (15)

Observation independence: the observation at any time is only related to the hidden
state at that time; this property can be expressed by conditional probability as follows:

P(ot|it, it−1, ot−1, it−2,ot−1, . . . , i1, o1) = P(ot|it), (16)
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A is a state transition matrix; its essence is a Markov chain transition probability
matrix; all potential hidden state numbers are N, so A is an N × N matrix:

aij = P(it+1 = qj|it = qi), (17)

where i = 1, 2, . . . , N, j = 1, 2, . . . , N. Obviously, aij represents the probability of hidden
state i transferring to hidden state j. Through the analysis of the real-time signal in the field
experiment and combined with the actual law of walking transformation, this paper argues
that the walking transformation is continuous, and has a strong correlation between qt+1
and qt, which conforms to the nature (1). The Gaussian distribution is used as the transfer
probability to simulate the probability of walking speed conversion, which is closer to the
reality. The specific calculation is as follows:

Ai ∼ N(i, 1), 1 ≤ i ≤ 7, i ∈ Z, (18)

Ai is the i-th row of A, which indicates the probability that the current pace moves
to the next pace, and obeys the normal distribution with mean and variance 1, where Aii
is the current speed state and Aii is also the mean value of the normal distribution, so the
maximum probability of the next step after each step conversion remains the current state.

B is the observation probability distribution matrix, also called the confusion matrix,
representing the probability when the hidden state is qi and the output is the observation
state vj.

bij = P(ot = vj|it = qi), (19)

where i = 1, 2, . . . , N, j = 1, 2, . . . , N. Obviously bij refers to the probability that the
corresponding generated observation state is vj when time is t and hidden state is qi. bij is
established by the BP model. The offline BP recognition method is used to calculate the
probability that the BP model recognizes the observed vj when the current hidden state
is qi.

After obtaining HMM, λ = {Q, V, π, A, B} from experimental data, the hidden state
sequence is decoded by the Viterbi algorithm (forward–backward algorithm). The specific
process of the Viterbi algorithm is as follows:

Initialize local state
δ1(i) = πibio1

, i = 1, 2, . . . , N, (20)

ψ1(i) = 0, i = 1, 2, . . . , N, (21)

Dynamic recursive: recursive local state t = 1, 2, . . . , T for dynamic programming:

δt(i) = max
1≤j≤N

[δt−1(j)aji]biot , i = 1, 2, . . . , N, (22)

ψt(i) = arg max
1≤j≤N

[δt−1(j)aji], i = 1, 2, . . . , N, (23)

The probability of the maximum hidden state sequence is solved as follows: calculating
the maximum δT(i) at the end time T, that is, the maximum probability of the hidden state
sequence, and calculating the δT(i) under this condition, that is, the most likely hidden
state at time T.

P∗ = max
1≤j≤N

[δT(i)], (24)

iT
∗ = arg max

1≤j≤N
[δT(i)], (25)

Backdate: For t = T − 1, T − 2, . . . , 1:

it
∗ = ψt+1(it+1

∗), (26)
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Finally, the most possible hidden state sequence I∗ = {i1∗, i2∗, . . . , iT
∗} is the predicted

step sequence.

4. Model Training and Experimental Results

This paper combines the BP network and HMM model to get the BP-HMM model
as a recognition model. Firstly, the BP neural network is trained offline according to the
observed data and the confusion matrix of the recognition results is used as the observation
probability matrix of the HMM model. Then the BP-HMM speed prediction model is
obtained. In online prediction, the BP-HMM model is used for identification and the final
specific process is shown in Figure 7.

Figure 7. Flow chart of BP-HMM speed prediction model.

The experimenters walked at seven different speeds from 3 km/h to 9 km/h on
the treadmill (Figure 8) and each speed extracted 300 to 400 windows of time. Finally,
considering the large data error in the first and last sections of each speed, they were
eliminated. Finally, the data of 300 windows in the middle section of each speed were
retained as the test, namely, the size of the data set was 2100. To prove the robustness of
the model, we selected three different experimenters, including two male members and
one female member. Each experimenter repeated the above behaviors to obtain muscle
electrical signals at asynchronous speeds and stored them in a database. Each database
was used to train the model. Twenty groups of data were randomly selected from the
data corresponding to asynchronous speeds in the database, a total of 140 groups of data,
and multiple rounds of tests were conducted on the results. The test results are compared
with the recognition results of the BP neural network. Part of the test results are shown in
Figure 9.

Judging from the results in Figure 9, the recognition accuracy of BP-HMM is better
than that of the neural network model and, since the data of each test is randomly extracted,
it proves that BP-HMM has good robustness. No matter how complex the neural network
is, it can be used as a part of BP-HMM, so BP-HMM always has better performance
and discrimination ability than any neural network in the problem of human walking
speed recognition.
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Figure 8. Experimental scene diagram.

(a) (b)

(c) (d)

(e) (f)

Figure 9. (a–f) Comparison of some test results (BP-HMM and BP neural network). In order to prove
the robustness of the model, we marked some samples and stored them in the database, randomly ex-
tracted some data from them, identified them by different models, and obtained comparative results.

In order to specify the results obtained from our model, we choose one set of results
to illustrate in detail. When we randomly selected 140 sets of data from one of the experi-
menters’ databases, we classify them using two models, the BP neural network and the
BP-HMM model. This set of identification results using the three-layer BP network are
shown in Table 2.
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It can be seen from Table 2 that there are many errors in the recognition results of the
BP neural network, and the errors are irregularly distributed and difficult to correct. The
recognition result is denoted as the observation probability matrix B of the BP-HMM model:

B =



5.469× 10−1 0 0 2.188× 10−1 0 1.875× 10−1 4.690× 10−2

0 9.296× 10−1 0 2.820× 10−2 2.820× 10−2 0 1.410× 10−2

0 1.450× 10−2 7.826× 10−1 0 1.719× 10−1 0 4.690× 10−2

1.429× 10−1 0 0 6.786× 10−1 1.786× 10−1 0 0
6.380× 10−2 0 1.064× 10−1 1.277× 10−1 5.532× 10−1 0 1.489× 10−1

8.820× 10−2 0 0 0 0 9.118× 10−1 0
7.690× 10−1 0 0 0 1.026× 10−1 5.130× 10−2 7.682× 10−1


(27)

The state transition matrix A can be obtained from formula (18):

A =



3.9× 10−1 2.4× 10−1 5.4× 10−2 4.43× 10−3 1.34× 10−4 1.49× 10−6 6.08× 10−9

2.4× 10−1 3.9× 10−1 2.4× 10−1 5.4× 10−2 4.43× 10−3 1.34× 10−4 1.49× 10−6

5.4× 10−2 2.4× 10−1 3.9× 10−1 2.4× 10−1 5.4× 10−2 4.43× 10−3 1.34× 10−4

4.43× 10−3 5.4× 10−2 2.4× 10−1 3.9× 10−1 2.4× 10−1 5.4× 10−2 4.43× 10−3

1.34× 10−4 4.43× 10−3 5.4× 10−2 2.4× 10−1 3.9× 10−1 2.4× 10−1 5.4× 10−2

1.49× 10−6 1.34× 10−4 4.43× 10−3 5.4× 10−2 2.4× 10−1 3.9× 10−1 2.4× 10−1

6.08× 10−9 1.49× 10−6 1.34× 10−4 4.43× 10−3 5.4× 10−2 2.4× 10−1 3.9× 10−1


(28)

The state transition matrix A and observation probability matrix B are substituted into
Formula (12) to obtain the complete BP-HMM. The online recognition test of the model
was carried out. The experimenter walked on the treadmill at seven continuous fixed
speeds. A total of 140 sets of data were randomly collected from 20 windows for each
speed. The three-layer BP neural network and the BP-HMM is used to identify the data set
online. The identification results are shown in Tables 3 and 4, respectively. Comparing the
two identification results, the BP-HMM model proposed in this paper has the following
advantages compared with the three-layer BP network:

(1) The overall recognition rate is improved on the basis of high performance of the
BP network, from 92.86% to 95.00%.

(2) The absolute deviation and relative deviation of the BP network recognition results
are greater than the absolute deviation and relative deviation of the BP-HMM model, that
is, the error recognition results of the proposed model are only in the adjacent state of its
real value. Under the premise that the recognition results are not very accurate, more than
90% of the deviation remains within the unit error of the correct pace. The false recognition
results of the BP network are randomly distributed in different speeds and the error is large.

(3) Due to the physiological structure of the human body, under normal circumstances,
the pace of the human body changes to a stable change, which means the large probability
of the pace at a certain moment does not change at the next moment or changes to a certain
pace of its adjacent state. Therefore, this paper incorporates this feature into the model and
successfully solves the problem of the large identification error of the BP neural network at
different step speed transition moments, as shown in Figure 10. At the time of pace change,
the BP-HMM model does not misidentify the samples.
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Table 2. BP neural network model identifies confusion matrix offline.

Real Pace (km/h)
Identification Result (km/h)

3 4 5 6 7 8 9

3 0.5469 0 0 0.2188 0 0.1875 0.0469
4 0 0.9296 0 0.0282 0.0282 0 0.0141
5 0 0.0145 0.7826 0 0.1719 0 0.0469
6 0.1429 0 0 0.6786 0.1786 0 0
7 0.0638 0 0.1064 0.1277 0.5532 0 0.1489
8 0.0882 0 0 0 0 0.9118 0
9 0.0769 0 0 0 0.1026 0.0513 0.7682

Table 3. BP neural network model identifies confusion matrix online.

Real Pace (km/h)
Identification Result (km/h)

3 4 5 6 7 8 9

3 95% 0 0 0 5% 0 0
4 0 95% 0 0 0 5% 0
5 0 0 95% 0 0 5% 0
6 0 0 5% 85% 0 5% 5%
7 0 0 5% 10% 90% 0 0
8 0 0 0 5% 0 90% 5%
9 0 0 0 0 0 0 100%

Table 4. BP-HMM model identifies confusion matrix online.

Real Pace (km/h)
Identification Result (km/h)

3 4 5 6 7 8 9

3 95% 0 0 0 0 0 0
4 0 100% 0 0 0 0 0
5 0 0 100% 0 0 0 0
6 0 5% 90% 0 0 5% 0
7 0 0 0 5% 95% 0 0
8 0 0 0 0 5% 95% 0
9 0 0 0 0 0 0 100%

Figure 10. Comparison of recognition results between BP-HMM model and BP model under continu-
ous walking.
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5. Conclusions

This paper presents a lower limb gait recognition method for human exoskeleton
wearers based on the BP-HMM model. Firstly, according to the EMG characteristics of
different muscle groups and the walking characteristics in pattern recognition, the BP-
HMM recognition algorithm is proposed and used to divide the walking speed into seven
states. Then, by extracting and analyzing the eigenvalues of EMG signals at different
muscle groups of exoskeleton wearers, two muscle groups with obvious characteristics
and large differences are selected as the final analysis objects. Then the original data are
analyzed in time domain and frequency domain, and 28 characteristic values are extracted
from each muscle group. A total of 28 eigenvalues of two muscle groups are used as the
total feature set. Finally the BP-HMM model is used to identify the current pace online.
The final results show that the overall speed recognition rate of the model reaches 95% and
each index is better than the single BP neural network model. The traditional recognition
algorithm does not take into account the general rules of human walking and this paper
improves the HMM state matrix according to the general rules of human walking, which
can more accurately describe the speed intention of exoskeleton wearers.

In this paper, the traditional recognition algorithm is improved in principle, which
improves the recognition accuracy of human walking recognition in this specific field.
At the same time, it avoids the huge difference between recognition state and walking
intention, and basically solves the problem of mutation of recognition results and inaccurate
recognition intention in this field. The foundation has been laid to ensure movement
coordination between the exoskeleton and its wearers.
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