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Abstract: Recently, the layer-wise N:M fine-grained sparse neural network algorithm (i.e., every
M-weights contains N non-zero values) has attracted tremendous attention, as it can effectively reduce
the computational complexity with negligible accuracy loss. However, the speed-up potential of this
algorithm will not be fully exploited if the right hardware support is lacking. In this work, we design
an efficient accelerator for the N:M sparse convolutional neural networks (CNNs) with layer-wise
sparse patterns. First, we analyze the performances of different processing element (PE) structures
and extensions to construct the flexible PE architecture. Second, the variable sparse convolutional
dimensions and sparse ratios are involved in the hardware design. With a sparse PE cluster (SPEC)
design, the hardware can efficiently accelerate CNNs with the layer-wise N:M pattern. Finally, we
employ the proposed SPEC into the CNN accelerator with flexible network-on-chip and specially
designed dataflow. We implement hardware accelerators on Xilinx ZCU102 FPGA and Xilinx VCU118
FPGA and evaluate them with classical CNNs such as Alexnet, VGG-16, and ResNet-50. Compared
with existing accelerators designed for structured and unstructured pruned networks, our design
achieves the best performance in terms of power efficiency.

Keywords: sparse; convolutional neural networks; hardware acceleration on neural networks; FPGA
design

1. Introduction

Convolutional Neural Networks (CNNs) have shown excellent accuracy in computer
vision tasks [1–3]. However, CNNs are much more complex in calculations compared
with traditional algorithms. CNNs cannot be fully exploited for high processing latency
or extreme power consumption when executed on CPUs or GPUs. Recently, domain-
specific accelerator (DSA) designs for CNNs have attracted tremendous attention. They can
achieve comparable latency compared to GPUs, equivalent power compared to CPUs [4],
or relatively high speed on power-limited edge devices.

Apart from the design of dedicated hardware, model compression techniques such
as pruning [5–9] and quantization can also help reduce computational latency and power
consumption. After the pruning algorithm, CNN weights can be compressed to 10% of the
original network with negligible accuracy loss [5], so the computational complexity can
be significantly reduced. Network pruning can be divided into unstructured-pruning and
structured pruning. The unstructured-pruning technique generates sparse masks based on
the magnitude of the weight value, with no location information contained in the sparse
pattern. Structured pruning zeroes regular blocks of weights by adding specific patterns
during the pruning. Compared to the unstructured pruned networks, the structured pruned
ones may have lower accuracy but better speedup due to the restricted sparse pattern [8].

Various sparse patterns are proposed to better balance the hardware speedup and
accuracy. Cao et al. [10] and Zhou et al. [8] pruned a network with N:M sparse pattern,
where the N:M sparsity indicates each bank has M continuous weights and N elements
are kept after pruning. Compared to structured pruning patterns, such as filter-wise,
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channel-wise, and shape-wise, the N:M sparse pattern saves the coarse-grained structure
and exploits the fine-grained sparsity to maintain accuracy in different tasks. However, the
uniform pruning pattern across the network treats layers with non-uniform redundancy
equally, leading to a sub-optimal solution. A layer-wise N:M pruning pattern is developed
in [9] to find independent sparse patterns for each layer, where N can be selected from 1 to
M. Sensitive network layers are pruned less to retain network accuracy, while more weights
are zeroed in robust layers to achieve a higher compression ratio. As illustrated in [9],
the layer-wise N:M pruned networks can achieve comparable accuracy with unstructured
pruned ones.

There are works accelerating N:M pruned networks [11–13]. Nevertheless, the paral-
lelism settings in [11,12] are connected with the non-zero configuration N. Under-utilization
will occur in these accelerators when dealing with variable N-configurations. Thus, we
develop an efficient processing element (PE) for accelerating the layer-wise N:M sparse
pattern. The dedicated designed PE can be easily exploited in dense network acceleration
architecture, ignoring the tiling and randomness brought by layer-wise N:M sparse pattern.
To enlarge the design space of the pruning and acceleration, we also consider the pruning
dimensions, i.e., kernel-wise, input-channel-wise, and output-channel-wise.

Based on the above ideas, this paper proposes acceleration architectures with flexible
sparse PE clusters (SPEC) for CNN networks to process the layer-wise N:M sparse pattern
with the help of hardware-algorithm co-optimization. The main contributions are briefly
described as follows.

1. To better accelerate the layer-wise N:M sparse pattern, we analyze the effect of
sparse dimensions and variable N-configurations on hardware deployment. Based on
the analysis, a basic sparse-PE is proposed to enhance the hardware performance of N:M
pruning networks.

2. Based on the basic sparse-PE, the SPEC with more flexibility and parallelism is
proposed to accelerate the layer-wise N:M pruned networks efficiently. Dealing with
different sparse dimensions, SPECs that support inner-product N:M sparse (I-SPEC), outer-
product N:M sparse (O-SPEC), and the combinations (IO-SPEC) are elaborately developed.

3. The proposed SPECs are integrated into a dense hardware architecture, which
integrates the flexible network-on-chip and the channel-first dataflow. The hardware
architecture with I-SPEC (ISA), the hardware architecture with O-SPEC (OSA), and the
hardware architecture with IO-SPEC (IOSA) are established and evaluated in this paper.

We perform the algorithm and hardware experiments to show the effectiveness of our
methods. Alexnet, VGG-16, and ResNet-50 with different sparse dimensions are utilized
on the ImageNet dataset [14] to show the effectiveness of the enlarged pruning space. For
the hardware aspect, the ISA is implemented on Xilinx ZCU102 FPGA. The OSA and IOSA
are evaluated on Xilinx VCU118 FPGA. The proposed I-SPEC and acceleration architecture
ISA are proven to be effective with the best power efficiency.

The layout of this paper is demonstrated as follows. Section 2 lists the recent works
focusing on pruning CNNs and shows the background of the pattern pruning algorithms
and hardware acceleration. The co-analysis of hardware and algorithm on the layer-wise
N:M sparse pattern is presented in Section 3. Section 4 elaborates on the details of various
proposed SPECs and introduces the overall hardware architecture briefly. The experiments
and comparisons are illustrated in Section 5.

2. Background

Neural network pruning can be roughly divided into two categories: unstructured
pruning and structured pruning. In unstructured pruning algorithms, weights are pruned
based on their magnitudes. For structured pruning algorithms, sparse masks with restricted
locations are utilized, such as channel-wise, filter-wise, and shape-wise [15].

Hybrid patterns with coarse-grained structure and fine-grained randomness have been
developed to balance the performance of hardware speedup and algorithm accuracy. Sparse
patterns are limited inside each kernel in [7]. Lu et al. [16] partitioned weights into different
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groups and applied unified sparsity across groups. Works [6,17] have also proposed
hybrid sparse patterns and developed acceleration architectures. Overall architectures
accelerating hybrid sparse patterns are similar to the dense ones, with slight differences in
data access. To process the fine-grained randomness, PEs are developed elaborately, aiming
at accelerating operations with specific sparse patterns.

Recent works [10,12,13] are developed to accelerate the N:M sparse patterns. Cao
et al. [10] and Fang et al. [12] proposed algorithm-hardware co-optimized frameworks for
N:M sparse general matrix multiplication (GEMM) acceleration, which are utilized in long
short-term memory (LSTM) and Transformer networks, respectively. The structured sparse
tensor accelerator (S2TA) is proposed in [13] to exploit the dual-side sparsity of CNNs with
N:M sparse pattern for weights and activations. In [12,13], variable N:M configurations
have been considered in both algorithm designs, but the fixed N-configuration is exploited
in both hardware designs. Thus, under-utilization will be incurred while applying the
layer-wise N:M sparse pattern.

Thus, to better deploy the layer-wise N:M pruning networks, a dedicated hardware
design is needed. The variable sparse ratio involves the compression encoding and storage
of non-zero weights. Apart from the sparse ratio, the pruning dimension also connects
with the hardware implementation. Our sparse CNN accelerator considers the variety
of the sparse ratio and sparse dimension induced by the layer-wise N:M sparse pattern.
Moreover, the M-tiling of a specific dimension may influence the allocation of convolutions.
The parallelism and deployment of convolutions are also elaborated in our proposed PE.

3. Algorithm-Hardware Co-Analysis

The non-uniform N:M can be variable in an N-configuration or M-configuration, which
will affect the development of both the algorithm and hardware. In [9], the variable N is
applied in the proposed layer-wise N:M sparse pattern, which shows comparable accuracy
with the unstructured sparse networks. Non-zero weights have more random distribution
in N:M sparse pattern with variable M-configuration. The increasing randomness will
enlarge the algorithm search space and increase the compression complexity of non-zero
weights. Thus, variable N will be exploited in our layer-wise N:M sparse pattern.

Table 1 shows the accuracy of N:M pruned networks under different configurations.
It can be seen that with equivalent sparsity, the network with a larger M in N:M sparse
pattern can get better accuracy. The larger the M is, the lesser restriction is added to the
pruning of weights. Thus, to balance the algorithm accuracy and hardware complexity, our
PE is developed based on the layer-wise N:M sparse pattern with fixed M-configuration
M = 16.

Table 1. the accuracy of N:M pruned networks under different configurations. Data are obtained
from [8,9].

Method Uniform N:M Configuration Top-1 Acc(%) Sparsity

[8] Dense Dense 77.30% 0%
SR-STE [8] Uniform 2:4 77.00% 50%
SR-STE [8] Uniform 4:8 77.40% 50%
SR-STE [9] Uniform 4:16 76.50% 75%
SR-STE [8] Uniform 2:8 76.20% 75%
SR-STE [8] Uniform 1:4 75.30% 75%
SR-STE [9] Uniform 2:16 74.40% 87.50%

DS [9] Layer-wise N:16 75.70% 87.50%
SR-STE [9] Uniform 1:16 70.70% 93.75%
SR-STE [9] Uniform 2:32 71.50% 93.75%

DS [9] Layer-wise N:32 73.50% 93.75%

As mentioned in Section 2, the sparse dimension will also affect the deployment of
pruned algorithms. The pruning dimension can be categorized kernel-wise, input-channel-
wise, and output-channel-wise based on the structure of the weight tensor. In Figure 1,
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there are 3:4 sparse patterns displayed with different pruning dimensions for the weight
tensor. To perform the N:M pruning, three steps should be taken, which include flattening,
grouping, and pruning. In the flattening step, the weight tensor is transformed into a one-
dimensional vector with different transformations. The grouping step involves grouping
adjacent M elements together as a block, where M is a predefined number. The pruning
step then applies the N:M sparse pattern to each weight block. Only N weights are retained
in each block after pruning. For pruning methods with different pruning dimensions, the
flattening step is different, while the grouping and pruning steps are the same.

(b) Output-channel-wise

3:4 pruning

(c) Kernel-wise

3:4 pruning

…

Output Channels

Input 

Channels

Input 

Channels

Input 

Channels

Input 

Channels

(a) Input-channel-wise

3:4 pruning

Grouping & Pruning Grouping & Pruning Grouping & Pruning

… … ……… … …… … … … …… … … …

…… ……

Figure 1. An example of convolution weights and 3:4 pruning in different convolutional dimensions.

For input-channel-wise pruning, the weights with the same positions in different
input channels in the same filter are flattened and converted into a one-dimensional vector.
For output-channel-wise pruning, the weights with the same kernel position and input
channel position in different filters are grouped together. Lastly, for kernel-wise pruning,
the weight tensor is flattened along the kernel dimension and pruned accordingly. For
input-channel-wise and kernel-wise sparse patterns, weights are pruned structurally across
the inner production. However, typical kernel sizes (3 × 3, 5 × 5, 7 × 7, etc.) provide
inadequate partition space for N:M. Im2col [18] conversion can be exploited in the kernel-
wise N:M acceleration but introduces additional memory access. Output-channel-wise
sparsity partitions weights across filters and prunes them with the N-configuration. The
sparsity can be mapped regularly to an outer production. Channel-wise prunings have
ample partition space and do not affect the reuse property of the convolution. The pruning
dimension will not affect the sparse network accuracy, which will be shown in ablation
experiments in Section 5.

From the algorithm aspect, we focus on the hardware accelerator design with the
non-uniform N:16 channel-wise sparse pattern. Taking the I-SPEC for an example, Figure 2
illustrates some PE architectures processing N:M sparsity with the same multiplier accu-
mulator (MAC) parallelism. For the PE in Figure 2a, element-wise multiplications with
different non-zero weights are applied to MACs. This PE can be fully exploited only with
fixed N:M sparsity and N being an integral multiple of P. In Figure 2b, input elements
from the non-zero weight plane are deployed to MACs. The corresponding non-zero
weight broadcasts to MACs and multiplies with input elements. The hardware efficiency
of Figure 2b is not affected by the variable N-configuration for the parallel dimension,
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i.e., the feature map plane is orthogonal to the sparse dimension. The basic architecture
for output-channel-wise pruning is dual to Figure 2b, where multiplexers controlled by
indexes are responsible for selecting partial sum (PSUM). Based on the PE architecture
with broadcasting non-zero weights, we propose hardware architectures that can support
different N:M sparse patterns, which will be described in the subsequent sections.

(a) PE with Uni-casted Weights and Activations (b) PE with Broadcasted Weights and Unicasted Activations
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NZ-W[1][0]
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Figure 2. Processing Element (PE) architectures for input-channel-wise N:M sparse pattern. A[I][F]
represents the F-th activation data in the I-th input feature plane. NZ-W[O][I] denotes the weights
of the I-th input channel of the O-th output channel. The coordinates of Index[O][I] have the same
meaning as NZ-W[O][I]. Symbols with ‘+’ and ‘x’ operators in circles denote adders and multipliers,
respectively. These symbols have the same meaning in the rest of the article.

4. Hardware Architecture for Layer-Wise N:M Sparse CNNs

Based on the basic PE architecture mentioned in Section 3, we propose the SPEC
with more flexibility. In this section, the specifics of the SPEC and the integration will be
illustrated in detail.

4.1. Flexible Sparse Processing-Element Clusters

With the accumulation of registers in Figure 2b, M × P inputs are only used once
before being renewed. We also allocate M × P registers in PSUM accumulators to reuse
inputs further. Thus, M-in M-out PSUMs are processed inside each PE, which we call the
MM-tile. With sufficient local registers, each PE can be enlarged with more MACs; we call it
a SPEC. The proposed SPEC is shown in Figure 3. Apart from the feature plane computation
dimension illustrated in Section 3, intra-M-tile weight parallelism is also induced.

It can be seen from Figure 3 that MACs in each SPEC are partitioned as G identical
groups, where P multipliers are allocated in each group. Each group processes data from
the same feature plane and shares the same weight. G groups calculate parallel channels in
the MM-tile, which are configured flexibly by controls generated from the Weight Decoder.
Up to M × P inputs are renewed in the Depth Shuffle after each MM-tile processing. N × M
cycles are occupied with processing each MM-tile. The minimum calculation time would
be M cycles with N = 1. Thus, we set the P = M to ensure the overlap between the
transmission time for inputs and computation time, leading to the broadcast size of weight
being M within each SPEC.
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Figure 3. SPECs for different N:M sparse patterns. (a) presents the input-channel-wise sparse SPEC,
i.e., I-SPEC. (b) denotes the output-channel-wise sparse SPEC, i.e., O-SPEC. (c) shows the SPEC
architecture supporting both input-channel-wise and output-channel-wise sparsity.

Three types of SPECs processing different channel-wise sparse are illustrated in
Figure 3. The I-SPEC, shown in Figure 3a, is utilized for the input-channel-wise N:M
sparse pattern acceleration. Independent data selectors are inserted before input ports of
multiple groups to support input channel sparse. The output ports of groups are connected
to G × P PSUM accumulators in parallel. Various configurations of the I-SPEC are shown
in Figure 4a, where poc is used to represent the output channel parallelism. When poc
equals one, all groups are configured to process weights inside the M-tile of one filter.
Inter-group accumulation is required, as shown in this figure. Groups would be idled with
a sparsity where N is not the integral multiple of four. However, if poc equals four, no extra
accumulations will be induced across groups, and groups will be fully exploited regardless
of the sparsity configuration. Hence, with the poc control, each SPEC can extend the weight
parallelism without decreasing hardware efficiency.

Figure 3b is developed for the output channel N:M sparse pattern named the O-SPEC.
It decodes indexes to control the PSUM processing. The processing details are shown
as Figure 4b, where the pic denotes the input channel parallelism of the SPEC. With the
fine-grained sparsity intra-M-tile, indexes may be identical across different groups. When
processing with an input channel sparse, the independent multiplexer does not affect each
other. Nevertheless, for output sparse, identical indexes lead to accumulation across groups.
The problem is more complicated with the randomness intra-M-tile. To solve this problem,
we add a module called Compressor Adders between MUL groups and accumulators
to achieve the pre-addition before accumulation and induce input priority in the design
accumulators. Figure 5 shows adders in detail. The m02_en is the signal that indicates
whether the index of group0 and group2 are identical. If they are the same, the signal is
pulled high to add the PSUM of group0 and group2. When writing back to the partial sum
register, only Adder0 Out is enabled. The design of Figure 3c combines the aforementioned
features and can support both input and output channel N:M sparse patterns, known as
the IO-SPEC.
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Figure 4. An example of SPECs with G = 4 under various configurations. The Tx in the figure denotes
the processing cycles. Each multiplier illustrated as ‘x’ inside a circle denotes one group. (a,b) share
the same inputs, which are shown in the top-middle of the figure and marked as Inputs. (a) shows
three different configurations for I-SPEC. (b) shows three different configurations for O-SPEC.
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channel-wise N:M sparse pattern.

4.2. Weight Encoding and Decoding for the Layer-Wise N:M Sparse Pattern

Compressing non-zero weights with metadata (positions of non-zero weights in the
tensor) can store sparse weights more efficiently. In this subsection, we introduce various
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encoding schemes for sparse tensors and discuss their implications on the storage and
processing requirements, i.e., on-chip decoding.

Weights with N:M sparse patterns have lower redundancy than random pruned
weights. It is because the coarse-grained and fine-grained parts can be encoded individually,
from which basic address and offset address are generated, respectively. The basic address
indicates the order of the M-tile, and the offset address contains the information about the
position of N non-zero weights inside each M-tile. For the randomness inside each M-tile,
we focus on the encoding of the offset address.

Dave et al. in [19] summarized different encoding schemes. Only 1D encoding
schemes will be considered for the intra-M-tile encoding. Coordinate (COO) stores absolute
positions of non-zero weights. It does not need an extra decoding part. However, the
storage for indexes may exceed that for non-zero weights when N is large. Run-length
coding (RLC) encodes weights with the number of repetitions as ‘run’, which is the number
of consecutive zeros under the sparse situation. The accumulation of ‘run’ would decode
weights. Zeros will be added into the non-zero weights when the repetition exceeds the pre-
defined maximum ‘max run’. Thus, the storage of RLC-encoded weights is combined with
the distribution of zeros and the setting of the ‘max run’. A bitmap compresses non-zero
weights with M one-bit flags. If the i-th weight in the M-tile is zero, the i-th flag is set to low.
The data width of the Bitmap equals M. For the decoding part, an architecture proposed
in [12] can decode bitmap to non-zero weight positions in the one-hot data format, which
will be integrated into our decoding scheme.

Considering the layer-wise variable sparse pattern, we perform cost analysis for
different encoding schemes. Figure 6 shows the storage costs for different coding schemes
under M = 16 and weight quantization bits Qw = 8. When N ≤ 4, the storage of RLC
with ’max run’ = 4 is minimum, while Bitmap has the minimum consumption with N ≥ 4.
Combining with the decoding costs, Table 2 represents the off-line encoding scheme utilized
under different configurations of N. To facilitate the storage of compressed weights with
different sparsity and encoding schemes, we pack 4 M-tile non-zero weights and indexes.
In each package, indexes are packed first, followed by non-zero weights.
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Figure 6. Comparison of different encoding schemes with M = 16. For RLC, the ‘run length’ is 4
(2 bits), and the compact and loose distribution of zeros are shown as ‘min’ and ‘max,’ respectively.
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Table 2. The encoding scheme of the proposed SPEC with different values of N and M = 16.

N N = 1 N = 2 3 ≤ N ≤ 4 5 ≤ N ≤ 16

Encoding COO COO COO Bitmap

The Weight Decoder unit in Figure 3 decodes the compressed non-zero weights.
Details of the unit are shown in Figure 7a. Weight packages are fetched from global buffers.
Indexes located in front of each package are decoded by the Index Decoder, which is shown
as Figure 7b. The decoded binary indexes are buffered into the Index FIFO, and the bitmap
after each decoding will be fed back to the Index Decoder. Non-zero weights are read after
indexes in each package, which are pressed into the Value FIFO. The read control of the two
FIFOs is identical. Thus, the corresponding index and non-zero weight would be fetched
into Mul_Groups in Figure 2 simultaneously.

As mentioned in Section 4.1, dense dimensions are induced in SPECs for efficient
processing. The sparse_oic signal indicates the sparse dimension of the SPEC. When
sparse_oic is high, the output channel is N:16 sparse. To generate control signals for the
dense dimension, the P-CH Generator unit is applied in the Weight Decoder.

The SPEC can be configured flexibly to process sparsity. Parallelisms for input-channel
and output-channel inside the SPEC are denoted by pic and poc, where pic × poc = G.
Examples are illustrated to explain the configuration for Weight Decoder. With sparse_oic
equals to 1, addresses for PSUM and input registers are generated by Index Decoder and
P-CH Generator, respectively. When poc equals 4, independent bitmaps are decoded per
Figure 7b. Meanwhile, identical inputs are fetched across groups. An identical bitmap is
decoded with the Index Decoder when poc equals 1. Inputs from (3,2,1,0) channels are
deployed in groups. PSUMs are added across groups and accumulated with the PSUM
register selected by the decoded index.

(a) Details of the Weight Decoder (b) Details of the Index Decoder
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Figure 7. Details of the Weight Decoder. The ‘D’ in a box denotes the register used for delay.

4.3. Overall Architecture

With the proposed SPEC, the randomness of layer-wise N:M sparse pattern can be pro-
cessed locally. Thus, the proposed SPEC can be integrated into any dense CNN acceleration
architecture. Figure 8 shows one overall hardware architecture. It consists of data memories,
computation units, and control units. Memories include input buffers, weight buffers, and
output buffers. Inputs and weights are stored in the external buffer before the processing,
and outputs are written back to the off-chip buffer. The external memories are connected
with on-chip memories through the DMA interface. To reduce the overall processing
latency, each on-chip buffer component is constructed with the ping-pong buffer structure,
which can overlap the communication and calculation latency. Additionally, these buffers
have multiple banks to provide sufficient bandwidth for SPECs. The connections between
storage and computation units are established by routers origin from [20]. Outputs of
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SPECs are accumulated using ACCUs from our prior work [21]. It can process multi-level
additions under configurations. In this paper, 4-in, 2-in, and 1-in additions are selected in
ACCUs to accumulate PSUMs across row-wise SPECs. The mapping strategy across SPEC
is determined with top controls based on the specific convolutional layer. For layers with
high resolution and narrow channels, weights are broadcast across SPECs to process more
data from the same feature map plane. Meanwhile, inputs are unicast across SPECs, and
outputs are also unicast to output buffers, leading to the 1-in addition configuration for the
ACCU module. However, for layers with wide channels and low resolution, weights are
unicast across SPECs to process data across channels in parallel. Inputs and outputs are
capable of getting reused in parallel. Routers and ACCUs are responsible for performing
this process, which is configured by control units.

Router 

11

Router 00 Router 01

SPEC 00
Input 

Bank 00

Input 

Bank 10

Router 

00

SPEC 10
Router 

10

SPEC 01
Input 

Bank 01

Input 

Bank 11

Router 

01

SPEC 11

Weight

Bank 00

Weight 

Bank 10

Weight

Bank 11

Weight 

Bank 01

Router 10 Router 11

Output 

Bank 00

Output 

Bank 10

Output

Bank 11

Output 

Bank 01

Flex-Adder0 & RR0

Flex-Addr1 & RR1

Figure 8. An example of an overall architecture with 2 × 2 SPECs. The RR module contains re-
quantization and ReLU units. Four-pointed stars denote routers from [20].

Channel-first dataflow [22] was proposed to convert convolutions into GEMMs im-
plicitly. We utilize the dataflow to facilitate the transmission between global buffers and
SPEC registers. Activations from the same position across an M contiguous feature map
plane are arranged as a word in global buffers, i.e., input banks and output banks. Pixels
from the feature map plane fill in the depth of buffers. Figure 9 shows the layout of input
buffers. With the channel-first dataflow, Depth-Shuffle in each SPEC obtains data to be
processed regardless of convolutional stride or inter-tile overlapping.

The convolution is performed using the sliding window operation when the kernel
size is not 1 × 1. When processing adjacent kernels, only several inputs from the same
feature plane are replaced, and other data are reused in local registers. It is processed
with the Depth-Shuffle unit in Figure 3. The Shuffle_mode signal is induced to indicate
the renewal process, which is generated based on convolutional stride and processing
parallelism. The insertion of this unit avoids repeated accesses to buffers when computing
the convolution, hence reducing the overall power consumption [23].
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(c) Inputs Under Channel-first Dataflow for Stride=2 Convolutions
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Figure 9. The data movement with stride = 1 and stride = 2 under the channel-first dataflow. P
denotes the padding element.

The overall processing procedure can be summarized as follows. First, layer-wise data
and configurations are transferred on-chip and stored in on-chip buffers and reconfigurable
registers, respectively. Top controls of the accelerator are generated based on these reconfig-
urable registers. After the initial transmission, SPECs receive inputs and weights through
configured routers. MM-tile PSUMs are generated in each SPEC and accumulated using
ACCUs. To recover data precision, re-quantizations are performed on each PSUM. Outputs
are generated after non-linear operations, such as ReLU, and fed back to output buffers.
During the on-chip processing, ping-pong buffers communicate with off-chip memory
simultaneously. The pseudo-code for the overall dataflow is shown in Figure 10.

Input Feature maps: I[IC][H][W]
Filter Weights: W[OC][IC][Kh][Kw]
Output Feature maps: O[OC][H][W]
// DRAM levels
for (oc4=0; oc4<OC; oc4++) {
  for (h4=0; h4<H4; h4++) {
    for (w4=0; w4<W4; w4++) {
      // Global buffer levels: Depth
      for (oc3=0; oc3<OC3; oc3++) {
        for (h3=0; h3<H3; h3++) {
          for (w3=0; w3<W3; w3++) {
            for (ic3=0; ic3<IC3; ic3++) {

 for (kh3=0; kh3<Kh; kh3++) {
   for (kw3=0; kw3<Kw; kw3++) {
     // NoC levels: Routers
     parallel-for (oc2=0; oc2<OC2; oc2++) {
       parallel-for (ic2=0; ic2<IC2; ic2++) {
         parallel-for (h2=0; h2<H2; h2++) {
           parallel-for (w2=0; w2<W2; w2++) {

// PE-cluster register levels: MM-tile
// local output channel: loc = N*sparse_oic+M*(1-sparse_oic)
// local input channel: lic = N*(1-sparse_oic)+M*sparse_oic
for (oc1=0; oc1<(loc/cls_poc); oc0++) {
  for (ic1=0; ic1<(lic/cls_pic); ic0++) {
    // PE-cluster MUL group levels
    parallel-for (oc0=0; oc0<cls_poc; oc0++) {
      parallel-for (ic0=0; ic0<cls_pic; ic0++) {
        parallel-for (h0=0; h0<cls_ph; h0++) {
          parallel-for (w0=0; w0<cls_pw; w0++) {
            O += I × W;

}}}}}}}}}}}}}}}}}}}}}}

Figure 10. The pseudo-code for the overall dataflow.
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5. Experiments and Results
5.1. Algorithm Evaluation

We perform N:16 with 50% sparsity for Alexnet [1], Vgg-16 [2], Resnet-18, and Resnet-
50 [3] on the ImageNet [14]. Comparisons of the Top-1 accuracy under different sparse
pattern settings are shown in Table 3. The last layer of the classifier of all networks is dense.
It can be seen that the sparsity of any dimension does not have a great impact on network
accuracy. The input channel is slightly higher than the output channel in most cases due to
the limited input channel of the first layer (RGB).

Table 3. Networks Performance Comparisons with N : 16 Layer-wise Sparse Patterns.

Networks Accuracy Alexnet VGG-16 Resnet-18 Resnet-50

Dense 56.553% 71.082% 69.649% 76.033%
Input-Channel Sparse 55.559% 70.720% 68.935% 75.329%
Output-Channel Sparse 55.743% 70.755% 68.749% 75.327%

Thus, the pruning dimension is negligible for the deployment of algorithms. We will
present accelerator performances with proposed SPECs in the next subsection.

5.2. Hardware
5.2.1. Hardware Performances of Proposed Architectures

We evaluate our design by implementing accelerators with different SPECs. We
name the accelerator processing input-channel-wise sparse, output-channel-wise sparse,
and input-output-channel-wise sparse as input-channel-wise sparse architecture (ISA),
output-channel-wise sparse architecture (OSA), and the input-output-channel-wise sparse
architecture (IOSA), respectively. In each architecture, 16 SPECs are allocated. For ISA
and OSA, only one-side channel sparse can be supported. We implement ISA on the
Xilinx ZCU102 FPGA. The OSA and IOSA are evaluated on the Xilinx VCU118 FPGA. In
this article, we use Verilog for RTL implementation and employ Xilinx Vivado (v2020.2)
to compile the source code to the Place & Routing with the ‘Default’ strategies in both
Synthesis and Implementation procedures. Further, we set the max fan-out limitation to
signals manually to meet the timing constraints.

The performances of three architectures are presented as Table 4. All inputs and
weights are quantized by 8-bit, and 32-bit quantization is utilized for PSUMs. To better
utilize the resource on-chip, we implement our designs with different schemes. For ISA, we
implement each MAC with a DSP. For OSA and IOSA, 512 out of 4096 DSPs are allocated
for 1024 multiplications, where each DSP can address two 8-bit × 8-bit multiplication.
Other DSPs are utilized for the accumulation in Figure 5.

Table 4. Resource Utilization Details for Proposed Architectures.

Architectures ISA OSA IOSA

FPGA Platform Xilinx ZCU102 Xilinx VCU118 Xilinx VCU118

DSP Utilization 1024 4096 4096
(40%) (60%) (60%)

Logic Utilization 500 K 600 K 645 K
(84%) (23%) (25%)

BRAM Utilization 1 320 320 320
(18%) (7%) (7%)

1 Number of 18 kb block ram is utilized to measure the memory consumption.

The proposed I-SPEC is theoretically symmetrical to the O-SPEC. From Table 5, we
can see that the resource consumption for ISA is smaller than that for OSA and IOSA,
especially for logic resources. Accumulators in each SPEC for OSA and IOSA are much more
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complicated than in the ISA, whose origins are from three aspects. First, the compressor
adders are introduced for additions across groups in each SPEC. Second, accumulations
for OSA and IOSA are controlled by decoded indexes. Extra selection and enable are
needed in the OSA and IOSA. Apart from the inter-group additions and weight-controlled
accumulations, OSA and IOSA also have larger multiplexers. To ensure the precision
accuracy, 32-bit accumulation is utilized in our accelerators for 8-bit inputs. Thus, one
PSUM multiplexer is 4× more complex than one input multiplexer.

As mentioned before, different channel-wise pruned networks have similar accuracy.
The ISA outperforms OSA and IOSA in hardware efficiency. Hence, the input-channel-wise
sparse is more efficient for the deployment of the layer-wise N:M sparse pattern.

5.2.2. Evaluation and Comparison

We compare the ISA with other accelerators, as shown in Table 5. To ensure a fair
comparison, all accelerators included in our analysis are sparse and have comparable
workloads, as indicated by the MAC reduction [24]. Since the fully-connected (FC) layer of
ResNet-50 contributes only a small fraction to the overall computation, we compare the
hardware performances of ResNet-50 with similar sparsity levels. Specifically, we compare
our results for ResNet-50 with those in [21,24], both of which use 45% sparsity, by applying
50% sparsity to the network. In addition, we compare our results with those in [25] by
using ResNet-50 with 25% unpruned weights.

For algorithms with similar sparsity, the accuracy after layer-wise N:16 pruning is
comparable to the unstructured pruned network accuracy [9]. As for hardware, the pro-
posed ISA outperforms unstructured pruned accelerators [21,25] in processing speed and
power consumption for VGG-16 and ResNet-50. When processing unstructured pruned
weights, accelerators are underutilized for the load imbalance and conflict memory access
due to random distributions [21]. Extra buffering and logic are implicated in alleviating
the under-utilization. Besides the efficient sparse pattern, the ISA also benefits from the
dedicated SPEC design and the channel-first dataflow. The SPEC eliminates the possi-
ble under-utilization by serial processing non-zero weights intra-M-tile with the help of
the weight-broadcasting and the introduced dense dimension. Further, the channel-first
dataflow and the SPEC limit sparse processing to the interior of the SPEC, eliminating the
need for the overall architecture to handle sparsity.

However, for Alexnet, the first layer and FC layers account for a large percentage
of overall computations, in which the ISA does not perform sparse processing. Thus,
ref. [25] can process faster compared to the ISA. For output-channel-wise pruning, output
channels can be partitioned into M-tiles and perform the layer-wise N:16 pruning. After
simulation, the OSA and IOSA have better speedup compared to [25] by 10% but have
larger logic consumption.

For structured pruning algorithms, the layer-wise N:M pruning has a larger pruning
space, which leads to better algorithm performance. The ISA can achieve much better
performance compared to the structured pruned accelerator [24] for ResNet-50. It is because
the 1 × 1 convolution performance of the architecture in [24] is bounded by the limited
bandwidth. To avoid this problem, we utilize the ping-pong structure in the global buffer
and the local register hierarchies. The structure is able to overlap the processing and data
transmission, which shortens the overall latency. Further, the flexible network-on-chip
constructed by the router and ACCUs provide sufficient design space for acceleration.
Channel-first dataflow minimizes the impact of feature map size on hardware efficiency
and eliminates the useless computation introduced by non-unit strides. Thus, the proposed
design achieves a higher performance of power efficiency because we leverage the sparse
pattern and achieve a high deployment efficiency.
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Table 5. Sparse Accelerator Performance Comparisons.

[25] Ours [25] Ours [21] [24] Ours [25] Ours

CNN Type Alexnet VGG-16 Resnet-50

Device Xilinx Xilinx Intel Xilinx
ZCU102 ZCU102 SX660 ZCU102

Pattern 1 U L U L U S L U L

Sparsity (%) 10.80 37.50 11.70 37.50 45.00 45.00 50.00 23.5 25.00

MAC Reduction (%) 65.1 62.5 67.4 62.5 - 52.3 50 - 75

Frequency (MHz) 200 200 200 200 170 200 200 200 200

Precision (bits) 16 8 16 8 8 16 8 16 8

DSP Utilization 1144 1024 1144 1024 512 1344 1024 1144 1024

LUT Utilization 552 K
(92%)

500 K
(84%)

552 K
(92%)

500 K
(84%)

102.6 K
(41%)

390 K
(65%)

500 K
(84%)

552 K
(92%)

500 K
(84%)

BRAM Utilization 2 912
(48%)

320
(18%)

912
(48%)

320
(18%)

465
(22%)

1460
(80%)

320
(18%)

912
(48%)

320
(18%)

Performance
(image/s) 446 434 31 35 23 57 83 149 150

Power (W) 23.5 15.0 23.5 15.0 4.6 15.4 15.00 23.5 15.00

Power Efficiency 18.98 28.93 1.32 2.33 5.00 3.70 5.53 6.34 10.00
1 U denotes unstructured pruning. S denotes structured pruning. L denotes layer-wise N:16 pruning. 2 Numbers
of 18 kb block ram and 20 kb block ram are utilized to measure the memory consumption for Xilinx FPGA and
Intel FPGA, respectively.

6. Conclusions

In this article, we propose a dedicated hardware design named SPEC for layer-wise
N:M sparse CNN acceleration. It can be flexibly configured to efficiently map sparse
operations. Moreover, we add the sparse dimension into the pruning space. Algorithm
and hardware analysis and experiments are performed regarding the enlarged pruning
space. In addition, architectures with proposed SPECs are developed with flexible network-
on-chip and efficient dataflow. Experiments demonstrated that our implementation could
achieve up to 434-, 35-, and 150-image/s performances for AlexNet, VGG-16, and ResNet-
50 on Xilinx ZCU102, respectively. Under a similar sparsity, the proposed architectures can
achieve much higher power efficiency over existing sparse CNN FPGA accelerators.

Author Contributions: Conceptualization, X.X.; methodology, X.X.; software, X.X. and M.Z.; val-
idation, X.X. and M.Z.; formal analysis, X.X.; investigation, X.X.; resources, X.X.; data curation,
X.X.; writing—original draft preparation, X.X.; writing—review and editing, M.Z., S.L. and Z.W.;
visualization, X.X. and S.L.; supervision, S.L. and Z.W.; project administration, X.X. and Z.W.; funding
acquisition, Z.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62174084, 62104097, and in part by the High-Level Personnel Project of Jiangsu Province
under Grant JSSCBS20210034, and supported by the program B for Outstanding PhD candidate of
Nanjing University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors want to thank the editor and anonymous reviewers for their valu-
able suggestions for improving this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Micromachines 2023, 14, 528 15 of 16

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems
(NeurIps), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1106–1114.

2. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015.

3. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

4. Chang, X.; Pan, H.; Lin, W.; Gao, H. A Mixed-Pruning Based Framework for Embedded Convolutional Neural Network
Acceleration. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1706–1715. [CrossRef]

5. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and
Huffman Coding. In Proceedings of the 4th International Conference on Learning Representations (ICLR 2016), San Juan, Puerto
Rico, 2–4 May 2016.

6. Wang, J.; Yu, S.; Yuan, Z.; Yue, J.; Yuan, Z.; Liu, R.; Wang, Y.; Yang, H.; Li, X.; Liu, Y. PACA: A Pattern Pruning Algorithm
and Channel-Fused High PE Utilization Accelerator for CNNs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2022,
41, 5043–5056. [CrossRef]

7. Song, Y.; Wu, B.; Yuan, T.; Liu, W. A High-Speed CNN Hardware Accelerator with Regular Pruning. In Proceedings of the 23rd
International Symposium on Quality Electronic Design (ISQED 2022), Santa Clara, CA, USA, 6–7 April 2022; pp. 1–5.

8. Zhou, A.; Ma, Y.; Zhu, J.; Liu, J.; Zhang, Z.; Yuan, K.; Sun, W.; Li, H. Learning N:M Fine-grained Structured Sparse Neural
Networks From Scratch. In Proceedings of the 9th International Conference on Learning Representations (ICLR 2021), Virtual
Event, Austria, 3–7 May 2021.

9. Sun, W.; Zhou, A.; Stuijk, S.; Wijnhoven, R.G.J.; Nelson, A.; Li, H.; Corporaal, H. DominoSearch: Find layer-wise fine-
grained N:M sparse schemes from dense neural networks. In Proceedings of the Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021 (NeurIPS 2021), Virtual, 6–14 December 2021;
pp. 20721–20732.

10. Cao, S.; Zhang, C.; Yao, Z.; Xiao, W.; Nie, L.; Zhan, D.; Liu, Y.; Wu, M.; Zhang, L. Efficient and Effective Sparse LSTM on FPGA
with Bank-Balanced Sparsity. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA 2019), Seaside, CA, USA, 24–26 February 2019; pp. 63–72.

11. Mishra, A.K.; Latorre, J.A.; Pool, J.; Stosic, D.; Stosic, D.; Venkatesh, G.; Yu, C.; Micikevicius, P. Accelerating Sparse Deep Neural
Networks. arXiv 2021, arXiv:2104.08378.

12. Fang, C.; Zhou, A.; Wang, Z. An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse Transformers.
IEEE Trans. Very Large Scale Integr. Syst. 2022, 30, 1573–1586. [CrossRef]

13. Liu, Z.G.; Whatmough, P.N.; Zhu, Y.; Mattina, M. S2TA: Exploiting Structured Sparsity for Energy-Efficient Mobile CNN
Acceleration. In Proceedings of the IEEE International Symposium on High-Performance Computer Architecture (HPCA 2022),
Seoul, Republic of Korea, 2–6 April 2022; pp. 573–586.

14. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, FL, USA, 20–25 June
2009; pp. 248–255.

15. Zhang, T.; Ye, S.; Feng, X.; Ma, X.; Zhang, K.; Li, Z.; Tang, J.; Liu, S.; Lin, X.; Liu, Y.; et al. StructADMM: Achieving Ultrahigh
Efficiency in Structured Pruning for DNNs. IEEE Trans. Neural Networks Learn. Syst. 2022, 33, 2259–2273. [CrossRef] [PubMed]

16. Liang, Y.; Lu, L.; Xie, J. OMNI: A Framework for Integrating Hardware and Software Optimizations for Sparse CNNs. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 2021, 40, 1648–1661. [CrossRef]

17. Yuan, T.; Liu, W.; Han, J.; Lombardi, F. High Performance CNN Accelerators Based on Hardware and Algorithm Co-Optimization.
IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 250–263. [CrossRef]

18. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.B.; Guadarrama, S.; Darrell, T. Caffe: Convolutional
Architecture for Fast Feature Embedding. In Proceedings of the ACM International Conference on Multimedia (MM’14), Orlando,
FL, USA, 3–7 November 2014; pp. 675–678.

19. Dave, S.; Baghdadi, R.; Nowatzki, T.; Avancha, S.; Shrivastava, A.; Li, B. Hardware Acceleration of Sparse and Irregular Tensor
Computations of ML Models: A Survey and Insights. Proc. IEEE 2021, 109, 1706–1752. [CrossRef]

20. Chen, Y.; Yang, T.; Emer, J.S.; Sze, V. Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE J. Emerg. Sel. Topics Circuits Syst. 2019, 9, 292–308. [CrossRef]

21. Xie, X.; Lin, J.; Wang, Z.; Wei, J. An Efficient and Flexible Accelerator Design for Sparse Convolutional Neural Networks. IEEE
Trans. Circuits Syst. I Regul. Pap. 2021, 68, 2936–2949. [CrossRef]

22. Zhou, Y.; Yang, M.; Guo, C.; Leng, J.; Liang, Y.; Chen, Q.; Guo, M.; Zhu, Y. Characterizing and Demystifying the Implicit
Convolution Algorithm on Commercial Matrix-Multiplication Accelerators. In Proceedings of the IEEE International Symposium
on Workload Characterization (IISWC 2021), Storrs, CT, USA, 7–9 November 2021; pp. 214–225.

23. Chen, Y.; Emer, J.S.; Sze, V. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks. In
Proceedings of the 43rd ACM/IEEE Annual International Symposium on Computer Architecture (ISCA 2016), Seoul, Republic of
Korea, 18–22 June 2016; pp. 367–379.

http://doi.org/10.1109/TCSI.2020.3048260
http://dx.doi.org/10.1109/TCAD.2022.3140730
http://dx.doi.org/10.1109/TVLSI.2022.3197282
http://dx.doi.org/10.1109/TNNLS.2020.3045153
http://www.ncbi.nlm.nih.gov/pubmed/33587706
http://dx.doi.org/10.1109/TCAD.2020.3023903
http://dx.doi.org/10.1109/TCSI.2020.3030663
http://dx.doi.org/10.1109/JPROC.2021.3098483
http://dx.doi.org/10.1109/JETCAS.2019.2910232
http://dx.doi.org/10.1109/TCSI.2021.3074300


Micromachines 2023, 14, 528 16 of 16

24. Zhu, C.; Huang, K.; Yang, S.; Zhu, Z.; Zhang, H.; Shen, H. An Efficient Hardware Accelerator for Structured Sparse Convolutional
Neural Networks on FPGAs. IEEE Trans. Very Large Scale Integr. Syst. 2020, 28, 1953–1965. [CrossRef]

25. Lu, L.; Xie, J.; Huang, R.; Zhang, J.; Lin, W.; Liang, Y. An Efficient Hardware Accelerator for Sparse Convolutional Neural
Networks on FPGAs. In Proceedings of the 27th IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM 2019), San Diego, CA, USA, 28 April–1 May 2019; pp. 17–25.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVLSI.2020.3002779

	Introduction
	Background
	Algorithm-Hardware Co-Analysis 
	Hardware Architecture for Layer-Wise N:M Sparse CNNs
	Flexible Sparse Processing-Element Clusters 
	Weight Encoding and Decoding for the Layer-Wise N:M Sparse Pattern
	Overall Architecture

	Experiments and Results
	Algorithm Evaluation
	Hardware
	Hardware Performances of Proposed Architectures
	Evaluation and Comparison


	Conclusions
	References

