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Abstract: This article presents an ultra-wideband (UWB) monopole antenna with triple band notch
characteristics. The proposed antenna consists of an octagonal patch, fed with a 50 Ω line, which
occupies a compact size of 40 mm × 29 mm (0.36λ × 0.26λ, λ is computed using 2.7 GHz frequency)
and resonances at a relatively low frequency (2.94 GHz). Specifically, an L-shaped stub, an inverted
C-shaped slot, and a pair of U-shaped resonating structures are introduced into the design, which
allow antenna to generate three band notches at 3.22–3.83 GHz, 4.49–5.05 GHz and 7.49–8.02 GHz,
corresponding to WiMAX band, Indian national satellite (INSAT) band, and X-band satellite fre-
quencies, respectively. In the center of the notched band, the antenna has lower efficiency and gain,
essentially indicating that the antenna has good interference rejection performance. To evaluate its
performance, the proposed antenna has been fabricated and measured, and the relevant functional
parameters, such as S-parameters, voltage standing wave ratio (VSWR) and radiation property, have
been studied.

Keywords: multi-notch band; UWB antenna; monopole

1. Introduction

Ultra-wideband (UWB) technology has great potential for application in wireless
communication because of its extremely low transmission power and high data rate [1].
In recent years, research into UWB applications has gained significant attention, mainly
for communication, radar and precise positioning [2,3]. Within the defined UWB range, a
variety of narrowband communication systems, including the worldwide interoperability
for microwave access (WiMAX) band which operates at 3.3~3.7 GHz, the Indian national
satellite (INSAT) band which operates at 4.5~4.9 GHz and the X satellite communication
band which operates at 7.1~8 GHz, have the potential limitation of bringing electromagnetic
(EM) interference that affects the performance of UWB antenna. Therefore, an antenna with
multiband filtering is required to suppress the interfering bands.

Over the years, researchers have proposed various methods to design the band-
notched UWB antennas [4–12]. Among them, one such method is to add parasitic ele-
ments [13], stubs [14], and resonating structures on or near the radiator [15,16]. Meanwhile,
another approach is to etch differently shaped slots in the radiating element or the ground
plane [17–20]. The methods mentioned above can be employed to suppress single or multi-
band phenomena, and the selectivity of the rejection bands depends on the effectiveness
of the incorporated techniques. In [13], a parasitic strip was designed as a filter to elim-
inate the band limited by IEEE 802.11a and HIPERLAN/2. Progressively, four types of
band-notched antennas were proposed in [14], where the first antenna connected two strips
horizontally and symmetrically to the feed line, to create a single-notch band. Whereas
for the second one, two quarter-wavelength open-ended slots were embedded in the feed
line, and this antenna possessed a single-notch band covering the upper wireless local area
network (WLAN) band. Next, the dual-band-notched characteristics were achieved by
inserting the additional stubs into the rectangular slot of the second antenna. Compared
with the second antenna, this third one had an additional notch band covering the lower
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WLAN band. Then, in the final design, the designs of the first three steps were combined
to achieve three notch bands. In [15], the complementary split-ring resonators (SRRs) were
etched onto the backside of the feed line in order to produce a notch that covered the
satellite downlink band. In addition, the 5G and WLAN bands were notched by using a
pair of electromagnetic band gap (EBG) structures. Similarly, in [16], the complementary
SRRs consisted of a pair of metallic rings which were arranged close to the feeding strip in
order to achieve a single-notched band. In [17], three U-shaped slots were etched onto the
radiating element to obtain three notched band characteristics, and a split-ring resonator
was also introduced to create an additional notch band. In [18], a meandering line slot
was added in the middle of the patch to realize the triple-notch capabilities and multiband
operation. In [19], the WLAN and X-band communication systems were rejected by a pair
of vertical slots and a horizontal rectangular slot etched onto the same radiation patch.
In [21], two identical meander line slots were etched onto the two decoupling T-shaped
stubs symmetrically to achieve a notch band from 5.09 to 5.8 GHz. In [22], by introducing
two different dimensions of U-shaped parasitic strips on both sides of each feed lines,
frequency bands of 7.37–7.8 GHz and 9.15–9.7 GHz were successfully suppressed. More
than this, two different dimensions of U-shaped slots were etched on each radiator, leading
to the rejection of the lower WLAN band and the frequency range from 6.1 to 6.53 GHz.
In [23], a frequency-agile band-notch function was realized for frequencies below 5 GHz by
placing a single varactor diode across the gap on the rectangular strip.

The following are the novel discoveries and contributions of this work:
1. The controllable triple-notch frequencies are achieved at the WiMAX, INSAT and

X-band satellite frequency bands.
2. The proposed antenna integrates multiple forms of notch structures with different

shapes and techniques.
In this work, a planar UWB monopole antenna is designed, fabricated and tested. The

dimensions of the stub and slot are varied to achieve the desired stopband center frequency.
Furthermore, three different band-notched designs are provided for illustration, along
with a description of the design concept. Lastly, the details of antenna measurement and
simulation results are presented, which demonstrate a successful band-rejection capability
for all three proposed band-notched designs. Above all, the proposed antenna can be a
potential option for specific devices operating in WiFi 6E band.

2. Antenna Configuration
2.1. Antenna Model

The proposed antenna is fabricated on a common and low-cost FR4 substrate (εr = 4.4)
with a thickness of 1.6 mm. Moreover, a 50 Ω microstrip-line was fed by an SMA connec-
tor. The geometry and configuration of the proposed antenna have been designed and
optimized using HFSS 18.0, as shown in Figure 1. Equivalent circuit of triple-notch UWB
antenna is displayed in Figure 2. S11 of equivalent circuit is shown in Figure 3. Next, the
design evolution process is illustrated in Figure 4, and the S-parameters for each stage of
the evolution process are provided in Figure 5. Additionally, the optimized values of all
the designed parameters are listed in Table 1.

Figure 2 shows the equivalent circuit of the proposed antenna, where resonator 1,
resonator 2, and resonator 3 are equivalent to the L-shaped stub, inverted C-shaped slot and
symmetrical U-shaped patches, which are equivalent to three LC parallel resonant circuit
in the circuit. Since the circuit is open, the antenna cannot receive the signal properly, thus
effectively avoiding interference from these three narrowband communication systems.
The approximate value of L and C can be computed by the following formulas [24]:

Qi =
fi

BWi
(1)

Ci =
Qi

2π fiRi
(2)
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Li =
Ci

(2π fi)
2 (3)

where, i is the number of resonator, Q is quality factor, BW is the bandwidth of each
notch band, C is the shunt capacitance per unit in F, L is the shunt inductance per unit in
H, f is the center notch frequency of notch band, and R is the real part of impedance at
resonance frequency.
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Figure 5. Comparison of the return loss of the four steps of the proposed antenna: (a) Step-1, (b) 

Step-2, (c) Step-3, (d) Step-4. 

Table 1. Optimized dimensions of the proposed antenna (unit: mm). 

Parameter Value (mm) Parameter Value (mm) Parameter Value (mm) Parameter Value (mm) 

L 40 L4 8 Ls 15 Lp 5.4 

W 29 Lf 14.6 Ws 0.8 Wp 3.1 

h 1.6 Wf 2 Gl 1 Lu 0.5 
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Figure 4. Evolution of the design process of single element: (a) Step-1, (b) Step-2, (c) Step-3, (d) Step-4.
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Figure 5. Comparison of the return loss of the four steps of the proposed antenna: (a) Step-1,
(b) Step-2, (c) Step-3, (d) Step-4.

Table 1. Optimized dimensions of the proposed antenna (unit: mm).

Parameter Value (mm) Parameter Value (mm) Parameter Value (mm) Parameter Value (mm)

L 40 L4 8 Ls 15 Lp 5.4
W 29 Lf 14.6 Ws 0.8 Wp 3.1
h 1.6 Wf 2 Gl 1 Lu 0.5
L1 5.5 W1 9.4 Gw 1.4 Wu 3.8
L2 4 W2 8.4 Lc 0.5 Wc 4.2
L3 4.8 Lg 13.3
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2.2. Design Evolution Stages of the Antenna

The details of all the stages of the design evolution process are given below:
Step-1 includes an octagonal radiation element with a rectangular ground structure

(Figure 4a). This antenna operates in the UWB region, with a bandwidth of 8.75 GHz.
Step-2 introduces an L-shaped stub at the upper left corner of the octagonal patch

(Figure 4b). The distance between the lower edge of the L-shaped stub and the lower
edge of the substrate can be calculated as: d = Lf + Lp + L1 −Ws. Here, L-shaped stub
acts as an open-circuit transmission line that shorts the antenna at the relevant frequency.
Thus, the effective transmission path of current is changed [25], causing the antenna to
resonate at a lower frequency (2.94 GHz) and creating a notch band that is immune to
WiMAX system interference.

Based on the design of step-2, an inverted C-shaped slot is etched onto the center of
the octagonal patch, which defines step-3 (Figure 4c). At certain frequencies, the current
path of the signal can be cut off, leading to an additional notch band that can shield from
the INSAT band and has a small effect on other resonance bands [26].

The specifics of the rejection bands for the design of each stage have been listed
in Table 2.

Table 2. The rejection bands and operational comparison for the evolution steps.

Step No. No of
Rejection Bands

Coverage of Rejection
Bands (GHz)

No of
Operational Bands

Coverage of Operational
Bands (GHz)

1 0 - 1 3.29~12.04
2 1 3.14~3.86 2 2.70~3.14, 3.86~11.58
3 2 3.11~3.78, 4.66~5.10 3 2.62~3.11, 3.78~4.66, 5.10~11.68

4 3 3.22~3.83, 4.49~5.05, 7.18~7.84 4 2.70~3.22, 3.83~4.49, 5.05~7.18,
7.84~11.06

An approximate size of the notch structure can be assumed as [27]:

L =
c

2 f√εe f f
(4)

where, c is the speed of light, f is the notched center frequency, εeff is the effective
dielectric constant.

Next, a transverse U-shaped resonator is placed symmetrically on both sides of the
feed line to shield the antenna from X-band system interference, which is step-4 (Figure 3d).
Here, the bandwidth of the shielded band is widened by adjusting the U-shaped resonator
parameters and etching the rectangular slots onto the ground plane.

Next, the effects of different geometrical parameters of the proposed antenna on the
band notch characteristics are studied, as portrayed in Figure 6. Evidently, with decreasing
Ls, the corresponding notched band becomes smaller, while the operational band remains
unchanged. Similarly, by adjusting the size of inverted C-shaped slot opening, the entire
second notch band can be shifted from a low frequency to a high frequency. Moreover, as
the L3 increases, the range of the notch band becomes wider and the center frequency of
the notch band shifts down. The dimension of Lf effects the phase of the antenna, while
L1 and W1 determine the area of the radiation patch. When they increase or decrease,
the resonant frequency shifts significantly in the range of 5.2−7.4 GHz and 8.1−11.0 GHz.
Accordingly, it can be concluded that, with the proposed design approach, the notched
frequency bands can be easily achieved and controlled to meet the practical requirements
by merely adjusting the dimensions and locations of the resonating elements. Meanwhile,
it is worthwhile noting that changing the parameters of resonators (notch elements) affects
only the notch bands, and the return loss in the rest of the UWB frequency band remains
virtually unchanged.
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3. Results and Discussion
3.1. Fabrication and Measurement

To validate the proposed antenna design, an ultra-wideband antenna was successfully
fabricated and tested according to the dimensions listed in Table 1. Figure 7a shows the
prototype of the proposed antenna. Figure 7b presents the environment for S-parameter
measurement. The measurement environment of the radiation pattern and peak gain is
shown in Figure 7c.
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Figure 8 displays the measured and simulated results of S11 and VSWR. From the
comparison of curves in Figure 8, it can be observed that the measurement results are
well matched with the simulation results. The designed antenna covers the entire UWB
frequency band for VSWR ≤ 2, except in the notched bands. At the center frequency of
notch band, S11 > −5 dB and the value of VSWR > 3.3, thereby indicating the desired
notch performance.
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3.2. Radiation Characteristics

Furthermore, radiation patterns are plotted in Figure 9. The proposed antenna pos-
sesses almost omnidirectional radiation on the H-plane (yoz-plane) and 8-shaped bidirec-
tional radiation on the E-plane (xoz-plane), at low frequencies (3 GHz, 4 GHz and 5.3 GHz).
However, with the increase in frequency, higher-order modes are generated that lead to
an uneven phase distribution of the antenna. Therefore, the radiation patterns at 8.3 GHz,
9.4 GHz and 10.3 GHz become distorted.
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Figure 10 displays the surface current distribution of the proposed antenna. At 3.5 GHz,
the current distribution is weak in the patch area, while it is strong at the L-shaped stub.
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Conversely, at 4.9 GHz, the current distribution is only strong at the feed line and the
inverted C-shaped slot. Similarly, at 7.9 GHz, the currents are mainly distributed around
the U-shaped patches and are oppositely directed between the interior and exterior edges.
Therefore, the resultant radiation fields can be canceled out, and high attenuation near the
resonant frequency is achieved, thus resulting in a notched band. Besides, the maximum
surface current density is on the upper-left and lower-right corner of the octagonal patch at
4.0 GHz. Therefore, we can conclude that the notched structures exert significant effects on
the current distribution of the antenna.
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Figure 11 progressively demonstrates the peak gain and radiation efficiency results
of the proposed antenna. The efficiency of the proposed antenna is essentially higher
than 80% over the UWB operating band, except for in the notched band, implying that
the majority energy is radiated away. Meanwhile, the average in peak gain values is
around 2.88 dBi in the passband. It is worth noting that both curves reduce drastically in
the notched bands. At notch frequencies, impedance mismatch of the proposed antenna
leads to the signal source energy not being fully absorbed and the formation of standing
waves on the transmission line. As a result, the efficiency of the proposed antenna drops
drastically. Concluding the foregoing discussions, the suggested UWB antenna has good
radiation characteristics.
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3.3. Comparison with Already Reported Works

Table 3 presents a comparison of the proposed antenna with other related literature
in terms of dimensions, impedance bandwidth, notch technique, and applications. In
contrast with the previously reported antennas, the proposed antenna achieves more notch
bands where each notch band results from a different notch technique and has acceptable
band-notched characteristics.
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Table 3. Comparisons between the proposed triple-band-notched UWB antenna and other works.

Reference Dimensions (mm) Impedance
Bandwidth (GHz)

Notch Band
Application Notch Technique The Lowest Operating

Frequency Ranges (GHz)

[27] 32 × 26
(0.30λ × 0.24λ) 2.8~11 WiMAX and WLAN T-shaped stub and

parasitic strips 2.8–3.3

[28] 29 × 40
(0.30λ × 0.41λ) 3.1–11 WLAN Split-ring resonator 3.1–5.4

[29] 90.5 × 60.1
(0.93λ × 0.62λ) 3.1–10.6 WLAN Absorptive

bandstop filter 3.1–4.9

[30] 18 × 17
(0.17λ × 0.16λ) 2.9~12 INSAT and X-band C slot, U slot 2.9–4.1

[31] 35 × 33
(0.32λ × 0.30λ) 2.7~10.6 C-band and WLAN Modified V slot and

EBG structure 2.7–3.5

[32] 18 × 36
(0.20λ × 0.26λ) 2.9~20 C-band T-shaped stub 2.9–3.6

[33] 21 × 16
(0.26λ × 0.20λ) 3.77~11.64 WLAN and X-band

Symmetrical
L-structured

parasitics and S slot
3.77–5.6

[34] 32 × 14
(0.32λ × 0.14λ) 3~12 WLAN and X-band Multimode resonator 3–5.2

[35] 30 × 35
(0.31λ × 0.36λ) 3.1~10.6 WLAN and X-band Multimode resonator 3.1–4.0

Proposed work 40 × 29
(0.36λ × 0.26λ) 2.70~11.06 WiMAX, INSAT

and X-band
C slot, resonator and

parasitic stub 2.7–3.2

4. Conclusions

In this work, a compact planar monopole ultra-wideband antenna with anti-interference
characteristics has been presented for UWB applications. Interestingly, the proposed an-
tenna provides a wide impedance bandwidth, ranging from 2.70 GHz to 11.06 GHz. In
addition, there was a discussion of three rejection bands around 3.22~3.83, 4.49~5.05 and
7.18~7.84 GHz for the applications of the WiMAX, INSAT and X-band. These were created
by introducing an L-shaped stub in the radiation patch, a pair of U-shaped parasitic ele-
ments beside the feed line, and an etched inverted C-shaped slot. Additionally, the designed
antenna had a simple structure and easy fabrication process. The antenna also possessed an
acceptable peak gain and efficiency, demonstrating that the proposed antenna was certainly
applicable in miniaturized devices for the the operation of UWB communication systems.
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