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Abstract: Monitoring of ions in real-time directly in cell culture systems and in organ-on-a-chip plat-
forms represents a significant investigation tool to understand ion regulation and distribution in the
body and ions’ involvement in biological mechanisms and specific pathologies. Innovative flexible
sensors coupling electrochemical stripping analysis (square wave anodic stripping voltammetry,
SWASV) with an ion selective membrane (ISM) were developed and integrated in Transwell™ cell cul-
ture systems to investigate the transport of zinc and copper ions across a human intestinal Caco-2 cell
monolayer. The fabricated ion-selective sensors demonstrated good sensitivity (1 × 10−11 M ion con-
centration) and low detection limits, consistent with pathophysiological cellular concentration ranges.
A non-invasive electrochemical impedance spectroscopy (EIS) analysis, in situ, across a selected
spectrum of frequencies (10–105 Hz), and an equivalent circuit fitting were employed to obtain useful
electrical parameters for cellular barrier integrity monitoring. Transepithelial electrical resistance
(TEER) data and immunofluorescent images were used to validate the intestinal epithelial integrity
and the permeability enhancer effect of ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic
acid (EGTA) treatment. The proposed devices represent a real prospective tool for monitoring cellular
and molecular events and for studies on gut metabolism/permeability. They will enable a rapid
integration of these sensors into gut-on-chip systems.

Keywords: organ-on-a-chip (OoC); anodic stripping voltammetry; transepithelial electrical resistance
(TEER); electrochemical impedance spectroscopy (EIS); Caco-2 monolayer; Transwell™ plate

1. Introduction

From health-care applications to environmental monitoring, the development of
sensing platforms has attracted significant research interest. The last decade has shown a
growing demand for rapid, low cost and easy-to-use technologies for real-time analysis as
screening tools or diagnostic systems [1–3]. In this field, innovative bioelectronic devices,
integrating biological systems with chemical/physical sensors, can provide the opportu-
nity to monitor different parameters associated with specific diseases, metabolic disorders
and physiological alterations [4,5]. Currently, biosensing approaches are increasingly
employed as a component of micro-engineered cell culture systems, better known as
organ-on-a-chip (OoC) devices. OoC are miniaturized in vitro 2D/3D cell culture plat-
forms able to recapitulate physiological functions, cellular organization and features of
different organs and tissues [6–9].

Among various biomarkers, ion concentration detection in different matrices repre-
sents one of the main analytical challenges in biology [10], materials [11], food [12] and
environmental [13] sciences. The possibility of measuring the concentration of ions, such
as H+, Na+, Zn2+, Cu2+, K+, Ca2+, Mg2+, NO2

− and NO3
−

, can be an important instrument
in many biological studies since ions usually play a key role in cellular and organism-wide
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signaling, metabolism, and regulation [10]. For instance, zinc and copper are important
trace elements involved in many physiological and biochemical processes in the body. Zinc
plays a crucial role in several cellular mechanisms, including intestinal ion transport and
the integrity of the gastrointestinal tract; its homeostatic imbalance is associated with sev-
eral intestinal diseases such as inflammatory bowel disease and colorectal cancer [14–16].
Copper is an essential micronutrient, important for a correct cell function, and implicated
also in the integrity of the intestinal epithelium [17,18]. Homeostasis of metal ions in
the body is crucial, and an imbalance in their concentrations or mis-localization of these
ions is associated with specific pathologies such as Menkes, Wilson’s and Alzheimer’s
diseases. Understanding is needed of how these metal ions are regulated and distributed
in the body [19].

The most common and highly sensitive techniques for the quantitative determina-
tion of ions include atomic absorption spectroscopy (AAS), inductively coupled plasma-
mass spectroscopy (ICP-MS) and inductively coupled plasma-atomic emission spec-
troscopy (ICP-AES) [20]. However, although these laboratory-based techniques are
characterized by high performance and low detection limits, their equipment is bulky,
and the analyses are time-consuming, expensive and often require complex sample
pretreatments. In addition, the integration of AAS or ICP detection setups is not feasible
in transwell or microfluidic devices.

In the last few years, electrochemical analytical technologies have emerged in the
field of ion detection due to rapid measurement, high selectivity, low power consumption
and low cost of analysis [21]. Among them, anodic stripping voltammetry (ASV) is a
powerful technique for trace analysis of metal ions, such as Cu2+, Pb2+, Cd2+, and Zn2+

with low detection limits, good sensitivity, and selectivity [22]. Two main steps characterize
ASV: a first pre-concentration step at negative potential for a given time, followed by a
voltammetric detection scan. The pre-concentration step enables electroplating of the ion
of interest on the working electrode, while during the voltammetric measurement the
metal is stripped from the working electrode, giving an oxidation current peak. The main
advantage of the described technique relies on the possibility to tune the pre-concentration
time in order to detect metal ions at very low concentrations [23].

In contrast, ion selective electrodes (ISEs) are used also for potentiometric detection of
heavy metal ions. In a potentiometric ISE, the potential change induced by the accumulation
of the charged ion of interest is monitored [24,25]. This kind of electrode exploits an ion-
selective membrane (ISM) which contains an ionophore, that reversibly binds a specific type
of ion, promoting its detection [26]. However, the spontaneous process of ion accumulation
on the electrode, without a pre-concentration step, produces a small potential change,
which limits the ISE response causing a poor detection limit (LOD) [27,28].

Coupling electrochemical stripping analysis with the ion selective membrane (ISM), as
reported in [27], represents a good strategy to improve the selectivity (due to the ionophore)
and the sensitivity (due to the ASV technique) of the sensor. In addition, both the presence
of a selective membrane and a pretreatment step of impregnation prior to ASV reduce
the possibility of detecting interfering metals [23]. In the present work, copper and zinc
selective membranes were engineered and deposited on two separated working electrodes
on the same device allowing the transport of the selected ions and their detection using
square wave anodic stripping voltammetry [29]. Flexible and miniaturized sensors were
fabricated and applied to measure the permeation of copper and zinc in real-time across an
intestinal epithelium model.

Caco-2 cell line, isolated from human colorectal adenocarcinoma, is frequently used as a
model for the intestinal epithelium to study biological transport phenomenon in vitro [30,31].
Caco-2 cells grow in 21 days in a polarized monolayer characterized by the formation of
tight junctions between adjacent cells, separating the apical and the basolateral membrane
compartments [32–34]. The integrity of the epithelial monolayer is typically assessed in
real-time through transepithelial electrical resistance (TEER) measurements, performed in a
non-invasive manner via ohmic resistance-based or impedance-based measurements [35,36].
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In this study, Caco-2 cells were seeded in Transwell™ systems which are frequently
used for transport studies, permeability investigations and as comparative static systems
to evaluate the accuracy of the involved organ-on-a-chip model [37,38]. After 21 days,
Caco-2 cell monolayers were subjected to impedance spectroscopy analysis, in situ, across
a selected spectrum of frequencies (10–105 Hz); an equivalent circuit was applied to fit
impedance spectrum data to obtain electrical parameters as indicators of the cellular barrier
integrity. Ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA), a
calcium chelator, was used to induce controlled tight-loss of epithelial cell tight junctions
resulting in an increased permeability of the Caco-2 monolayer [39]. Flexible polymeric
membrane ion selective electrodes were employed to detect zinc and copper ion concentra-
tions in the apical and basolateral chamber of transwell supports, before and after EGTA
treatment, supported by TEER measurements and immunofluorescence staining of cells.
The experimental set-up and the use of ion selective sensors for cell culture monitoring
in situ represent an innovative application of this technology and a first step towards its
integration in a novel gut-on-a-chip system.

2. Materials and Methods
2.1. Materials

Polyvinyl chloride (PVC) of high molecular weight, 2-nitrophenyl octyl ether (o-
NPOE), sodium tetrakis [3,5-bis (trifluoromethyl)phenyl] borate (NaTFPB), the copper(II)
ionophore I—o-xylylene bis diisobutyldithiocarbamate (o-XBDiBDTC), potassium tetrakis(p-
chlorophenyl) borate (KTCPB), the zinc ionophore I—tetra butylthiuram disulfide (TBTDS),
tetrahydrofuran (THF), copper chloride, zinc chloride, phosphate buffered saline (PBS,
liquid, sterile-filtered, suitable for cell culture), ethylene glycol-bis(2-aminoethylether)-
N,N,N’,N’-tetraacetic acid (EGTA), were purchased from Sigma Aldrich, Merck KGaA,
Darmstadt, Germany. Bovine Serum Albumin (BSA), E-cadherin/CD324 Recombinant
Rabbit Monoclonal Antibody, Alexa Fluor® 647 Goat anti-Rabbit IgG secondary antibody,
SlowFade® Gold Antifade Mountant with DAPI were purchased from Thermo Fisher Scien-
tific Inc., Waltham, MA, USA.

2.2. Cell Culture and EGTA Treatment

Caco-2 cells (ATCC® HTB-37™, Manassas, VA, USA) were seeded in T-75 cm2 flasks
and maintained at 37 ◦C in a humidified atmosphere containing 5% CO2 and 5% air. The
culture medium adopted was the complete Minimum Essential Eagle Medium (MEM;
Corning, NY, USA) supplemented with 20% fetal serum bovine, 1% non-essential amino
acids, 1% L-glutamine, 1% penicillin-streptomycin solution. The cells were trypsinized
when the confluence reached 80–90% and then they were seeded at 5 × 105 cells cm−2 in
transwell support suitable for a 6-well plate. A stock solution of 5mM EGTA in PBS, pH
adjusted to 7.4 with 1 M Tris-HCl, was prepared and added in Transwell™ cell culture
systems for 2 h, to disrupt the Caco-2 monolayer, increasing paracellular permeability.

2.3. Sensors Fabrication

Cu2+ and Zn2+ ion selective electrodes (ISE) were prepared by a viscosity-controlled
drop casting of two specific ion selective membranes (ISMs) on different gold working
electrodes on flexible Kapton substrate sensors. The electrodes were fabricated on flexible
Kapton substrate with an industrial standard process, 50 µm thick, with copper interconnec-
tion and pads, 35 µm thick. A standard ENIG (electroless nickel immersion gold) process
enabled a 3 µm nickel layer/50 nm gold layer to be been realized onto electrodes and
pads areas. The flexible sensor consists of a reference electrode (middle electrode) and
two working electrodes (side). The embedded Ag/AgCl reference electrode was prepared
by high vacuum evaporation of an Ag layer (99.99% purity), 400 nm thick, onto the middle
electrode by shadow masking. The Ag surface was electrochemically chlorinated to AgCl
in 0.1 M KCl solution at 0.03 mA/mm2 constant current density for 60 s, applied by a
Keithley 2450 SourceMeter (Figure 1).
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Figure 1. Flexible ion selective electrodes. Photograph of the ion selective sensor on flexible Kapton
substrate (70 × 4 mm2 tapered tip) and close-up schematic image of the sensitive area structure of
sensor. Two different working electrodes supported by a common Ag/AgCl reference allow detection
of two different ions.

2.4. Membrane Blend Fabrication

The zinc ion selective membrane was prepared as reported by Kojima et al. [40]. Briefly,
37.5 mg of PVC were dissolved in 1.25 mL of THF, together with 50 mg (48 µL) of the
plasticizer o-NPOE, 5 mg of the zinc ionophore I, and 0.75 mg of the salt with lipophilic
anion KTCPB. After the dissolution of all components, the homogeneous mixture in THF
was dropped on the working electrode and allowed to evaporate for approximately 24 h at
room temperature. The composition of the copper ion selective membrane was based on
the studies of Eylem et al. [11], but the relative molar abundances were balanced to that
of the zinc membrane, in order to obtain a solution with compatible viscosity and a final
membrane with good sensing capabilities. As a final customized protocol, 37.5 mg of PVC
was dissolved in 1.25 mL of THF, together with 50 mg (48 µL) of the plasticizer o-NPOE,
6.15 mg of the copper ionophore I, 1.33 mg of the salt with lipophilic anion NaTFPB. After
the dissolution of all components, the homogeneous mixture in THF was dropped on the
working electrode and allowed to evaporate for approximately 24 h at room temperature
before measurement.

2.5. TEER Measurements

Impedance spectroscopy of Caco-2 monolayer was performed to define transepithelial
electrical resistance (TEER), before and after EGTA treatments. Figure 2a shows the adopted
technical solution for a reliable TEER measurement integrated into multiwell platform;
two circular transparent electrodes, about 20 mm diameter, were realized with an ITO-
coated PET foil and inserted at the bottom of the well and into the upper side of the
transwell insert. In order to guarantee a reliable electrical contact, two commercial FPC-
to-DIP adapters were used for ITO electrodes [41]. Impedance data were recorded over
a frequency range from 10 Hz to 100 kHz, at an amplitude of 10 mV, no bias, using an
impedance analyzer (MFIA, Zurich Instruments, Zurich, Switzerland). Impedance spectra
were analyzed and fitted with an optimized equivalent electric circuit using Zview software
(Scribner Associates Inc., Southern Pines, NC, USA).
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Figure 2. Photographs of sensor-integrated Transwell™ plates. TEER measurement set-up by
circular transparent electrodes with FPC-to-DIP adapters (a). Ion-selective flexible sensors inserted in
transwell plate, one for each compartment (top and bottom) of the well; each sensor can measure
two different ions with a common thin film Ag/AgCl reference electrode (black electrode on flex
between the two working electrodes) (b).

2.6. Measurements of Ion Sensing Capabilities

A series of Cu(II) and Zn(II) solutions, at various concentrations (1 × 10−11, 1 × 10−10,
1 × 10−9, 1 × 10−7, 1 × 10−6 M) were prepared in PBS (pH 6.5) starting from copper
chloride (CuCl2) and zinc chloride (ZnCl2) respectively. Electrochemical measurements
were performed with Ivium Vertex One potentiostat (Ivium Technologies, Eindhoven,
Netherlands) connected to a computer with an electrochemistry software (PS Trace and
Ivium). A two-electrode configuration, consisting of a Cu2+-ISE and a Zn2+-ISE used
separately as working electrodes and an integrated Ag/AgCl reference electrode, was
applied. Square wave anodic stripping voltammetry (SWASV) tests were performed to
calibrate the sensors at different Cu2+ concentrations. First, after 5 min of impregnation in
the analyte solution, a pre-concentration step at constant −1.0 V for 30 s was conducted in
order to accumulate and reduce copper ions on the ion selective membrane. This first step
was immediately followed by square wave voltammetry (SWV) from −0.2 to +0.5 V with
4 mV potential step increment, 20 mV pulse amplitude, and 25 Hz frequency; values of
the oxidation peak current were plotted as a function of Cu2+ concentration, to obtain
the calibration graph. The Zn2+ calibration plot was performed by SWASV with a pre-
concentration step at −1.2 V for 30 s, and the SWV from −1.0 to −0.2 V with 8 mV potential
step increment, 50 mV pulse amplitude, and 50 Hz frequency. After every SWASV, a cleaning
potential at 0.3 V for 90 s was applied to strip ions from the electrode surface. Transwell™
inserts, employed in cell cultures, were integrated with two different flexible sensors, one for
each transwell chamber (apical and basolateral) (Figure 2b). SWASV was carried out for
copper and zinc ion detection directly in the Transwell™ cell culture system, with the same
method used for the calibration plot, including the intermediate steps of cleaning.

2.7. Immunofluorescent Staining

Immunofluorescence analyses were performed on Transwell™ inserts, 21 days after
seeding, before and after EGTA-treatment. Caco-2 cells were rinsed with PBS and fixed
with 4% paraformaldehyde for 15 min, at room temperature. Followed by blocking step
with PBS containing 5% BSA for 1 h at room temperature, the cells were labeled with
E-cadherin/CD324 Recombinant Rabbit Monoclonal Antibody at a dilution of 1:500 in PBS
with 1% BSA and incubated overnight at 4 ◦C. After three washes, cells were incubated
with Alexa Fluor® 647 Goat anti-Rabbit IgG secondary antibody at a dilution of 1:400 in PBS
for 30 min, at room temperature. Lastly, nuclei were stained with SlowFade® Gold Antifade
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Mountant with DAPI and imaged with Zeiss Axio Imager M2 (Carl Zeiss Microscopy, LLC,
White Plains, NY, USA).

3. Results and Discussion
3.1. Experimental Design

The idea of the present work is to develop an integrable electrochemical sensor able
to detect in real-time low concentrations of metal ions of interest in a cell culture system.
Experiments of ion sensing were performed in Transwell™ plates inclusive of permeable
membrane inserts where Caco-2 cells were seeded to form a polarized epithelial monolayer.
Cell differentiation and the consequent formation of intercellular tight junctions, struc-
turally resemble the intestinal epithelium and provide a physico-chemical barrier to the
passage of ions and small molecules [31]. Due to these properties, this epithelial model is
widely used for ion and drug transport studies. Typically, ion solutions or drug candidates
are added to the apical compartment and detection is usually achieved by sampling both
apical and basolateral media, to study the epithelium permeability or the distribution of
specific ions [19,42]. In this work, flexible sensors for zinc and copper ion detection in the
apical side of epithelium (top transwell cavity) and basolateral side of epithelium (bottom
transwell cavity) were fabricated and integrated. Moreover, TEER measurements and
immunofluorescence staining of cells were performed to validate the permeability of the
monolayer before and after EGTA treatments.

3.2. TEER Measurements and Equivalent Electrical Circuit Fitting

A conventional method to monitor growth and differentiation of in vitro Caco-2 cell
epithelial monolayer is based on Trans-Epithelial Electrical Resistance (TEER) measure-
ments. TEER is a quantitative technique employed to verify the formation of tight junctions
in live cells in a quick, non-destructive, and non-invasive manner. In addition, TEER
offers the possibility to confirm the integrity of the cellular barrier before studying transep-
ithelial passage of ions, chemicals, or drugs. The standard method for measurement of
TEER relies on ohmic resistance calculation as the ratio of the voltage and current [43].
Two electrodes, placed one in the apical compartment and the other in the basolateral
side, are used to impose a direct current (DC) voltage and measure the resulting current.
TEER, calculated according to Ohm’s law, is the sum of medium, filter and cell layer re-
sistances [44]. Although the method described above is commonly used, even if suffering
from measurements errors due to electrodes spacing variations, TEER values can be also
extracted through electrochemical impedance spectroscopy (EIS) combined with a fitting
equivalent circuit. Impedance spectroscopy is a more accurate and advantageous technique
than the classical method of TEER measurements. Applying a small amplitude alternating
current (AC) signal across a range of frequencies, and measuring the amplitude and phase
response of the resulting current, the impedance data can provide additional information
about structural and physical properties of the cellular monolayer, avoiding DC voltage
damage risk to cell layer [45]. Indeed, impedance experimental data can be analyzed using
an equivalent circuit model, by combining circuit elements with electrical parameters of
the cell barrier. Impedance spectroscopy of Caco-2 cells grown on Transwell™ filters for
21 days was recorded, in order to verify the completed formation of the epithelial barrier.
Moreover, the impedance response of the cellular monolayer to EGTA treatment, a calcium
chelator used to disrupt the epithelial barrier, thus increasing the paracellular permeability
and transepithelial resistance, was measured. A stock solution of 5 mM EGTA in PBS was
prepared and added to the apical side of the Transwell™ inserts. An impedance analyzer,
connected with two electrodes separated in the apical and in the basolateral Transwell™
compartments, was set with an amplitude of 10 mV and at a frequency range from 10 Hz to
100 kHz. The data were fitted with the equivalent circuit depicted in Figure 3a. A resistance
element, representing TEER and the ionic flux, and a capacitance element, indicating the
capacitive behavior of the cellular membrane, were connected in parallel. The choice to
consider two RC-elements in series arises from the assumption of a polarized cell layer
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with different structure and composition of the cell membrane in the apical and basolateral
sides [44]. An additional resistance was considered as the resistive behavior of the medium.
Nyquist plots of EIS showed a different response before and after exposure of the Caco-2
layer to EGTA (Figure 3b). When the epithelial barrier was treated with EGTA, the Nyquist
graph displayed an altered trend and two semicircles appeared, indicating changes in
resistance of apical and basolateral membranes. Fitting parameters confirmed the effect of
EGTA on epithelial permeability. The total electrical impedance for the equivalent circuit in
Figure 3a, can be calculated by the equation:

Z = Rmedia +
R1

1 + jωR1C1
+

R2

1 + jωR2C2
(1)

where Rmedia is the resistance of the medium, R1 and C1, R2 and C2 are the resistance and
the capacitance of the apical and basal side of the epithelium, respectively, j is the imaginary
unit, and ω is the radial frequency [46]. TEER and capacitance values of the total epithelial
layer can be summarized as follows:

TEER = R1 + R2 (2)

1
C

=
1

C1

1
C2

(3)
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Figure 3. Impedance spectroscopy of 21 days cultivation of Caco-2 cells in transwell inserts, before
and after EGTA treatment. Schematic representation of the applied equivalent circuit indicating the
electrical parameters of the cell layer (a). Nyquist plots of EIS analysis of Caco-2 monolayer between
10 Hz and 100 kHz, before and after 2 h of EGTA exposure (b).

Fitting results showed decreasing values of TEER after 2 h of treatment with EGTA,
starting from a value of 746 ± 54 Ω·cm2 to 288 ± 29 Ω·cm2. These data confirmed the
effect of the calcium chelator on the integrity of the Caco-2 layer, leading to an increased
permeability of the cellular barrier to ions and molecules. In contrast with TEER, the
calculated membrane capacitance of the cells has not changed significantly, with an average
value of 1.8 ± 0.4 µF/cm2, suggesting that EGTA exposure affects mainly tight junctions,
without considerably altering the cell membrane structure [47].



Micromachines 2023, 14, 496 8 of 13

3.3. Ion-Sensing

In order to guarantee a straightforward integration into Transwell™ cell culture sys-
tems, different flexible ion selective electrodes were employed to monitor zinc and copper
ions in real-time. The developed ion sensors are based on a gold electrode deposited on
Kapton and covered by a polymeric ion selective membrane, employed for anodic strip-
ping voltammetry analysis. The working principle of our sensors is reported in Figure 4.
Briefly, the electrode is soaked into each analytical solution to allow the impregnation of the
analyte ion into the membrane and to induce the formation of the ion-ionophore complex
(Figure 4a, step 1); after the impregnation phase, a negative potential is applied to the
working electrode to induce the migration of the ion towards the gold interface and its
reduction (electroplating) (Figure 4b, step 2). Finally, a voltammetric scan is performed
to “strip” the analyte from the gold surface and to oxidize it, resulting in a current peak
proportional to its concentration (Figure 4c, step 3). The reactions of the three steps for both
copper and zinc ions are shown below:

Cu2+
(l) + L(ISM) → Cu2+ L(ISM) (step 1);

Cu2+ L(ISM) → Cu0
(g) (step 2);

Cu0
(g) → Cu2+ L(ISM) (step 3).

Zn2+
(l) + L(ISM) → Zn2+ L(ISM) (step 1);

Zn2+ L(ISM) → Zn0
(g) (step 2);

Zn0
(g) → Zn2+ L(ISM) (step 3);

where L is the ionophore, l the analyte solution, ISM the polymeric ion selective membrane,
g the surface of the gold electrode.
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Electrochemical characterization of sensors were performed at various concentrations
of Cu(II) chloride (CuCl2) and Zn(II) chloride (ZnCl2) solutions in PBS (Figure 5a,c). The
resulting calibration curves, plotted by the Cu2+ and Zn2+ oxidation peak current as a
function of copper and zinc ions concentrations, were shown in Figure 5b,d. A linear
relation was observed for both Cu2+ and Zn2+ concentrations in the range from 1 × 10−11

to 1 × 10−6 M (R > 0.99). The peak current increased with the CuCl2 and ZnCl2 concen-
trations and the calibration equation was y = 1.64 × 10−7 x + 1.97 × 10−6 for copper, and
y = 5.36 × 10−7 x + 6.07 × 10−6 for zinc. The relative standard deviation (RSD) for every
concentration point was lower than 10.63% for copper and RSD < 8% for zinc. The limit of
detection (LOD), calculated using the relation 3 σ/m, where σ is the standard deviation
of the peak current for the blank sample and m is the slope of the calibration curve, is
approximately 2.51 × 10−12 for copper and 6.02 × 10−12 for zinc.
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Figure 5. Electrochemical characterization of ion sensors. Square wave voltammograms of Cu2+

at different concentrations (1 × 10−11, 1 × 10−10, 1 × 10−9, 1 × 10−7, 1 × 10−6 M) in PBS (a); plot
of CuCl2 peak currents vs. log Cu2+ concentrations (b). Square wave voltammograms of Zn2+ at
different concentrations (1 × 10−11, 1 × 10−10, 1 × 10−9, 1 × 10−7, 1 × 10−6 M) in PBS (c); plot of
ZnCl2 peak currents vs. log Zn2+ concentrations (d).

After integrating ion selective sensors in a Transwell™ cell culture system, square
wave anodic stripping voltammetry (SWASV) was performed to detect zinc and copper
ions flux from the apical to the basolateral compartments before and after EGTA treatment,
in order to test the ion sensing in real-time. A solution of CuCl2 (1 × 10−6 M) in PBS
(pH 6.5) replacing culture medium was added to the apical side of the transwell in which
Caco-2 cells were grown for 21 days, whereas in the bottom side, the medium was replaced
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with pure PBS. Voltammetry measurements in the first minutes confirmed the highest
current peak in the apical side at potential of about 0.1 V (T0, Figure 6a) and the absence of
peak for the basolateral side (T0; Figure 6b). When the Caco-2 layer was damaged by EGTA
exposure, the copper solution flowed through the damaged junctions, from the apical to
the basolateral side. One hour and two hours after the treatment, SWASV measurements
were acquired and the resulting current peaks revealed a progressive decrease of copper
ions concentration at the top, matching increased current peaks at the bottom side (blue
and red lines, Figure 6a,b). The data showed a reduction of about 40% and 70% of the
peak current after 1 h and 2 h, respectively, from the EGTA treatment. Similarly to copper
detection, zinc chloride (ZnCl2) solution (1 × 10−6 M) in PBS (pH 6.5) was added in the
transwell and the voltammograms at different time points were observed. As shown in
Figure 6c,d, an analogous trend was observed also for zinc detection. Current peaks at
potential between −0.5 V and −0.4 V were recorded: current peaks decreased by 45% and
54% were measured in the apical side of the transwell 1 h and 2 h after the EGTA treatment,
respectively; at the same time increasing concentrations of zinc ions were collected in the
basolateral side before and after the disruption of the epithelium.
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culture system at different time points before and after EGTA exposure.
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3.4. Immunofluorescent Images

Immunofluorescent staining was performed on the transwell insert, 21 days after seed-
ing, before and after EGTA-exposure, in order to confirm the results obtained from TEER
analysis and ion sensing measurements. EGTA acts as a calcium chelator, causing the disso-
ciation and disruption of tight junctions (TJ) and adherent proteins (AJ), usually involved
in cell–cell adhesions of the intestinal epithelium. Fluorescence imaging of E-cadherin,
a type of adherent protein, is indicative of the Caco-2 monolayer integrity. A confluent
cell layer, with marked E-cadherin, was observed before any treatment (Figure 7a). In
contrast, after 2 h of EGTA-exposure, fluorescence imaging revealed an altered localization
of the adherent proteins, indicating that the Caco-2 layer was compromised (Figure 7b). A
reduced distribution of E-cadherin suggests a loss of cell adherence and, as consequence,
an increased permeability of the epithelium. These results confirm the decreased values
of TEER after EGTA exposure and justify the high passage of ions through the Caco-2
monolayer, from the apical to the basolateral side of the transwell plate.
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Figure 7. Fluorescent microscopy images of Caco-2 epithelial cell layer. Caco-2 monolayer, 21 days
after seeding, before (a) and 2 h after (b) EGTA exposure. Cells were stained for E-cadherin (anti-E-
cadherin Alexa Fluor 647, red) and nuclei (DAPI, blue).

4. Conclusions

The development of a sensors-integrated cell culture platform, for TEER and ion
detection measurements in situ and in real-time was reported. Flexible and miniaturized
ion selective sensors were fabricated by using different ion selective membranes which
enhance selectivity and were employed for SWASV measurements of low ion concentrations
in Transwell™ cell culture systems. Electrochemical measurements were performed at
different time points in order to evaluate the flux of ions, like zinc and copper, across a
Caco-2 monolayer in real-time. Interesting results were obtained from square-wave anodic
stripping voltammograms: a clear decrease of ion concentrations was revealed in the
apical chamber of transwell after Caco-2 layer disruption through EGTA treatment. In situ
impedance spectroscopy and immunofluorescent staining analysis confirmed the effect
of the calcium chelator on tight junctions and paracellular permeability of the intestinal
monolayer, validating the data obtained from ion sensing measurements. The proposed
device represents an innovative tool for monitoring cellular and molecular events, and
for studies on gut metabolism and permeability. It sets the stage for chemical (ions) and
physical (TEER) sensors integration in the future gut-on-chip microphysiological systems.
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