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Abstract: Additive manufacturing (AM), an enabler of Industry 4.0, recently opened limitless possi-
bilities in various sectors covering personal, industrial, medical, aviation and even extra-terrestrial
applications. Although significant research thrust is prevalent on this topic, a detailed review cover-
ing the impact, status, and prospects of artificial intelligence (AI) in the manufacturing sector has
been ignored in the literature. Therefore, this review provides comprehensive information on smart
mechanisms and systems emphasizing additive, subtractive and/or hybrid manufacturing processes
in a collaborative, predictive, decisive, and intelligent environment. Relevant electronic databases
were searched, and 248 articles were selected for qualitative synthesis. Our review suggests that
significant improvements are required in connectivity, data sensing, and collection to enhance both
subtractive and additive technologies, though the pervasive use of AI by machines and software
helps to automate processes. An intelligent system is highly recommended in both conventional and
non-conventional subtractive manufacturing (SM) methods to monitor and inspect the workpiece
conditions for defect detection and to control the machining strategies in response to instantaneous
output. Similarly, AM product quality can be improved through the online monitoring of melt pool
and defect formation using suitable sensing devices followed by process control using machine learn-
ing (ML) algorithms. Challenges in implementing intelligent additive and subtractive manufacturing
systems are also discussed in the article. The challenges comprise difficulty in self-optimizing CNC
systems considering real-time material property and tool condition, defect detections by in-situ AM
process monitoring, issues of overfitting and underfitting data in ML models and expensive and
complicated set-ups in hybrid manufacturing processes.

Keywords: intelligent manufacturing; digital twin; feedback control; smart system; data analytics

1. Introduction

The manufacturing processes are becoming increasingly complex, dynamic and net-
worked as industrialization progresses toward global connections [1]. Thus, significant
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progress toward the cyber physical systems (CPS) through the internet-of-things (IoT)
with the integration of sensors, data analytics, automation and robotics is leading to the
pervasive digitalization of the factory operations. Therefore, enterprises are adopting inno-
vation in computing, information systems and communication technology to converge with
manufacturing science and production technology, as observed in the parallel development
of the virtual and physical world, as illustrated in Figure 1 [2]. Moreover, adopting cloud
technologies enables delivering and receiving services via an intelligent system leading
to cloud manufacturing (CMfg) [3]. In this regard, the blockchain technology can be an
enabler in the manufacturing industry, specifically in cloud manufacturing, with the ben-
efits of tamperproof recording in the decentralized or remotely operated processes [4].
This will support the smart systems in mass-producing highly customized products that
require end-to-end integration of different autonomous manufacturing operations [5]. Ad-
ditionally, intelligent robotics is undertaking delicate manufacturing tasks without human
assistance [6]. This is evident from the advent of Industry 4.0 (I4.0), where the machinery
development is accelerating towards the integration of software with multiple sensors in a
smart factory environment [7], where the focus of conventional manufacturing is shifting
towards the incorporation of decision-making capabilities [8]. This self-organizing man-
ufacturing system consists of autonomous elements (e.g., software tools, equipment and
operators) connected in a dynamic environment to perform in an unforeseen condition [9].
Therefore, Industry 4.0 (I4.0) defines a new technological era [10] of the intelligent factory
architecture that will change the manufacturing processes driven by smart systems for
self-structuring and self- monitoring [11]. Integration of these systems enables an intelligent
manufacturing environment to yield productivity for high-quality customized products.

Cloud manufacturing (CM) can be adopted to overcome the challenges associated
with the traditional systems for on-demand and reliable manufacturing capabilities [12].
To realize the smart factory [13], intelligent systems will require to replace human deci-
sions, where production will be controlled autonomously and dynamically with a high
degree of automation [14]. Thus, Industry 4.0 focuses on the subtractive, additive and
hybrid techniques to connect with the cyber/digital realm. In this regard, a cloud-based
framework was developed for online diagnosis architecture [15], where the machine tool
and sensor system are connected to the cloud to coordinate and control the operation in
a cyber physical system (CPS). Moreover, the smart monitoring can be implemented to
reduce the risk of damaging workpieces, cutting tools and the machine itself by linking the
physical resources (machines, tools, workpieces) with complex CPS with the use of sensors
and IoT for the development of smart machining operations to increase productivity [16].
Additionally, an image-based system is considered to predict the tool wear relating to the
surface quality of the machined parts with varying cutting conditions in subtractive manu-
facturing (SM) [17]. A digital twin (DT) driven process parameter optimization and surface
roughness prediction method is proposed for real-time machining process monitoring [18].
Intelligent machining tries to enable intelligent behavior in the machining system [19] to
avoid defects from human errors as, machines learn and adapt to optimize machining
processes. Thus, the emergence of digital twin (DT) technology provides an opportunity
to incorporate digitization and intelligence in materials processing technology. Addition-
ally, the adoption of digital technologies can shift the paradigm across all manufacturing
sectors [20]. In fact, several innovations have enriched additive manufacturing (AM) in
various dimensions, including smarter materials and functional structures, smart and agile
manufacturing ecosystems capable of traditional manufacturing [21].

Additive manufacturing (AM), commonly known as 3D printing, is the layer-wise
manufacture of parts printed to the required shape [22] rather than wastefully cutting away
material from a solid block of metal, ceramic, polymer or composite material. AM tech-
nology is capable of rapid prototyping, mass customization and decentralized production
with the networking potential of connecting the vast number of machines concurrently [20].
By incorporating a ‘smart’ component into AM, a cyber physical system (CPS) can be de-
veloped to respond to market demand in real-time situations, thereby enabling the digital
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value chain [23]. While data-driven approaches in AM processing have made progress in
the past decades, challenges remain in optimizing the process parameters to push forward
for intelligent AM [24]. Thus, qualitative uncertainties become a key challenge for the
further industrialization of AM techniques [25].
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Though AM is gaining in popularity for making parts with complex geometries, how-
ever, the defects inherent to the AM-produced parts make it inferior to the similar part
produced by conventional processes [26]. Therefore, various post-process techniques are
employed to meet the part tolerances and surface quality requirements [27]. Nonetheless,
some post-processing methods are time-consuming and not viable for complicated struc-
tures and/or significantly large surface areas [28]. To overcome this limitation, hybrid
manufacturing (HM) processes are used [29]. Furthermore, hybrid manufacturing tech-
niques can be applied to fabricate parts with complex geometry, where the manufacturing
process is carried out with a combination of additive and subtractive manufacturing [30].
These processes can take place either concurrently or in sequence to complete the required
task and there is no limitation on the number of processes utilized to produce the complex
3D part. More importantly, in the era of the fourth industrial revolution, hybrid processes
progressed from the developments in information technology to enhance product qual-
ity [31]. Additionally, HM provides secondary operation to improve part quality after
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releasing residual stress originating from the AM process [32]. Again, AM parts require
SM techniques (CNC machining) to ensure geometric tolerance and removal of support
materials for which an integrated HM workstation enables such process much more eas-
ily and quickly [33]. Therefore, HM technologies leverage AM’s strengths for complex
geometries and SM’s precision for finished parts [34]. However, a dynamic process plan
is required for HM where online process control with intelligent characteristics as well
as the feedback from the inspection is deployed [35]. Thus, emphasis is given to flourish
the techniques for deposition, material removal and hybridizing processes through smart
toolpaths, where measurement techniques play an important role in the quality control [36].
Hence, challenges relating to software integration prevail for the concept of smart manufac-
turing in real-time scenarios, where artificial intelligence (AI) can solve problems [37]. The
advantages and disadvantages of the subtractive, additive and hybrid processes are listed
in Table 1.

Table 1. The advantages and disadvantages of the subtractive, additive and hybrid manufacturing processes.

Process Advantage Disadvantage

Subtractive Manufacturing (SM)

• Used for wide variety of materials [38];
• Achieves excellent dimensional control with tight

tolerances and good surface finish [39];
• Processes are faster as compared to additive

manufacturing in terms of mass production [40];
• On-machine-measurement with high accuracy is

steadily available, for both probe and beam type, to
improve both surface quality and
machining process [41].

• Material wastage resulting from excessive
scrap formation [42];

• Not profitable for smaller production runs, as setup and
tooling costs are high [43];

• Extremely complex shapes cannot be realized [39].

Additive Manufacturing (AM)

• Facilitates production of complex near net shaped
parts by offering high degree of design freedom [44];

• Mass customization is possible by easily altering the
product design [40];

• Effective utilization of raw material leads to minimal
scrap formation and less energy consumption [45];

• Dominates over subtractive method in terms of
environmental friendliness [46];

• Appropriate for small batch production of
parts/components [47];

• Material density and weight of the part can be
controlled effectively through optimal
design strategies [48];

• On-machine-measurement is possible with both
geometrical and thermal approaches [49,50];

• Robot-based AM processes are easy to resume,
especially with real-time dimensional feedback [51].

• AM parts seldom fit the industrial requirements due to
the poor surface integrity and dimensional errors [52];

• Post-processing operations are inevitable for AM
parts/components to enhance their acceptability in
industrial applications [53];

• Usually not suitable for large sized products owing to
smaller build volume [54];

• Not applicable to all types of materials [55];
• Limitation arises due to the anisotropy in microstructure

and mechanical properties [56];
• Building strategy in discrete consecutive steps make the

process slow and inappropriate for bulk production [57];
• Not economical unless the requirement becomes the batch

production of extremely complex components [58];
• Even with recent developments [59], it is difficult to

obtain online measurements for PBF technologies and
thus real-time repair.

Hybrid Manufacturing (HM)

• Hybridization opens infinite possibilities for
enhancing part quality improvement and
production rates [60];

• Limitations of individual methods can be overcome
through hybrid approach [61]. For instance, the
combination of AM with SM (CNC milling)
facilitates both 3D printing and finishing of the
component in a single setup, thereby minimizing the
setup error as the printed component does not
require shifting to a separate machine [62];

• Lowers the production time and minimizes the
production cost without compromising on the part
quality. In addition, the hybrid processes ensure
timely delivery of parts/components and reduction
of inventory [63];

• Various online measurement approaches are
available to facilitate the HM. [64,65].

• HM processes demand huge investment and setup costs
for the equipment [66];

• Challenges arise in scaling the HM setup to fulfil the
requirements of mass production as the optimization of
the process parameters and effective process control are
difficult in a hybrid system [28];

• The complexity associated with the setup restricts the
large-scale implementation of HM in industries [67];

• The switching between AM and SM in a hybrid
co-ordinate system can be challenging for
CAM designers [68];

• Unexpected error or tool damage can arise from the
misinterpretation of the AM process, without adequate
online feedback [69].
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Artificial intelligence (AI), in contrast to natural intelligence, is the reasoning exhibited
by machines and software [70]. Thus, both subtractive and additive technologies are com-
patible with automation, while improvements are needed for connectivity, data sensing
and collection [71]. Moreover, AI-driven image analysis can be used in post-manufacturing
component inspections [72], whereas the data-driven approach explores correlations be-
tween input and output without explicit physical interpretation in real-time diagnosis [73].
AI works by developing intelligent agents to take actions by observing the environment to
successfully achieve the predefined goals [74]. Therefore, prospects of intelligent manufac-
turing include remote real-time detection and control, defectless manufacturing through
process planning and scheduling and predictive maintenance of machine tools/equipment.
Moreover, in digital manufacturing, the automation is incorporated to realize intelligent
transformation in a knowledge-evolutionary device [75] that can make decisions in ma-
chine to machine (M2M) communication environment [76]. Hence, a rule-based system (for
subtractive manufacturing) was implemented to enhance the intelligence of machine tools
to calculate and determine relevant cutting parameters [77]. Additionally, autonomous
path planning and in-situ parameter tuning can be realized (for additive manufacturing)
through online identification and feedback [78]. However, most of the existing control
systems execute a fixed program, and hence, control of the functions happening outside
the module has inflexible interfaces that cannot communicate unknown information [79].
Therefore, the purpose of this article is to fill this gap by giving researchers and engineers
directions for intelligent applications of new technology across all manufacturing divisions,
including AM or 3D printing process. The structure of the remaining article consists of
Section 2 describing the literature review process; Section 3 describing the intelligence
in manufacturing; Section 4 on the state-of-the-art manufacturing technologies; Section 5
about the critical analysis and challenges; Section 6 presents the prospects and Section 7
describes the conclusions.

2. Review Methodology

The prospect of this article lies in the comprehensive review of the literature
to establish the status of intelligence utilized for subtractive and additive processes
and their sustainable merger. Various research works have been reported in the past
on related technologies and their fundamental challenges. However, the current re-
view emphasizes the present and future scenarios of the application of intelligence
in additive and subtractive manufacturing within the context of Industry 4.0, em-
phasizing automation, artificial intelligence, process monitoring, sensorial systems,
human-to-machine and machine-to-machine interface.

To analyze the present and future scenarios concerning the progress of traditional
additive and subtractive manufacturing to intelligent additive and subtractive manufactur-
ing, the systematic literature review (SLR) is applied, which is different from the narrative
literature reviews. The focus of SLR is to evaluate the collected evidence against the prede-
termined criteria by minimizing the bias in the study selection. The review begins with
a focus on research agendas. To explore the research agendas, the SLR framework for
this study is followed from the literature [80,81]. While planning the review, the research
question (RQ) is fixed to present the implication of intelligent additive and subtractive
manufacturing based on the research scope, as per the following:

RQ1. What is the role of intelligence in additive and subtractive manufacturing?
RQ2. What are the major challenges of intelligence in additive and subtractive manufacturing?
RQ3. What are the present trends of intelligence in additive and subtractive manufacturing?
RQ4. How to prepare the present intelligence of additive and subtractive manufacturing

for the future?
RQ5. What future directions need to be followed from the status of intelligent additive and

subtractive manufacturing?
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The RQ1 and RQ2 focus on the functionality of intelligence in additive and subtrac-
tive manufacturing. RQ3 is concerned with the present scenario of the study objective
from the conventional state and new interventions in this field. RQ4 and RQ5 address
the challenges, scope and impediments of the current technologies towards the future.
An overview of the present and required technologies for the future, alongside the
challenges and limitations that have occurred to integrate with the field are discussed
to answer the questions. Once the research question is defined, the SLR moves to the
search phase. The search work mainly finds the review article, journals and confer-
ence proceedings that are significant and aligned with Industry 4.0 technologies with
context of intelligence in AM and SM amalgamation.

The focus of the review is targeted at specific keywords due to the high-volume
availability of content. The search is conducted in scientific databases such, as Google
Scholar and Science Direct. Google Scholar provides the information about the journal
name, and publication year and the advanced search option helps to cover citations
that are not covered by other databases. The search strings for the publication search
are the following: ‘Intelligent’ OR ‘Smart’ OR ‘Intelligence’ AND ‘3D printing’ OR
‘Additive manufacturing’ OR ‘Direct manufacturing’ OR ‘Three-dimensional printing’
OR ‘Rapid prototyping’ OR ‘Digital manufacturing’ OR ‘Generative manufacturing’
OR ‘Additive fabrication’ OR ‘Solid free form fabrication’ OR ‘Rapid manufacturing’.
About 3942 publications were found in the timeline 2005–2022, based on the search
string on 31 December 2022. Then, the title of the articles were screened to remove
duplicate articles and/or articles not related to this research, thereby 2768 articles were
sustained. Various types of grey literature, presentation, keynotes and inaccessible
publications were excluded, and the number of articles was reduced to 857. Then, the
abstracts were read for subsequent evaluation to obtain the research question answers.
About 398 articles were selected for full abstract reading synthesis to cover the review
work. Then, 116 articles were removed for not aligning with the research questions and
282 articles went through the full text assessment. Finally, 248 articles were selected
for qualitative synthesis for reviewing in the literature. The transparency of the results
produced by the searching process included in a systematic review is thus highlighted
by the risk of bias evaluation. A flowchart outlining the PRISMA algorithm focuses
on the reporting of reviews, evaluating the effects of interventions and serves as a
foundation for reporting systematic reviews in numerical form is illustrated in Figure 2.

From the article qualitative synthesis, the present state-of-the-art intelligence in
additive, subtractive as well as hybrid manufacturing has been produced. Moreover,
the challenges and research gaps for the existing state for future expansion of intelli-
gence related to manufacturing connectivity, in-situ monitoring systems, human to
machine interference, machine learning application in the sensorial system, artificial
intelligence in decision making, collaboration among robots, machine to machine cog-
nitive, digitation and adaptability have been identified. The search engine papers
percentage, proportion of AM and SM, hybrid manufacturing articles review and year
growth of publications are summarized in Figure 3.
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3. Intelligent/Smart Systems- Definition, Principle, Prerequisites

The notion of the intelligent/smart system emerged from an area of research and de-
velopment that envisaged a system consisting of various sensors, controllers, and advanced
materials to mimic biological mechanisms [82]. The basic component and arrangement
of the smart system is shown in Figure 4, where multiple sensors collect data from the
environment and send those to the controller through the process of data acquisition. The
use of a multitude of sensory data is very common in a smart system termed sensor fusion.
Once the controller receives all the data, it uses various algorithms to control the actuator,
ranging from simple feedback control to intelligent control. The smart home is an example
of an intelligent system that researchers and industrial players have thoroughly investi-
gated. Smart homes consist of the essential components (Figure 4) of the smart system
to control the ambient condition of the building, such as lighting and heating. However,
the concept of the smart home has evolved, and now smart home indicates data-driven
intelligent control of any electrical component within the house [83].

Like the smart house, smart manufacturing is an overwhelming term used to de-
scribe the futuristic industry. The advancement and modularization of computers and
electronics-initiated automation in manufacturing, is known as the modern manufacturing
era. Nowadays, machine tools, critical components of manufacturing, are operated mainly
by the CNC (computer numerical control) system with minimum human intervention. As
with the machines, raw materials are also handled by automated conveyors or AGVs (auto-
mated guided vehicles) and stored in ASRSs (automated storage and retrieval systems).
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Automated manufacturing can be categorized in various ways depending on the scope and
degrees of automation and intelligence in manufacturing [84]. Two significant aspects of
manufacturing are subtractive and additive manufacturing. Subtractive manufacturing, in
other words, machining, also has recently become highly automated and intelligent.
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Smart/intelligent machining systems are aimed to have the capacities of self-recognition
with the abilities of self-monitoring and optimization of operations; self-assessment of the
quality of work; and self-learning for improved performance over time [85] through the
synergic assimilation of hardware and software. Moreover, AM has increasingly become
more popular for rapid prototyping. However, AM still has a long way to develop critical
functional parts due to its inherent nature of layered structures. In most cases, functional
parts with tight tolerance and strict surface integrity cannot be achieved by using AM
technologies alone. Therefore, AM manufactured parts commonly require some post-
processing, such as machining to meet the requirements associated with high surface finish
and dimensional tolerances. Moreover, application of smart technology is also quite evident
in the field of AM, especially for the in-situ assessment of the parts and quality control
by applying feedback control of the process parameters. The application of AI and ML to
better the AM process is another growing research area.

4. Intelligence in State-of-the-Art Manufacturing Technology: Monitoring, Feedback,
Controlling, and Machine Learning
4.1. Subtractive Manufacturing/Machining

From an intelligent manufacturing context, the research focus has been directed
toward intelligent machining [86] with an aim for online monitoring and optimization of
the machining parameters [87]. Thus, monitoring the machining state (i.e., tool condition,
tool wear, machine stability, chatter, and vibration) becomes an important research area for
intelligent subtractive manufacturing. Additionally, the prediction of tool wear is attracting
attention to improve the part quality by reducing the scrap rates, thereby enhancing the
productivity and sustainability of manufacturing operations [88]. The life cycle of the tool
can be predicted from the offline measurement of tool flank wear, corresponding to the
multi-sensor data collected online during a high-speed CNC machining experiment, as
shown in Figure 5a [89]. Integrating physical knowledge with a data-driven model helps
tool wear observation in a dynamic condition [90]. Figure 5b illustrates the framework to
monitor tool wear in micro-milling processes [91]. The method first started by acquiring
vibration and sound signals and then, by using scanning electron microscopy (SEM) images
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to detect the tool wear. Subsequently, the most significant features are selected by a
recursive feature elimination (RFE) method from the various features related to statistical
analysis, time domain and frequency. Once the features were selected, a support vector
machine (SVM) model was created to predict tool wear. One of the shortcomings of this
method is the off-line tool wear measurement by superimposing SEM images of the new
and used tools.
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For complex parts machining, the dynamic feature representation method is utilized
where features are extracted from the CAD model [92]. This contrasts with the traditional
process where modelling is conducted on the static feature of final geometry, which is
assumed to be unchanged as the machining progresses. Hence, it is necessary for the
representation of interim features corresponding to planned depth-of cuts, as illustrated
in Figure 6a [93]. In this respect, the dynamic feature concept is utilized for machining
process optimization, as illustrated in Figure 6b [94]. By collecting in-process geometry
information of the workpiece, a data-driven information model is constructed based on the
actual cutting condition for adaptive machining process optimization. Therefore, intelligent
machining can be executed as an automatic process, as illustrated in Figure 6c [95]. Hence,
it is necessary to inspect the workpiece conditions for defect detection and to control
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the machining strategies in response to workpiece dynamic conditions in an intelligent
machining system.
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Figure 6. (a) Various depth-of-cuts in machining a freeform surface (reprinted with permission
from [93]. Copyright 2015 Springer Nature). (b) Dynamic feature information and its applications
(reprinted with permission from [94]. Copyright 2015 IOS Press). (c) Three parts of an intelligent
milling system, including data collection, information modelling and process optimization (reprinted
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In the recent past, ultra-precision machined parts have been increasingly used in
various emerging fields. However, most machining aspects depend on the operator’s skills
for optimizing the parameters by costly trial-and-error experiments [96]. To address these
issues, an in-process measurement technique was utilized to repair defective workpieces
on a roll mold machined in an ultra-precision lathe [97]. As illustrated in Figure 7, the
method works when a force feedback control loop is applied to guide the cutting tool.
Therefore, the feedback of the measured information is used for generating an accurate
repair cutting path. By replacing the conventional post-manufacturing inspection made
on an off-machine, on-machine surface metrology is utilized for the task of compensation
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machining, feedback process and machine tool diagnosis [98]. As one of the future trends,
on-machine measurement and monitoring will be an essential part of the advanced ma-
chining process for automatic compensation tool path generation to realize the IoT-based
activity in intelligent manufacturing.
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Figure 7. In-process measurement, repair, and evaluation method of defective microstructures on a
roll mold illustrated as (a) the real-time detection of the defect positions; (b) characterization of the
defect surface profiles; (c) repairing the defective microstructure elements; and (d) evaluating the
repair results (reprinted with permission from [97]. Copyright 2014 Elsevier B.V.).

In addition to conventional machining, machining conditions were predicted for
non-conventional processes [99]. Electrical discharge machining (EDM), one of the un-
conventional machining processes using electric energy to remove materials, has been
widely used in high-performance engineering sectors [100]. An intelligent approach uti-
lized for the optimization of die-sinking EDM parameters is illustrated in Figure 8a [101],
where physics-based process modeling was integrated with artificial neural networks
(ANNs) and a genetic algorithm (GA) to predict the shape of a crater, material removal
rate (MRR) and tool wear rate (TWR). In early research, an on-line monitoring approach
was used [102] to establish the tool-workpiece gap signals correlation with pulse types
in EDM. To enhance the performance of EDM, a hybrid electrical discharge and arc ma-
chining (HEDAM) module were developed [103]. Studies proposed an intelligent pulse
classification method [104] and the efficiency improvement by real-time debris removal,
as illustrated in Figure 8b [105]. To predict the surface roughness of aluminum alloys
machined using wire electrical discharge machining (WEDM), multiple machine learning
algorithms were used [106]. To collect data that were used to create the models, parts were
machined using different machining parameters and subsequently surface roughness was
measured. In another research, an intelligent approach and machine learning technique
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was used to create relationship mapping between WEDM parameters and output response,
as illustrated in Figure 8c [107].
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Figure 8. (a) integrated ANN–GA approach for process optimization (reprinted with permission
from [101]. Copyright 2010 Elsevier B.V.); (b) intelligent system framework of debris removal
operations [105]; (c) machine earning (ML) and predictive modelling for WEDM process (reprinted
with permission from [107]. Copyright 2018 Elsevier B.V.).

ML, a subset of AI, provides the capacity to learn and improve the systems from
experience and thus, is widely applied in different areas of manufacturing [108]. In recent
years, ML has been found to be a useful tool for in-process tool condition monitoring [109],
predicting self-induced vibrations and chatter in heavy-duty milling machines [110], by
creating complex analytical models and simulations. The experimentation was carried out
to predict chatter based on different machine positions and milling directions [111]. As the
initial machining condition changes, the ML model needs to be revised according to the
new data, and thus, broader applications of ML methods are hindered. Transfer learning
(TL) methods help to minimize this problem by transferring knowledge from a source
domain to a different but related domain, as depicted in Figure 9a,b [112]. TL is applied to
the online prediction of surface roughness under different cutting conditions, as illustrated
in Figure 9c [113]. However, limitations exist in automatic labeling data to the target the
domain model. Additionally, a hybrid method combining numerical modeling, cutting
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dynamics and an artificial intelligence surface roughness prediction model is notable for
future research.
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Figure 9. Illustration of the (a) concept of transfer learning; (b) domains, tasks and features of chatter
detection (reprinted with permission from [112]. Copyright 2022 Elsevier B.V.). (c) Surface roughness
prediction framework for the assembly interface: (i) pre-training of the surface roughness prediction
model in the source domain; (ii) transfer learning for the modules of the source domain model;
(iii) prediction of surface roughness in the target domain; and (iv) surface roughness [113].

4.2. Additive Manufacturing/3D Printing

Additive manufacturing (AM) process is used to create complex shaped parts with
very little material waste without additional expensive tooling or complex assembly. AM
processes have been classified into seven categories according to ASTM [114], which are
displayed in Table 2.
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Table 2. Classification of additive manufacturing process.

Sl Process Material Supply Phase Example Phase Change Type Description

1. Vat photopolymerization Liquid

Stereolithography (SLA),
Direct Light Processing

(DLP), Solid Ground Curing
(SGC), Continuous Liquid

Interface Production (CLIP),
Continuous Direct Light

Processing (CDLP)

Photopolymerization

Light-activated
polymerization selectively
cures liquid photopolymer

in a vat.

2. Material jetting Liquid
Ink-Jet Printing, PolyJet,

Nano Particle Jetting (NPJ),
Drop on Demand (DOD)

Photopolymerization

Built material droplets are
selectively deposited onto

the build platform to solidify
and build the model.

3. Binder jetting or PolyJet Powder and liquid
Binder Jetting

Three-Dimensional Printing
(Bj3DP)

Densification

A thin layer of powder
materials is selectively
applied using a liquid

bonding agent.

4. Powder bed fusion Powder

Selective Laser Sintering
(SLS), Selective Laser

Melting (SLM), Electron
Beam Powder Bed Fusion

(E-PBF), Direct Metal Laser
Sintering (DMLS),

High-Speed Sintering (HSS),
Selective Heat Sintering

(SHS)

Sintering or melting

Thermal energy, such as a
laser or electron beam,

selectively fuses powder
material regions.

5. Directed energy deposition Powder or wire

Laser Engineered Net
Shaping (LENS), Electron

Beam Additive
Manufacturing (EBAM),

Wire Arc Additive
Manufacturing (WAAM),

Aerosol Jetting (AJ), Directed
Light Fabrication (DLF),

Laser Deposition
Welding (LDW)

Melting

Focused thermal energy is
applied to melt and fuse

materials simultaneously, as
they are deposited on a

surface by a nozzle.

6. Material extrusion Filament wire

Fused Deposition Modeling
(FDM), Fused Pellet

Modeling (FPM), Powder
Melt Extrusion (PME)

Solidification by cooling

A moving heated extruder
head selectively dispenses

continuous filament
material, which is

subsequently deposited via a
nozzle or orifice.

7. Laminated object Solid
Ultrasonic Consolidation
(UC), Ultrasonic Additive

Manufacturing (UAM)
No phase change

Heat and pressure are
applied to fuse or laminate
adhesive-coated sheets of

material together to
make an item.

Additive manufactured parts may experience geometric flaws [115] due to surface
defects (such as balling, high surface roughness, surface deformation, such as warping
and distortion) and sub-surface defects, such as porosity [116]. Cracking, delamination
on deposited material and residual stress are the thorniest issues associated with the
AM technologies [117] for the SLS process, as illustrated in Figure 10. The presence of
unwanted defects becomes the major bottleneck for widespread implementation of additive
manufacturing in industries. Moreover, the mechanical properties, quality and reliability
of AM manufactured parts depend on: (i) the chamber conditions, such as temperature,
pressure, oxygen concentration [118]; (ii) the build environment condition, such as vacuum,
inert gas or ambient [119]; (iii) laser deposition parameters, such as laser power, laser
scanning speed, scan line spacing, power layer thickness and laser pulse length [120];
(iv) material morphology, such as chemical compositions of powders, particle size/shape,
powder porosity, impurity and powder size distribution [121]; (v) machine specification,
such as nozzle aperture, nozzle orientation and number of nozzles. The combination of all
of these process parameters is mainly responsible for melt pool geometry [40], which not
only determines the geometry and quality of the deposited track, but also directly relates
to the local microstructures, defect size, defect morphology and mechanical performance
(ductility and fatigue strength, corrosion resistance) of the built part [122]. Therefore, the
process monitoring of AM can provide an insight into the influence of various parameters
and can help in improving the build structure.
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Figure 10. Defects in AM parts by selective laser sintering processes.

Although detection of defects in post fabrication offers insights into what might have
gone wrong during the process, it is not viable for mass production. Hence, in-situ process
monitoring of additive manufacturing is gaining significant momentum. Several metal AM
processes are being used in industry, as well as in academia, however, in this paper, the
powder-based fusion (PBF) process is given attention. The first step towards monitoring
any process involves the use of suitable sensing devices. Different types of sensors have
been employed for monitoring the additive manufacturing processes. The use of various
techniques is aptly summarized [123] in Table 3.

Table 3. Overview of the sensing techniques used for in-situ monitoring of PBF [123].

Principle of Sensing Type of Defect Notes Ref.

Ultrasonic
Testing Porosity, balling For qualitative purposes [124–126]

Acoustic
Emission

Spectroscopy
Overheating, cracking For qualitative purposes [127–130]

Optical Imaging Powder bed irregularities, overheating Potential to detect thermal anomalies [131,132]

Optical Emission
Spectroscopy Overheating, monitor/predict defects Mostly used in plasma-based processes [133,134]

Optical Tomography Balling For sub-surface detection [135,136]

X-ray Tomography Surface roughness, dimensional
accuracy Early phase of development [137,138]

Optical Coherence
Tomography

Powder bed irregularities, lack of
fusion defects, keyhole fluctuation,

melt pool fluctuation, keyhole
pore formation

Limited to surface defects [139]

Pyrometry Overheating Suitable for multiple scan areas [140,141]

Infrared Imaging Overheating Potential to scan entire build area [141]

In-Situ X-ray Imaging/Diffraction
Keyhole pore formation, melt pool

size/shape, powder ejection
solidification, phase transformation

For quantitative structural information [142]
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Most of the surface and subsurface defects are directly or indirectly caused by the
overheating and uneven thermal distribution. Although several techniques have been
explored for the in-situ monitoring of AM processes, vision-based techniques are widely
employed due to ease of use and cost-effective hardware. Despite advancement in sensing
capabilities, most of the AM processes are open loop. In one of the pioneering works, Mani
et.al [143] categorized 38 parameters into three groups by establishing the hierarchy of
process parameters, process characteristics and built qualities. Subsequently, a framework
for the control strategies is proposed, as shown in Figure 11 [144].

Though significant work has been carried out in real-time fault or defect detection,
more work is essential for the real-time process control. A sensor is deployed to monitor the
melt-pool and control the laser power in-situ based on the feedback from the sensor [145].
In the study by Vlasea et.al [144], a signature derived control strategy resulted in improved
dimension accuracy. However, the studies are still in the preliminary phases, and there
is a significant scope for future research in this area. Additionally, the recent advances
in sensor technologies have led to an unprecedented quantity of AM data with high
dimensionality and complexity [146]. Manual screening of such a massive amount of data
is not feasible, hence it requires automated methods, such as ML techniques, as shown in
Figure 12a [147]. For this purpose, the AI solution can be a more suitable approach for
in-situ process monitoring [148] because ML can recognize patterns and regularities in large
datasets, and ML models can learn from data without explicit programming. Therefore,
the amalgamation of ML algorithms and in-situ sensors can furnish an optimum solution
for improving the quality, reliability, and repeatability of AM products. In the context
of AM, ML techniques are broadly classified into three groups as supervised learning,
unsupervised learning, and reinforced learning, as shown in Figure 12b [148].
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The additive manufacturing life cycle consists of five stages, namely: (i) design; (ii)
process and performance optimization; (iii) in-situ process monitoring and control; (iv) post-
process monitoring and control; and (v) testing and validation [146]. ML can be used in each
stage to support new designers in the additive manufacturing design phase [149]. Moreover,
faster and more accurate defect detection with ML techniques will drive the research efforts
in this area. However, the unavailability of the common data format and standards remains
a hurdle to overcome soon for the wide-scale adoption of the ML in AM applications. For
instance, when a melt pool is present in the AM process, the visual information acquisition
of the deposition area can be challenging due to the brightness and frequent sparkling, not
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to mention the evaluation of the defects thereafter. Therefore, emerging sensor techniques
are heavily utilized and studied for AM processes, to provide both visual and non-visual
information to better assist the in-situ monitoring process. Hence, intelligent detection
technology utilizes on-site detection and intelligent algorithms combined with ML for
image processing [150]. Thus, the sensing method, dataset preparation, feature selection
and modelling algorithm are becoming focused along with the data fusion and feedback
control, as shown in the framework illustrated in Figure 13a [151].

Micromachines 2022, 13, x FOR PEER REVIEW 19 of 54 
 

 

 
Figure 12. (a) General configuration of a machine learning system (reprinted with permission from 
[147]. Copyright 2004 Elsevier B.V.). (b)Taxonomy and applications of ML in AM as proposed (re-
printed with permission from [148]. Copyright 2020 The Minerals, Metals & Materials Society). 

The additive manufacturing life cycle consists of five stages, namely: (i) design; (ii) 
process and performance optimization; (iii) in-situ process monitoring and control; (iv) 
post-process monitoring and control; and (v) testing and validation [146]. ML can be used 
in each stage to support new designers in the additive manufacturing design phase [149]. 
Moreover, faster and more accurate defect detection with ML techniques will drive the 
research efforts in this area. However, the unavailability of the common data format and 
standards remains a hurdle to overcome soon for the wide-scale adoption of the ML in 
AM applications. For instance, when a melt pool is present in the AM process, the visual 
information acquisition of the deposition area can be challenging due to the brightness 
and frequent sparkling, not to mention the evaluation of the defects thereafter. Therefore, 
emerging sensor techniques are heavily utilized and studied for AM processes, to provide 
both visual and non-visual information to better assist the in-situ monitoring process. 
Hence, intelligent detection technology utilizes on-site detection and intelligent algo-
rithms combined with ML for image processing [150]. Thus, the sensing method, dataset 
preparation, feature selection and modelling algorithm are becoming focused along with 

Figure 12. (a) General configuration of a machine learning system (reprinted with permission
from [147]. Copyright 2004 Elsevier B.V.). (b) Taxonomy and applications of ML in AM as proposed
(reprinted with permission from [148]. Copyright 2020 The Minerals, Metals & Materials Society).



Micromachines 2023, 14, 508 19 of 53

Micromachines 2022, 13, x FOR PEER REVIEW 20 of 54 
 

 

the data fusion and feedback control, as shown in the framework illustrated in Figure 13a 
[151]. 

 
Figure 13. (a) Powder bed fusion (PBF) process monitoring and control framework (reprinted with 
permission from [151]. Copyright 2022 Springer Nature). (b) Multiple data sensors and feature de-
tection for a wide range of signal monitoring, feedback, and control (reprinted with permission from 
[152]. Copyright 2020 Elsevier B.V.). 

Additionally, following the recent trend towards the IoT-based Industry 4.0, closed-
loop control systems and smart integrated devices are rising rapidly. Both academic re-
search and industrial development are generating continuous new solutions, especially 
since progresses in ML and AI have enhanced the understanding of monitoring results of 
various AM processes even beyond the limit of human observations. ML or AI to assist in 
decoding the information acquainted has been a dominant trend in recent studies, which 
helps the system to identify microporosity [153], microcracking [154], melt pool conditions 
[155] and material feeding (powder bed) stabilities. By establishing a closed-loop feedback 
system, the acquainted information from monitoring can be directed back to the controller 
to improve the process in different ways. However, due to the complexity of the process 
parameters, from fluidic dynamics to thermal dynamics, the rapid solidification of melted 
material can make traditional process monitoring approaches difficult, thereby a major 
challenge becomes the prediction of the AM melt pool. Furthermore, there are various 
ways for monitoring the manufacturing process, as well as various types of sensors, as 
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from [152]. Copyright 2020 Elsevier B.V.).

Additionally, following the recent trend towards the IoT-based Industry 4.0, closed-
loop control systems and smart integrated devices are rising rapidly. Both academic
research and industrial development are generating continuous new solutions, especially
since progresses in ML and AI have enhanced the understanding of monitoring results
of various AM processes even beyond the limit of human observations. ML or AI to
assist in decoding the information acquainted has been a dominant trend in recent studies,
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which helps the system to identify microporosity [153], microcracking [154], melt pool
conditions [155] and material feeding (powder bed) stabilities. By establishing a closed-loop
feedback system, the acquainted information from monitoring can be directed back to the
controller to improve the process in different ways. However, due to the complexity of the
process parameters, from fluidic dynamics to thermal dynamics, the rapid solidification
of melted material can make traditional process monitoring approaches difficult, thereby
a major challenge becomes the prediction of the AM melt pool. Furthermore, there are
various ways for monitoring the manufacturing process, as well as various types of sensors,
as shown in Figure 13b [152]. Though acoustic and thermal sensing approaches can provide
reliable data, the prediction is still challenging. This could be improved through ML and
AI, with sufficient training data captured within a controlled environment. The sharing
of datasets can be a promising trend for understanding such complex thermal processes
across different platforms.

4.3. Post Processing for Additive Manufacturing

The online monitoring has become an inevitable part in product manufacturing, as it
serves as an input for automating the whole process. Consequently, the production run
time can be reduced significantly, which in turn reduces the production cost. The feedback
received from online monitoring can be used for controlling the process using a trained
algorithm model in soft computing, thereby complex nonlinear processes can be effectively
modelled using such techniques. The entire automation platform includes sequential steps
of monitoring, feedback, controlling and machine learning. The automation technique
is well established in subtractive manufacturing and is gaining ambience for the post
processing of additive manufacturing parts too. In general, post processing techniques
have been classified, as shown in Figure 14, [156] with the three main subheadings derived
from the energy used to create the polishing effect where the needs of post-processing
techniques for AM metals increase [157].

An initial attempt of research in this area was performed on neural network modelling
for abrasive flow machining (AFM) operation [158], intended to polish materials with an
internal flow path. The generated model was then coupled with a heuristic search algorithm
to choose the machine setup and process parameters required for the AFM process. In
another study, surface finish was predicted for non-conventional electro-thermal processes,
such as EDM [159]. The strongly influencing parameters, such as pulse current and pulse
duration, as well as workpiece material were assigned as the input for the neural network
developed. In due course of time, the artificial neural network (ANN) established its
ambience in several finishing operations. For magnetic abrasive finishing (MAF) [160],
in-process sensor monitoring was carried out and the signals of force, as well as acoustic
emission were captured, analyzed and given as input to the ANN for predicting the surface
finish. In addition to the ANN, modelling using fuzzy logic was also performing well
in online monitoring and response prediction [161]. The relationship of the percentage
improvement in roughness with input process parameters, such as voltage, rotational speed
of the electromagnet, machining gap and abrasive size was referred for constructing the
fuzzy interference system (FIS). In a later study, an in-process multi-sensor integration
system was developed to capture the dynamic behavior of the abrasive belt machining
process [162]. The system consisted of sensors capable of measuring surface roughness
in real-time. Samples with different roughness values were subjected to abrasive belt
machining under the same conditions. The features are extracted from the signals acquired
during machining and are used to train the classification model using a supervised learning
method based on SVM. Following the training of the model, a new set of signatures
are generated for the same roughness values to analyze the model’s robust behavior.
The proposed system can effectively predict the surface finish in a compliant abrasive
belt machining process. The implementation of the whole technique can be understood
from Figure 15a [162].
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Nowadays, machine learning is gaining momentum with the aid of soft computing
techniques and is moving forward to be an integral part of post-processing machining
operations. The noteworthy aspect is that researchers have already started employing
soft computing assisted machine learning techniques in the field of post-processing. An
effective algorithm was developed for the conventional polishing method to eliminate the
problem of non-uniform material removal on uneven surfaces during polishing [163]. Both
NNW and GA were utilized for formulating the algorithm where the former was intended
for process model generation, whereas the latter was meant for polishing parameters
optimization. The proposed strategy can be interpreted from Figure 15b [163]. Initially, the
polishing process was modelled through AI using a neural network. The results obtained
from the experiments are then used to train NNW followed by testing with samples not
used in the training stage. Then, the desired surface finish improvement and material
removal are fed to the algorithm, which enforces GA to find the optimum polishing
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parameters. Therefore, machine learning regression methods were utilized for prediction of
surface roughness [164].
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Artificial intelligence (AI) establishes its feasibility in even micro/nano-scale finishing
operations. A recent study adopted artificial viral intelligence in abrasive flow nano-
finishing process using the virus evolutionary genetic algorithm (VEGA) [165]. The study
proved that VEGA could better adapt to the trends with experimental values in terms of
surface finish. In recent times, image processing based on machine learning was deployed
using convolutional neural networks (CNNs) to determine the laser polishing conditions
responsible for contributing to better surface integrity [166]. Furthermore, electrochemical
jet machining was utilized to finish AM parts created by PBF and to subsequently micro-
pattern these for increasing part functionality [167]. In multi-jet polishing (MJP), a surface
roughness prediction model was developed based on ensemble learning with a genetic
algorithm (ELGA), as illustrated in Figure 16a–c [164].
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Thus, the fusion of AI with AM and finishing/polishing methods can well control
the automated post-processing of AM parts. Apart from including the input data for
any finishing/polishing process during training, the data related to part fabrication using
additive or subtractive techniques can also be incorporated to effectively predict the output
responses of the post-processed component effectively. From the perspective of Industry
4.0, online monitoring and ML strategies are highly recommended for realizing reduced
down time and minimal production cost. Correspondingly, the automated post-processing
operations using ML and AI will pave the way for a novel research platform in the future.

4.4. Hybrid Manufacturing (HM)

Although traditional post-processing improves surface quality, conventional methods
are not suitable for complex structures, especially for difficult-to-cut materials [28], thus,
both the subtractive and transformative manufacturing technologies are combined with
AM for improvement of part quality and process performance [168]. Therefore, the concept
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of hybridization [169] goes beyond post-processing, as illustrated in Figure 17a [36], where
the hybrid-AM processes are usually cyclic processes involving synergy between both
techniques, and are distinguished from postprocessing operations. Figure 17b shows the
division of groups according to the primary additive technique [69] of PBF-based processes
(directed to produce complex whole parts) and DED processes (focused on the generation
of coatings). Thus, DED process can be combined with subtractive techniques and many
machine tool builders are developing hybrid machines to overcome the AM drawbacks
of low accuracy and high surface irregularities [170]. Combining multiple processes is
advantageous to build an all-in-one hybrid machine [26] to make the best use of the strong
points of each technology [100,171] with an aim of cost saving during manufacturing.
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Combining additive and subtractive techniques within a single workstation can achieve
the benefits of hybrid manufacturing (HM) especially for remanufacturing of the high-value,
custom-designed or discontinued components [33,100,171]. In addition, such HM process
provides easy access to the secondary operations that improve part quality after residual stress
is released from the AM process [32]. The process steps of HM are illustrated in Figure 18 [26],
where the selective laser melting method is used to build the part from powders. Then, a
milling cutter comes to machine the part, and after that, the additive process starts for the
several successive layers. The additive and subtractive processes occur alternatively until the
part is completed. While most of the academic research in HM is targeted for modelling and
tool path strategies, a handful of industrial HM machines are available in the market. Table 4
lists industrial hybrid manufacturing systems.
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Figure 18. Schematic of hybrid additive and subtractive processes (Reprinted with permission from
Ref. [26]. Copyright 2016 Elsevier B.V.).

Table 4. List of hybrid manufacturing systems/machines.

Model Name Configuration

Optomec [172] LENS 860 Hybrid Open Atmosphere System, LENS
860 Hybrid Controlled Atmosphere Combines LENS and CNC machining (up to 5 axes)

DMG MORI [173] LASERTEC 65, 125, 300, 6000 Combines LENS and CNC machining (up to 5 axes)

MAZAK [174] INTEGREX i-250S AM, INTEGREX i-400 AM,
INTEGREX i-600/5X

i-250S AM combines LENS (multiple laser beams) and CNC
machining (up to 5 axis), i-400 AM combines LENS (single
laser beam) and CNC machining (up to 5 axes), i-600/5X
combines wire-arc and CNC machining (up to 5 axes)

Hermle [175] N/A Combines proprietary metal-powder-application (MPA)
and CNC machining (up to 5 axes)

Fabrisonic [176] N/A Combines ultrasonic additive manufacturing and 3 axes
CNC machining

3D Metal Forge [177] H-WAAM Uses two robotic arms—one for wire-arc additive
manufacturing and the other for robotic machining

Hybrid Manufacturing Technologies [178]
AMBIT ONE, AMBIT FLEX, AMBIT EDDY, AMBIT
XTRUDE, AMBIT MULTI, AMBIT WAVE,
AMBIT SCAN

Develops end effectors for DED (laser), scanning and
sensing which attach to CNC machines

3D-Hybrid [179] Laser, Arc, Cold Spray Develops end effectors for laser DED, wire-arc DED,
and cold-spray.

To produce the desired part in HM, process planning is required for identifying the
sequence of operations as the desirable outcome may be achieved by adding and subtracting
material. Major steps of process planning identified for repairing/remanufacturing [180]
include identification of the damaged feature, generation of machining, deposition and post-
processing tool paths. To take advantage of both additive and subtractive manufacturing,
combined additive, subtractive and inspection processes are gaining importance [181] in
multi-purpose machine tools, as illustrated in Figure 19a [171]. Detailed description of the
process sequence is illustrated in Figure 19b [182]. A two-step process planning is designed
as illustrated in Figure 19c [183], where the technological requirements (tolerances, surface
qualities) are obtained from the drawing. The features are identified and extracted in the first
step (A01), thereafter, their relationships are used for process planning in the second step
(A02). Thus, in hybrid additive manufacturing, CAM software is utilized to generate toolpath
for additive, as well as machining processes [184] to set up the manufacturing sequence.
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The operational instruction in HM comes from G-codes, in terms of toolpath trajec-
tories generated from CAD/CAM software [185]. Moreover, open-platform standards
(such as MTConnect) enable machine operational information to be accessible for monitor-
ing [186], inspection and sensing data streams, as illustrated in Figure 20a [185]. However,
the geometry data and the thermal history of a component are required for tool path
planning for intermediate and final machining processes [184]. Thus, the construction of
a digital thread [185] is demanded for collecting, synchronizing, fusing, and analyzing
multiple data streams, inspection results and the thermal images captured during the
operations. Moreover, machine operation and process information can be linked to a spatial
location, while thermal images are collected and linked to a coordinated digital thread, as
illustrated in Figure 20b [185] to enhance the development efforts of HM.

Integration of AM with the cold spray process—cold spray additive manufacturing
(CSAM) is the solid-state supersonic deposition method that can build 3D components for
mass production and remanufacturing [187]. Generalized AM techniques are presented
in contrast to traditional AM methods, as shown in Figure 21a [188]. CSAM appears
to be the most popular technique because it functions like the “3D printing” technique.
Figure 21b [189] shows a typical CSAM system, where a fluidized powder mixture feed
stock is fed into the gas upstream through the powder feeder before entering the nozzle.
During the CSAM operation, high velocity powder particles impact on a surface, deform
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plastically and bond together to form a layer, as shown in Figure 21c. [188]. A notewor-
thy example of HM is PolyCSAM [190] which combines advanced surface preparation
techniques, material deposition, in-situ robotic surface finishing, heat treatment and data
analytics/machine learning-based process control. PolyCSAM’s integrated cold spraying
processes with subtractive processes with a hybrid robotic cell is illustrated in Figure 21d
pure Al on Al6061 (as sprayed), Figure 21e pure Al on Al6061 (after machining) and
Figure 21f hybrid robotic cell.

Figure 20. (a) Data streams in HM. (b) Spinning the digital thread with HM (reprinted with permis-
sion from [185]. Copyright 2021 Society of Manufacturing Engineers (SME)).
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5. Critical Analysis and Challenges in Intelligent Manufacturing

The application of additive and subtractive processes in industrial practices are ris-
ing rapidly [191]. AM processes are extensively used for various industrial, automotive,
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aerospace, communication, construction and medical applications, especially for highly
customized and low volumes of production [192]. In the aerospace industry, AM has been
utilized to fabricate products, such as rocket nozzles, turboprop stators, thrust chambers,
cabin bracket connectors, bus structures, fuel nozzles and rocket engines [193,194]. Both
AM and SM have been applied to produce a variety of custom medical implants in dentistry
(teeth, crowns, bridges and dentures) [195], orthopedics (artificial limbs, knee joints and
acetabular cups), cranio-maxillofacial (jaws and sculls) and devices (hearing aids) [196]. Re-
cently, AM has been used to fabricate bridges for the construction industry [197]. Moreover,
the components of electrical machines, such as shape profile windings, multi material coils,
heating coils and hollow conductors were made by AM [198]. In automotive applications,
AM is utilized for the fabrication of frames/chassis, suspensions, transfer cases, cross car
beams, doors, and engine cradles [199]. Furthermore, hybrid manufacturing has added
a new dimension to the advanced manufacturing process by addressing the drawbacks
of both AM and SM processes to create more near-net forms, complicated, multilateral
industrial components, such as metal molds [200], aero engine impellers [68] and sensor-
integrated turbine blades [201]. However, the quality, surface integrity and reliability of
HM produced parts is still a concern [202].

Moreover, product property varies with the manufacturing processes and therefore
becomes an industrial challenge. For example, the variation of microhardness of stainless
steel 316L processed in AM, SM and HM techniques is displayed in Figure 22. Subtrac-
tive processes, such as milling, provide higher value of microhardness due to the high
temperature generated at chip-tool interfaces [203]. Higher microhardness observed in
the parts produced by EDM process due to the deposition of hard thin re-cast layer on
the workpiece surface [204]. Comparatively lower HV values were observed due to the
layer-by-layer building method by melting of the powder with a laser beam in SLM [205],
fusion welding effect in laser-PBF processes [206], droplet-based deposition of melted
metal wire in WAAM [207] and repetitive cycles of melting, solidification and annealing
in EBM [208]. Generated residual stresses due to the thermal stresses result in a relatively
higher hardness in laser-DED process [209]. The microhardness of FDM fabricated 316L, af-
ter post-treatment, such as debinding and sintering, are comparable to laser-DED fabricated
products due to the influence of sintering temperature on the mechanical strength [210].
Again, the slightly lower hardness of the hybrid AM/SM fabricated 316L SS part is probably
due to the coarser grain size and microstructure produced in DED+ milling [211]. On the
contrary, finish-machining of SLM samples significantly increased the microhardness com-
pared to as-built SLM samples due to the production of smaller grains and strain-hardened
layers in SLM+ turning [212]. Figure 22 displays the consolidation of microhardness and
coefficient of variation (CV) for stainless steel 316L in several AM/SM processes. Larger
CV values (near 10%) in the subtractive process indicate a higher level of dispersion around
the experimental mean values. Most additive processes show a similar level of CV except
FDM, where CV values (below 2%) indicate reliable (consistent) measurements and good
method performance. The variations of AM fabricated products due to porosity, inhomoge-
neous microstructure, solidification cracking, higher residual stress and distortion result in
variations of microhardness. Hybrid process can reduce the variation, as observed from
smaller CV values (below 5%) of microhardness in DED+ milling. However, it is not conclu-
sive to assess the hybrid process with only one AM and SM process combination because
multiple process combinations might cause different types of variation in microstructural
characteristics. Furthermore, the number of available hybrid manufacturing machines is
relatively low as technology is expanding. In this respect, extensive research is required
by considering machine learning and digital twins to construct the link between physical
property (microhardness) and part characteristics (defects) to make the process intelligent.
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Moreover, the analysis of research trends on the use of intelligence in various man-
ufacturing technologies based on the literature survey is shown in Figure 23. It can be
reasonably concluded from Figure 4 that the highest percentage of the use of intelligence is
in additive manufacturing, which is more than 40% of the total research articles reviewed
in this paper. This result indicates the significant growth of additive manufacturing in
the research trend and the use of various smart features in this field. Interestingly, if
postprocessing of the AM is included, then the percentage goes up to more than 50% of
all articles.

Figure 23. Analysis of the use of intelligence in different manufacturing technologies based on the
literature survey.

In subtracting manufacturing, most CNC systems utilize an “open-loop” configura-
tion; thus, require an integrated CAM/CNC system where data are input from process
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intelligence, as illustrated in Figure 24a [213]. Because of the separate realms in data
acquisition and control, the self-optimizing smart CNC system is challenging. In some
instances, changes made at the shopfloor cannot be directly fed back to the designer and
thus shopfloor experiences cannot be preserved [214]. Therefore, the CAM system does not
allow for automated process altering decisions based on real-time conditions. However,
such a process plan improvement usually requires the CNC programmer to collect informa-
tion from the process feedback data, and thus, requires significant manual effort. Moreover,
machining process data collection is a difficult task as some control manufacturers do not
provide provision for information collection and M2M communication [215]. This has put
challenge on the data collection from multiple machines with different controllers and
sharing that data into a common platform [216]. Furthermore, machine health condition
data can provide significant insights into the real-time data analytics for ML algorithm
deployment. Nonetheless, the CNC system should be aware of workpiece material proper-
ties to control cutting conditions and optimize the most effective toolpaths properly [217].
These requirements necessitate the development of an intelligent CNC system to respond
to real-time (RT) process feedback, as well as machine tool operational status.
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The inconsistent product quality becomes a major barrier to the widespread application
of AM processes [146]. Hence, reduction of AM part variability have been recently given
importance through in-process identification of material discontinuities and in-situ part
inspection [218]. In-situ process monitoring of AM [219] can provide an insight into the
influence of various process parameters. It can help improve the build process through



Micromachines 2023, 14, 508 32 of 53

closed-loop feedback control by detecting defects during the printing process with the
help of sensors, as illustrated in Figure 24b [123]. By establishing a closed-loop feedback
system, the acquainted information from monitoring can be directed back to the controller,
to improve the process in different ways. Thus, the sensor technology should function
properly in extreme conditions, such as in elevated temperatures. A significant challenge
remains in real-time layer-wise defect detection and melt pool inspection with the high-
speed cameras requiring high computational power [220]. Furthermore, predicting and
altering the process parameters necessitate advanced ML algorithm techniques to integrate
within the in-situ monitoring system capable of instantaneous feedback [221]. In relation
to this, challenge remains on the structural health monitoring (SHM) system of the AM
techniques [222] for microstructural characterization [223] of additively manufactured
components. A list of commonly used ML algorithms, sensing principles and detected
defects is shown in Figure 25. Choosing a suitable ML algorithm is crucial in achieving the
appropriate level of defect detection in AM processes. For example, convolutional neural
networks (CNNs) have emerged as state-of-the-art in terms of accuracy and robustness
when dealing with image data. CNNs can also be used to detect various defects by using
powder bed images, product layer wise optical images or melt pool images. Moreover,
support vector machines with alternative kernel function are capable of handling both
sensor signal data, as well as image data and is a good choice for classification. While
implementation of an effective defect detection system is pivotal for the development of
next generation intelligent AM technologies, the comprehensive understanding of the AM
process and sensor accuracies need to be harmonized to handle different characteristics of
the signal features.
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Current challenges related to online monitoring in post-processing reside in the large
number of sensors required for precise data collection at a single instant, ultimately es-
calating the cost. Regarding machine learning, the performance of ML models is highly
dependent on data analytics since highly accurate predictions require a huge collection
of datasets for training the model. Moreover, similarity in captured surface features chal-
lenges model predictions using ML. For instance, melt pool in SLM can be recognized
as spatters over the surface during image processing [224]. Although smoother surface
finishing can be achieved by conventional polishing methods, complex structures cannot
be processed using conventional methods [225]. Thus, research is directed towards novel
post-processing methods to overcome the challenges. For instance, large-scale automation
minimizes labor costs, as well as achieves superior finishing of freeform surfaces using a
novel hybrid robot system [226]. Therefore, process intelligence will be the prime factor in
the transformation of robotic hybrid manufacturing. However, the significant requirement
for additional investment in hardware, controller capability and integration pose a chal-
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lenge for online inspection and closed-loop manufacturing with auto-adjustments of the
process parameters. The complexity of hybrid manufacturing remains when the available
CAM software generates the toolpath strategies considering the gradient metallurgical
properties throughout a component [184]. In this respect, the implementation of an NC-
based digital thread can enhance the development efforts, including multi-part thermal
monitoring, inspection-driven toolpath generation and in-situ laser modifications [185]
to meet new possibilities of intelligent hybrid manufacturing [227]. Figure 26 shows the
significant features that are essential to bring intelligence in HM post processing.
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In summary, hybrid manufacturing (HM) approach has significant advantages over
traditional post-processing with respect to geometrical complexity, difficult materials, accu-
racy, and surface integrity. Even though it is obvious that HM processing has advantages
and has more flexibility with intermediate and final post processing for a compliant part;
however, the technology has challenges to overcome. The challenges, their reasons and
possible future direction intelligent (cyber) and physical HM post processing are shown
in Table 5.
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Table 5. Challenges in intelligent post-processing and future directions.

Challenges Description of the Challenges Next Step

Expandability

Intelligent techniques are mostly AI-based, where AI
models, such as CNNs have been widely employed.
However, lack of transparency due to the complex
computing architecture has resulted in reduced
trustworthiness of AI predictions.

Development of in-situ sensors and sensor fusion in
benchmarking training data set.

Lack of data
For several complex processes, such as AM, the
generation of a large dataset is very challenging due
to the cost and x time restrictions.

The training data set representing real-world situations.

Variability in processing requirements
Different technologies demand different
post-processing techniques which are extremely
difficult to capture through intelligent techniques.

Knowledge of domain expert with AI knowledge is required.

Lack of robustness
The intelligent post-process techniques are often
developed for a specific application (mostly DED),
machine and controlled test conditions.

CSAM and powder bed fusion AM process need more R&D.

Material dependency
It is difficult to capture the intrinsic
process–property–performance relationship through
intelligent techniques.

Process fingerprints are introduced.

Integration quality control
Seamless integration of post-processing and final
quality compliance in terms of dimensional accuracy,
form tolerance and material properties are difficult.

The autonomous models are yet to be developed.

Environment control Management of coolant for machining vs. inert gas
environment for AM can be challenging. Dry/cryogenic machining with active chip removal.

Other post processing
With near net shape AM parts, polishing and
grinding operations may suffice and
replace machining.

Improvement for net-shape.

6. Future Prospect
6.1. Smart Sensors and Applications

Due to the increasing application of I4.0, intelligent sensors have become the driving
force of the industrial environment in the digital transformation of the manufacturing
process to enhance security, reliability, competitiveness, transparency, and flexibility [228].
These smart sensors are integrated into the subsystems and components of the additive
or subtractive machines, which allow for the predictive maintenance, in-situ condition
monitoring and performance monitoring during their operation [229]. Usually, subtractive
machining has been integrated with conventional sensors. However, some key differences
exist between conventional and intelligent sensors, which are created as IoT components
to convert real-time situations into digital information to monitor and predict real-time
scenarios and take corrective actions instantly [230]. Intelligent sensors’ major tasks in-
clude complicated multi-layered activities, such as adjusting sensitivity, collecting raw
data, analyzing, filtering and communication [231]. Mainly, the sensor fusion algorithm
integrates sensory input, which will appropriately synthesize and help to decrease machine
perception uncertainty. The intelligent subtractive system with smart sensor integration
is displayed in Figure 27a. Moreover, machine learning has been utilized in static process
parameter optimization by maintaining a single set of ‘feed and speed’ throughout a ma-
chining operation. However, the process parameters need to be adjusted based on the
actual state of the tool/workpiece, and thus, fusion of AI with subtractive manufacturing
will be able to control processing parameters well. Therefore, the dynamic tool condition
monitoring in a closed-loop feedback system, especially in-situ monitoring of both tool and
work piece condition, will be the future state of closed-loop control with sensor feedback
in subtractive manufacturing, as illustrated in Figure 27b [232], where in-situ tool-wear
measurement will support the real-time adaptive control.
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6.2. Intelligent 4D Printing

Four-dimensional printing, originated from the 3D printing technology, of material
added with time results in dynamic characteristics where materials/products reshape
with environmental factors (heat, moisture, pH, light, electric energy, magnetic energy)
according to a pre-programmed command [233]. Most of the 4D printing research fo-
cused on the shape changing ability (such as bending, elongation, twisting) of 4D printed
parts [234]. Figure 28a shows the tailorable material (shape memory polymers) used in a 4D
printed gripper [235] and Figure 28b shows the object grabbing images of the gripper [235].
The stimulus-responsive materials, interaction mechanisms and mathematical modelling
will be required in 4D printing for the prediction of the shape-shifting as a function of
time [236]. Moreover, bio-medical applications, such as patient-specific organs fabricated
by 3D/4D printing are typically manufactured ex-situ and then transferred to the human
body with limited “real-time knowledge” of the target geometry renders mismatch between
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the printed part and target surfaces [237]. This problem could be addressed by using an
ML algorithm to predict the most likely behavior of a phenomenon of 3D- and 4D print-
ing [238]. However, obtaining a large dataset for training the ML algorithm is challenging
for prospective organ systems [239]. Therefore, intelligent 3D- and 4D printing [240] are
expected to perform the necessary step for the development of personalized anatomical
models, as shown in Figure 28c [237].
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Figure 28. Four-dimensional printing material demonstration (a) of the transition between the
gripper shape with programming and heating environment [235]; (b) thermo-responsive and time-
lapsed images of a gripper grabbing an object [235]; and (c) possible uses of AI in 3D- and 4D
printing applications [237].

6.3. Machine to Machine (M2M) Communication and Machine to Human (M2H) Interaction

The manufacturing process is becoming automated, as machines can execute repet-
itive work consistently and efficiently over extended periods without a halt. Moreover,
smart manufacturing is emerging from Industry 4.0 by incorporating automated fabrica-
tion processes with machine intelligence, instantaneous data monitoring, controlling and
optimization [241]. Therefore, information connectivity has evolved from operators as the
information carriers to manufacturing equipment connected to computers and networked
equipment and computers, as illustrated in Figure 29a [241]. Therefore, the digital manu-
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facturing has progressed significantly due to the advancement of the machine-to-machine
(M2M) communication [242] and machine-to-human (M2H) interaction over the cloud plat-
form, making the process autonomous and data driven over the internet [243]. Moreover,
I4.0 technologies have transformed both the AM and SM processes in terms of real-time
operation management, data collection and analysis [244]. Hence, IoT, CPS and cloud
manufacturing will be the enabler for connecting the machines to ensure collaboration both
in AM and SM, as illustrated in Figure 29b. The use of block chain (BC) technology could
be useful to establish secure M2M communication [245] or efficient device-to-device (D2D)
data exchange [246] in the near future.
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6.4. Cyber Physical System (CPS) and Digital Twin (DT) Driven Manufacturing

As the digital transformation through cloud services and resource virtualization
allows for intelligent decision making [247], cloud manufacturing is evolving as an inte-
grated cyber-physical system (CPS) to respond quickly and effectively to the changing
environment [248]. Therefore, CPS becomes an enabler for ongoing paradigm shifts in
manufacturing with interconnected physical and virtualized resources, as well as intel-
ligent search capabilities for design and manufacturing solutions [249]. It is possible to
develop a virtual machine tool [250] to act as a building block for “digital-twins” to enable
the cyber-physical manufacturing while capturing machining data through sensors [251].
However, since most of the machine tools follow only the toolpath data generated before-
hand [252], therefore, it is required for the provision of a smart machine tool for optimal
decision support analytics through twinning [253] to support cloud manufacturing, as
illustrated in Figure 30a [5]. Thus, a cyber physical machine tool (CPMT) will have a digital
space with computing and networking capabilities [254] for the real-time status monitoring
of machining processes and controlling the machine tool with built-in computation and
intelligence for the decision-making support [255,256].

Nonetheless, DT driven AM is still in its nascency, but it has shown immense potential
to transform the additive industry with its autonomous capabilities stemming from the
AI embedded in the DT, as illustrated in Figure 30b [257]. Currently, considerable time
and cost are being devoted to AM for offline metrology, defect identification and process
optimization. DT can mitigate AM defects [258], enhance AM process repeatability [259]
and assure AM part quality [123] through real-time closed-loop feedback control. Thus,
a DT system looks to reliably address the shortcomings of AM through computational
intelligence and real-time collaborative data management [260]. Key application domains
include anomaly detection, online condition monitoring, process control, intelligent post-
processing and process optimization. This highlights the capacity of DT to widen the future
AM application space by improving its robustness and efficiency.

6.5. Embracing the Digitalization and Intelligence

As the intelligent technologies are gradually replacing traditional processes, smart
systems are becoming prominent in production-integrated manufacturing through sensor
connectivity, communicating technology, cloud computing, simulation, and data-driven
modeling [261]. Therefore, it is required to consider the human factors in the current
CPS to leverage human intelligence for supporting reliable man-machine interaction to
modify the design in real-time and execution of the workflow [262]. Moreover, during a
manufacturing operation, human–machine-interface (HMI) can provide near real-time 3D
interactive visualization by accessing data from multiple sources and providing information
for decision-making from the digital twin [263]. As illustrated in Figure 31a, manufacturing
process history is stored in a digital twin where the process chain is divided into three major
phases (engineering, manufacturing and end product) [78]. The system intelligence can
decide the type and extent of the additive/subtractive process based on the geometry and
the metallurgical data in DT. Future prospect remains on predictive analytics by establishing
a bidirectional connection between the DT and processes [264], thereby unlocking the M2M
and H2M capabilities through the HMI [265]. In this respect, intelligent decision-making
through augmented reality (AR) [266] can be a key enabling technology for intelligent
human–machine interaction for controlling and monitoring the additive and subtractive
manufacturing process.
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Moreover, the hierarchy of intelligent DT for manufacturing systems, especially for
AM, is illustrated in Figure 31b [267], where the four levels are implicit (based on the
knowledge of the system), instantiated (based on the sensor data to enable predictions),
interfaced (control and optimization of prediction) and intelligent (enabling complex de-
cision making in a real-time scenario). The use of AI to reason about the current system
state and autonomously tailor and optimize parameters in the physical system by adding
machine intelligence [268] will be focusing on intelligent and digital manufacturing.

7. Conclusions

Intelligent manufacturing has become a new research trend in recent years, as the ap-
plication of intelligence for monitoring, control and optimization of operations has become
typical for both subtractive and additive manufacturing. In subtractive manufacturing
(SM), the intelligence is used for real-time sensing, monitoring and control of machining
process parameters, i.e., cutting speed, tool temperature, tool wear or tool condition. In
additive manufacturing (AM), the machine intelligence is used for autonomous path plan-
ning, in-situ monitoring, defect detection and control of printing parameters and sensing
and controlling of melt pools. Further automation and intelligence can be achieved by
digital and cloud manufacturing by establishing machine-to-machine (M2M) connections,
introducing digital twins and applying machine learning and artificial intelligence for pro-
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cess optimization. This article aims to offer a comprehensive review of the state-of-the-art
intelligent subtractive and additive manufacturing processes. Despite the wide-ranging
research in this field, there has been a shortage of extensive reviews that summarize the
impact of intelligence in manufacturing processes. This article aims to fill that gap by
providing a thorough overview of the latest developments in this area, highlighting the
challenges and perspectives that remain to be addressed. The following key conclusions on
the current status and future directions can be drawn from this review:

7.1. Current Status

• The integration of artificial intelligence (AI) into machines and software are widely
recognized as a key enabler of process automation. However, for AI to fully realize its
potential to improve subtractive and additive manufacturing technologies, it is critical
that significant advances should be made in the areas of connectivity, sensing, data
collection and transmission;

• An on-machine measurement system is imperative for the implementation of auto-
matic compensation during tool path generation, which can be achieved through the
implementation of feedback control of the process parameters in intelligent machining.
Moreover, the integration of smart technology is crucial for the in-situ evaluation of
defects and quality control of additive manufactured (AM) parts;

• The generalization capability of most machine learning (ML) algorithms is well-known.
However, it is also widely acknowledged that the variability in the manufacturing
process can undermine the effectiveness of these algorithms. Moreover, AI-based
predictions are regarded as black-box style indications where the end user has limited
access on the decision-making rationale of the model. The lack of clarity due to the
complex computing architecture has reduced the trustworthiness of AI predictions,
especially when the process chains are dependent on inputs from various operations;

• The post-processing method of additively manufactured parts provides opportu-
nities for improvement in surface quality though the method is deeply integrated
with the application and the primary processing techniques. Moreover, conventional
finishing methods may prove inadequate in complex structures. To address this chal-
lenge, a hybrid process that considers the thermal history of the part is necessary to
create a digital thread in the tool path planning for intermediate and final machin-
ing operations. Furthermore, it is difficult to capture the intrinsic structure-process–
property performance relationship through intelligent techniques. Thus, most of the
current intelligent predictive models are material-dependent and may not work for a
different material;

• Hybrid or convergent manufacturing is the next-generation manufacturing process, of-
fering infinite possibilities of creating complex-shaped parts with desired dimensional
accuracy and surface finish, that are otherwise difficult to obtain by either subtractive
or additive manufacturing. However, the current commercial hybrid machines are
expensive, and the amortization period is long due to limited use cases. Integration
of intelligent and smart manufacturing tools, i.e., in-situ monitoring, sensing, and
control and application of ML and AI will be the near future direction of hybrid
manufacturing research;

• Digitalization of traditional manufacturing equipment and processes are the path
to keep up with the trend of automation and Industry 4.0. Small and medium size
industries can be benefit from the digital manufacturing technologies, which will allow
control of all the equipment in a factory by monitoring and controlling them from a
web cloud. However, there are challenges associated with the implication of digital
and smart manufacturing tools. A large number of sensors need to be installed on the
machine tool for data collection and storage, which may not be cost-effective for small
to medium-scale manufacturing industries. In addition to data collection, the accurate
data analysis is challenging;
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• The advancement in 3D printing technology has opened new avenues in the field
of bioprinting, with 4D printing being at the forefront of this revolution. The ability
to create personalized bio-printing solutions through 4D printing applications has
generated significant interest in recent times.

7.2. Future Prospects

• To overcome the challenges mentioned above and fully realize the potential of in-
telligent subtractive and additive manufacturing, continued research is required in
these areas, including advances in the collection and analysis of process data, and
the development of sophisticated and platform independent M2M communication
systems that can effectively transmit data in real-time. Moreover, to address limited
availability of training data for AI and ML models, future research should focus on
revealing the physics of the process and then use the physics-based findings to train
the model using ML techniques so that manufacturing science can be revealed with
the change of new operating conditions or input data;

• The integration of various smart sensors into real-time monitoring and feedback con-
trol systems will offer an in-depth understanding of the hybrid machining process.
This allows for a more complete evaluation of the process by dynamically incorpo-
rating thermal, acoustic and electromagnetic signals or even other information that
was ignored from a machining perspective. Therefore, a complex and innovative
algorithm will be needed to process such a data matrix that will ultimately enable the
implementation of high-performance adaptive and hybrid manufacturing techniques
beyond current perception;

• Future manufacturing trends will not only focus on combining additive and sub-
tractive manufacturing in a single platform but also will incorporate smart sensing
technology into the convergent manufacturing system to create an intelligent smart
convergent manufacturing system. In comparison to other manufacturing processes,
the hybrid systems needed to fabricate complete parts are still low. Thus, the rapid
expansion of hybrid processes is needed with adaptive learning, digital metrology, in
situ monitoring, and 3D model synchronization for smart factory applications;

• With rapidly evolved cloud manufacturing into an integrated cyber-physical system
(CPS) leveraging cloud services, virtualized resources and intelligent decision-making
capabilities enable the development of virtual machine tool, which can act as building
block for digital twin to facilitate cyber-physical manufacturing. However, to be truly
effective, the cloud manufacturing requires the provision of smart machine tools with
built-in computation and intelligence to support the optimal decision-making through
real-time monitoring of processes. Hence, a cyber-physical machine tool (CPMT) will
have a digital space with computing and networking capabilities to provide real-time
monitoring and feedback control, for example: edge computing;

• Four-dimensional printing requires a further leap forward in terms of technological
sophistication. However, in biomedical applications, such as personalized organ
printing, there is a mismatch between the printed part and the target surface due
to limited real-time knowledge of the target geometry. To address this challenge,
AI-based intelligent 3D and 4D printing can be used to predict the most likely behavior
of the printing process and help to develop personalized anatomical models. However,
collecting a large enough dataset for training the AI algorithms remains a critical
challenge in this field;

• Managing an end-to-end hybrid process requires experienced engineers, designers
and operators who are not always available. This creates bottlenecks in scaling up
these processes for industrial applications. The future research, thus, will be focused
on reducing the barriers for expert users through software and process automation
algorithms. In this respect, more emphasis will be needed on digital twin (DT) tech-
nology which has created a lot of significant advances in AM and SM processes for
evaluating the virtual representation. However, both spaces differ from each other.



Micromachines 2023, 14, 508 43 of 53

Therefore, the DT to overcome the divergence for the seamless inclusion of a product’s
mechanical and microstructural behavior to precisely obtain physical attributes before
the production process;

• Over the past decade, ML algorithms have been widely studied and adopted in various
manufacturing-related fields. However, the variability in manufacturing processes
can limit the effectiveness of these ML algorithms. To address this challenge, transfer
learning (TL) has emerged as a solution, allowing for transferring knowledge acquired
from one process variation to another. Despite current limitations in transmission
speed and data storage sizes, advancements in AI tools, such as ChatGPT by OpenAI
and Bard by Google offer a glimpse into a future where cross-disciplinary topics can
be understood in a more integrated manner.
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