
Citation: Weng, X.; Lin, X.; Liu, Y.;

Xu, C.; Zhan, L.; Wang, S.; Chen, D.;

Yang, Y. A Reliability System

Evaluation Model of NoC

Communication with Crosstalk

Analysis from Backend to Frontend.

Micromachines 2023, 14, 469. https://

doi.org/10.3390/mi14020469

Academic Editor: Piero Malcovati

Received: 23 December 2022

Revised: 15 February 2023

Accepted: 15 February 2023

Published: 17 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

A Reliability System Evaluation Model of NoC Communication
with Crosstalk Analysis from Backend to Frontend
Xiaodong Weng 1,* , Xiaoling Lin 2, Yi Liu 1,*, Changqing Xu 3,* , Linjun Zhan 3, Shunyao Wang 3,
Dongdong Chen 1 and Yintang Yang 1

1 School of Microelectronics, Xidian University, Xi’an 710126, China
2 Technology on Reliability Physics and Application Technology of Electronic Component Laboratory,

China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China
3 Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China
* Correspondence: xdweng@stu.xidian.edu.cn (X.W.); yiliu@mail.xidian.edu.cn (Y.L.); cqxu@xidian.edu.cn (C.X.)

Abstract: Network on chip (NoC) is the main solution to the communication bandwidth of a multi-
processor system on chip (MPSoC). NoC also brings more route requirements and is highly prone
to errors caused by crosstalk. Crosstalk has become a major design problem in deep-submicron
NoC communication design. Hence, a crosstalk error model and corresponding reliable system
with error correction code (ECC) are required to make NoC communication reliable. In this paper,
a reliability system evaluation model (RSE) of NoC communication with analysis from backend to
frontend has been proposed. In the backend, a crosstalk error rate model (CER) is established with
a three-wire RLC coupling model and timing constraints. The CER is used to establish functional
relations between interconnect spacing, length and signal frequency, and test system reliability. In the
frontend, a reliability system performance model (RSP) is established with a CER, reliability method
cost and bandwidth. The RSE summarizes the frontend and backend model. In order to verify
the RSE model, we propose a reliability system with a hybrid automatic repeat request technique
(RSHARQ). Simulation demonstrates that the CER model is close to real circuit design. Through the
CER and RSP model, the performance of RSHARQ could be simulated.

Keywords: network on chip; interconnects; crosstalk; hybrid automatic repeat request

1. Introduction

Network on chip (NoC) has emerged as a promising solution for multicore system on
chip communication design [1,2], which overcomes the complexity of wire delay and flexi-
bility in chip architectures [3–6]. NoC is a packet-based, on-chip communication switching
network designed for communication among the intellectual property (IP) cores of SoC
systems [7]. NoCs use packets to exchange data between processing elements (PEs) via net-
work fabric that consists of resource network interfaces (RNI), routers and interconnecting
links. Among these, interconnection links are the most affected by crosstalk [8].

Crosstalk is a type of noise which is introduced by an unwanted coupling between a
node and its neighboring wire or between two neighboring wires [9]. As technology scales
down, the dimensions of interconnects also scale down. This reduces the spacing among
interconnects [10]. With the high signal frequency and small spacing between interconnects,
the coupling between the lines has become well known [11,12]. Coupling between signal
lines can cause logic failures and timing degradation in digital systems [13]. Crosstalk
has become the most critical concern in modern sub-10 nm integrated circuits [14]. This
coupling causes problems that can be addressed by various methods like shielding [15–20],
inserting repeaters [21–25] or buffers [26–31], duplication [32] and crosstalk avoidance code
(CAC) [33–36]. Insertion of buffers and shielding has more area cost when compared to
duplication or CAC [37].
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Various error correction code (ECC) schemes have been proposed to protect communi-
cation between IP cores [38–41]. In [38,39], the authors focus on weighing the performance
and design cost of ECC. In [40,41], which address improving the transient fault tolerance,
have shown that implementing complex ECC schemes incurs high area overhead and
high energy dissipation and may adversely affect the performance of the NoC. They use
assumed crosstalk error injection to verify their schemes. The error rate caused by crosstalk
is relevant to the spacing between interconnects and the frequency of NoC. Bandwidth is
mainly determined by spacing between interconnects and working frequency. Hence, a
crosstalk error model and corresponding reliable system with ECC are required to make
NoC communication reliable.

In this paper, a reliability system evaluation model of NoC communication with
analysis from backend to frontend has been presented (BFRS). In the backend, with a three-
wire RLC coupling model, an error rate model considering timing constraints (SSTC) is
proposed to establish functional relations between interconnect spacing, length and signal
frequency. With different nodes’ dimensions, the SSTC calculates out error rates modeled
with the physical size of interconnects and the working environment, which can be used
to test the system’s reliability. In the frontend, effective bandwidth can be modeled with
route spacing, working frequency, encode cost on code length and automatic repeat-request
(ARQ) cost with error injection rates. The reliability system performance model (RSP) can
be modeled with bandwidth and effective bandwidth. BFRS summarizes the frontend to
backend model. In order to verify BFRS model, we propose a reliability system with a
hybrid automatic repeat request technique (RSHARQ). RSHARQ uses Hamming code as
ECC and a cyclic redundancy check (CRC) with the proposed code transmission scheme as
ARQ. Finally, simulation results are shown.

2. The Methods of Establishing RSP Model and RSHARQ
2.1. Three-Wire Coupling Interconnect Model

Referring to [10,42], Section 2.1 establishes the RLC coupling model of interconnects,
as Figures 1 and 2 show.
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Figure 1. A coupling interconnect model: (a) is the equivalent capacitance model; (b) is the dimen-
sions of an interconnect.

Figure 1 is the cross-sectional view of the coupling interconnect model. Figure 1a
shows the equivalent capacitance model of coupling interconnects. Cg is the coupling
capacitance between an interconnect and the grounding metal layers. Cc is the coupling
capacitance of adjacent interconnects. Figure 1b shows the dimensions of an interconnect.

Figure 2 shows the distributed RLC spice model of an interconnect, where the inter-
connect is equivalently divided into n segments. Vin is the driving voltage source, Rth is
the driving resistance, and Cf is the equivalent load of the interconnect.
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All parameters mentioned above can be calculated from the interconnect dimensions
shown in Figure 1b, the material parameters, the working status parameters (called timing
constraint parameters as well) and the formulas listed below.

Dimension parameters of an interconnect include: the length l, width w, thickness
t, spacing s and distance h. Material parameters include: the insulating layer relative
dielectric constant εr and interconnect resistivity ρ. Working status parameters include: the
rising time tr and falling time tf.

Referring to [42–45], formulas are shown below:

R =
ρ · l
w · t (1)

L =
µ0 · l

2π

[
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)
+

1
2
+

0.22(w + t)
l

]
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2π

[
ln
(

2l
s + w

)
− 1 +

s + w
l

]
(3)
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Cg = ε0εr
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·
(
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t + 4.53h

)0.07
]

(5)

Cc = ε0εr

[
1.41
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s

e−
4s

s+8.01h + 2.37
(

w
w + 0.31s

)0.28
·
(

h
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]
(6)

n ≥ 10
(

l
V · tr

)
(7)

where R is the resistance of the whole interconnect, L is the self-inductance of interconnects,
M is the mutual inductance between interconnects, µ0 is the vacuum permeability, kM is
the mutual inductance coefficient, ε0 is the vacuum dielectric constant, V is the propagation
velocity of electromagnetic wave in interconnects, and n is the number of the three-wire
distributed RLC spice model’s interconnect segments.
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2.2. An Error Rate Model with RLC Wire Coupling Model and Timing Constraints (SSTC)

With the three-wire RLC coupling model of interconnects and different bestirring
sources on the three wires, wire delays could be simulated out with spice. In this section,
the measurement method of crosstalk errors and error rates are presented.

In digital circuit design, we use the timing constant parameters input delay and output
delay to describe the delay caused by signals passing through wires and ports. Input delay
means delay caused by signals passing from outside to inside through ports. Output delay
means delay caused by signals passing from inside to outside through ports. Generally,
we set the input delay and output delay as 60% of the timing cycle length. The delay of
signals passing through ports is set as 20% of the cycle length, so the wire delay is 40% of
the cycle length.

With the bestirring source frequency, the timing cycle length can be obtained. If the
signal wire transmission delay is greater than 40% of the timing cycle length through spice
simulation, coupling crosstalk will cause bit errors on the signal line.

With simulation results of all possible bestirring sources, we can build the SSTC model.
Through the SSTC model, an interconnect maximum operating frequency is shown in

Equation (8):

fm =
0.4

ttdm
(8)

where ttdm is the delay of transmission through wires. fm is the maximum working frequency.

2.3. A Reliability System Performance Model (RSP)

Bit errors can be corrected or detected by a reliability system. ECC is used to correct
n-bit errors and detect n + 1-bit errors; ARQ is used to detect n-bit errors without the
ability to correct errors, where n is the length of the error bits. If errors detected could not
be corrected, the system will send data again. HARQ is a scheme combining ECC and
ARQ. Considering ECC and ARQ integration, a reliability system performance model with
relationship evaluation between error rates, reliability method cost and bandwidth has
been presented. Details of the RSP model are shown below.

Most parameters mentioned in Section 2.1 are decided by chip fabrication tech-
nology. The designer can only decide the spacing and length of interconnects. For a
given length of an interconnect, crosstalk error rates e can be expressed as function g, as
Equation (9) shows:

e = g(s, fm) (9)

In digital circuit design, the spacing between interconnects determines the maxi-
mum amount of route lines and the max bandwidth B. Equation (9) can be modified into
Equation (10):

e = g
(

1
B

, fm

)
(10)

Assuming that a reliability system with HARQ could correct a bit errors and de-
tect b bit errors in a code of length n bits, where b is larger than a, the possibilities of
single transmission success Pa and system accurate judgment Pb can be calculated with
Equations (10) and (11).

Pa =
a

∑
m=0

n!
m!(n−m)!

· em(1− e)n−m (11)

Pb =
b

∑
m=0

n!
m!(n−m)!

· em(1− e)n−m (12)

The possibility of resending data in single transmission is P:

P = Pb − Pa (13)
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The possibility of reliability scheme failure is Pf:

Pf = 1− Pb (14)

The expected number of one-packet transmission times is Nt:

Nt = 1 · P + 2 · P(1− P) + 3 · P(1− P)2 + · · ·+ l · P(1− P)l−1 + · · · = 1
P

(15)

The effective throughput of the HARQ reliability system is ηSR:

ηSR =
1

Nt

(
k
n

)
=

(
k
n

)
P (16)

where k is the original code length without ECC encoding.
As a result, the effective bandwidth Bw can be calculated as follows:

Bw = ηSR · B (17)

With the formula mentioned above, the RSP model has been built to explain the
relationship between error rates, reliability method cost and bandwidth.

Summarizing the SSTC model and RSP model, a reliability system evaluation model
(BFRS) is established from backend to frontend.

2.4. A Reliability System with HARQ and CRC Technique (RSHARQ)

In order to verify the BFRS model, we develop a reliability system with HARQ and
the CRC technique (RSHARQ). The system flowchart is shown in Figure 3. The details of
RSHARQ are shown below.
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Define one packet with 4 flits, and each flit has 5 bits. In 20 bits, transmission informa-
tion occupies 16 bits, while the rest is for urgent words or CRC words. In order to improve
the system reliability, the lines for CRC words or urgent words should not be influenced by
crosstalk. Each flit has 4 information bits and a special bit.

In the first operation cycle, the system sends 16 bits information and 4 bits CRC words.
If the CRC check is right, the transmission is successful. If not, the system sends a packet
with each flit’s Hamming word, which has a length of 12 bits. If the ECC detects a multi-
error, the system will execute ARQ for each flit. If the CRC check is still false with ECC
correcting, the system will execute ARQ.

3. Results

The simulation was carried out with the University of California, Berkeley’s Predictive
Technology Model (PTM) 65 nm nodes and a TSMC 28 nm High-Performance Computing
(HPC) library. Table 1 shows values of a PTM 65 nm interconnect. Table 2 shows values of
a TSMC 28 nm interconnect. Notably, 65 nm node values are used to verify the processes of
the SSTC and RSP model. Due to the completed library files of 28 nm nodes, we compare
the SSTC model result with parameters extracted from the backend.

Table 1. PTM 65 nm interconnect values.

Dimensions/µm Material

w = 0.14 s = 0.14 ρ = 2.2× 10−8Ω/m
h = 0.20 t = 0.35 εr = 2.2

Table 2. TSMC 28 nm interconnect values.

Dimensions/µm Material

w = 0.05 s = 0.05 ρ = 4.02× 10−8Ω/m
h = 0.085 t = 0.09 εr

1 = 2.63/3.55
1 In 28 nm library, the εrc of Cc is 2.63 and the εrg of Cg is 3.55.

The simulation adopts the Cadence process to work out. INNOVUS and QRC are
used to simulate the backend mentioned in the SSTC model. SPECTRE is used for Hspice
simulation. Additionally, MATLAB is used to calculate the parameters mentioned in the
models and simulate the frontend mentioned in the RSP model and RSHARQ.

Firstly, 65 nm node simulation is presented. The driven voltage is set to 1.2 V, the
equivalent drive resistance is set to 156 Ω, and the equivalent load capacitance is set to
64 fF. The wire length is set as 500 µm.

Directional arrows are used to indicate the bestirring source. For example, “-“ means
the signal of the wire is not changing, “↑” means the signal of the wire is changing from
low voltage to high voltage, and “↓” means the signal of the wire is changing from high
voltage to low voltage. We use directional arrow aggregates to express the bestirring source
on the three-wire coupling model, such as (-, ↑, ↓).

Table 3 shows the three-wire coupling model spice simulation results on a 65 nm node.
From Table 3, the delay can be divided into (120, 110, 95, 80, 74, -). For convenience

of description, the delay around 120 ps called G6 delay, which occurs in the middle line
with two different signals changing direction in the side lines, as (↑, ↓, ↑). Similarly, the
delay around 110 ps is called G5 delay, the delay around 95 ps is called G4 delay, the delay
around 80 ps is called G3 delay, the delay around 74 ps is called G2 delay, and the delay
around 0 is called G1 delay. With Formula (8), the G6 frequency, denoted as G6. Freq, is
0.4/120 ps = 3.3 GHz. Similarly, G5. Freq is 3.6 GHz, and G4. Freq is 4.2 GHz.
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Table 3. Wire delay of 65 nm three-wire coupling model.

Signal Left Wire/ps Mid Wire/ps Right Wire/ps

(-, -, -) - - -
(-, -, ↑) - - 76.17
(-, -, ↓) - - 76.17
(-, ↑, -) - 93.7 -
(-, ↑, ↑) - 72.95 56.97
(-, ↑, ↓) - 110.2 95.38
(-, ↓, -) - 93.7 -
(-, ↓, ↑) - 110.2 95.38
(-, ↓, ↓) - 72.95 56.97
(↑, -, -) 76.17 - -
(↑, -, ↑) 73.43 - 73.43
(↑, -, ↓) 80.23 - 80.23
(↑, ↑, -) 56.97 72.95 -
(↑, ↑, ↑) 53.91 53.56 53.91
(↑, ↑, ↓) 60.52 93 98.63
(↑, ↓, -) 95.38 110.2 -
(↑, ↓, ↑) 94.04 122.4 94.04
(↑, ↓, ↓) 98.63 93 60.52
(↓, -, -) 76.17 - -
(↓, -, ↑) 80.23 - 80.23
(↓, -, ↓) 73.43 - 73.43
(↓, ↑, -) 95.38 110.2 -
(↓, ↑, ↑) 98.63 93 60.52
(↓, ↑, ↓) 94.04 122.4 94.04
(↓, ↓, -) 56.97 72.95 -
(↓, ↓, ↑) 60.52 93 98.63
(↓, ↓, ↓) 53.91 53.56 53.91
(-, ↓, -) - 93.7 -
(-, ↓, ↑) - 110.2 95.38
(-, ↓, ↓) - 72.95 56.97
(↑, -, -) 76.17 - -
(↑, -, ↑) 73.43 - 73.43
(↑, -, ↓) 80.23 - 80.23

If the working frequency is in the range of (G5. Freq, G6. Freq) and not equal to G6.
Freq, all situations of G6 delay lead to error. The system error is denoted as a G6 crosstalk
error. Similarly, a system error with a working frequency in the range (G5. Freq, G4. Freq)
and not equal to G5. Freq is denoted as a G5 crosstalk error. As shown in Table 3, the G6
crosstalk error rate is 0.97%, and the G5 crosstalk error rate is 5.21%.

In Table 4, we simulate the relationship between bandwidth and wire dimensions
(spacing and length), which can be modified by the designer. A B1 rate means bandwidth
improvement rates between bandwidth, with the wire spacing changing and the original
bandwidth with G6. Freq. A B2 rate means bandwidth improvement rates between
bandwidth with G5. Freq and bandwidth with G6. Freq under the same spacing.

Table 4 shows that both the B1 rate and B2 rates increase with the decrease of wire
spacing. However, with spacing decreasing, the maximum frequency is lower as well.

Then, we give simulation results on 28 nm nodes. The driven voltage is set to 0.9 V,
the equivalent drive resistance is set to 156 Ω, and the equivalent load capacitance is set to
4.5 pF on 28 nm nodes. The wire length is set to 800 µm. We build a real three-wire model
in the Cadence process, as Figure 4 shows.
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Table 4. SSTC SPICE simulation and bandwidth change on 65 nm node.

Original 0.9 Spacing 0.8 Spacing 0.7 Spacing 0.6 Spacing 0.9 Length 0.8 Length 0.7 Length

Delay 124.6 ps 129.4 ps 137.1 ps 146.0 ps 159.1 ps 112.0 ps 101.0 ps 89.9 ps

G6 Delay 103.0 ps 107.0 ps 113.0 ps 123.0 ps 135.0 ps 93.8 ps 84.4 ps 75.3 ps

G6. Freq 3.21 GHz 3.09 GHz 2.92 GHz 2.75 GHz 2.51 GHz 3.58 GHz 3.96 GHz 4.45 GHz

G5. Freq 3.90 GHz 3.74 GHz 3.53 GHz 3.27 GHz 2.96 GHz 4.27 GHz 4.74 GHz 5.31 GHz

B1 rate 0.000 0.069 0.136 0.223 0.303 0.070 0.136 0.223

B2 rate 0.216 0.209 0.209 0.189 0.179 0.190 0.197 0.193
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Figure 4. Real three-wire model realization with INNOVUS: (a) is the circuit diagram; (b) is the
standard cell logic diagram; (c) is the layout graph.

Figure 4c is the layout and top view of the wire model design. In Figure 4c, INV11,
INV12, INV13, INV21, INV22 and INV23 are library standard cells, which are displayed as
gray areas located in the space between VSS and VDD.

Table 5 shows the three-wire coupling model spice simulation results and real model
extraction results on 28 nm nodes. The spice model results are recoded as “-S”, while the
real model results are recoded as “-R”.
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Table 5. Wire delay spice and extraction results of SSTC on 28 nm nodes.

Left Wire-S/ps Mid Wire-S/ps Right Wire-S/ps Left Wire-R/ps Mid Wire-R/ps Right Wire-R/ps

(↓, ↑, -) 553 679 - 531 682 -

(-, ↑, ↑) - 679 553 - 682 531

(↑, ↓, -) 519 736 - 514 701 -

(-, ↓, ↑) - 373 519 - 701 514

(↑, ↓, ↑) 492 909 492 487 874 496

(↓, ↑, ↓) 535 854 535 513 857 522

(↑, ↓, ↓) 529 529 304 524 494 282

(↓, ↓, ↑) 304 529 529 282 494 524

(↓, ↑, ↑) 566 489 282 544 492 277

(↑, ↑,↓) 282 489 566 277 492 544

(-, -, ↓) - - 386 - - 364

(↓, -, -) 386 - - 364 - -

(-, -, ↑) - - 359 - - 354

(↑, -, -) 359 - - 354 - -

( -, ↑, -) - 489 - - 492 -

(-, ↓, -) - 531 - - 496 -

(-, -, -) - - - - - -

(↓, -, ↓) 362 - 362 340 - 340

(↑, -, ↑) 331 - 331 326 - 326

(↓, -, ↑) 412 - 382 390 - 377

(↑, -, ↓) 382 - 412 377 - 390

(-, ↑, ↑) 331 257 - 334 252

(↑, ↑, -) 257 331 - 252 334 -

(-, ↓, ↓) - 359 271 - 324 249

(↓, ↓, -) 271 359 - 249 324 -

(↑, ↑, ↑) 233 233 233 228 236 228

(↓, ↓, ↓) 256 256 256 234 221 234

Table 5 shows that the delay with spice simulation is close to the delay with IN-
NOVUS extraction, which means the three-wire coupling spice model is close to the real
circuit model.

Additionally, the frequency, error rate and bandwidth are analyzed.
From Table 5, the delay can be divided into (874, 701, 494, 334, 236, -). For convenience

of description, the delay around 874 ps is called G6 delay, which occurs in the middle line
with two different signals changing direction in the side lines, as (↑, ↓, ↑). Similarly, the
delay around 701 ps is called G5 delay, the delay around 494 ps is called G4 delay, the delay
around 334 ps is called G3 delay, the delay around 236 ps is called G2 delay, and the delay
around 0 is called G1 delay. With Formula (8), the G6 frequency, denoted as G6. Freq, is
0.457 GHz. Similarly, G5. Freq is 0.570 GHz.

If the working frequency is in the range of (G5. Freq, G6. Freq) and not equal to G6.
Freq, all situations of G6 delay lead to errors. The system error is denoted as G6 a crosstalk
error. Similarly, a system error with the working frequency in the range (G5. Freq, G4. Freq)
and not equal to G5. Freq is denoted as a G5 crosstalk error. As shown in Table 3, the G6
crosstalk error rate is 0.97%, and the G5 crosstalk error rate is 5.21%.
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In Table 6, we simulate the relationship between bandwidth and wire dimensions
(spacing and length), which can be modified by the designer. A B1 rate means bandwidth
improvement rates between the bandwidth, with the wire spacing changing and the
original bandwidth with G6. Freq. B2 rate means bandwidth improvement rates between
the bandwidth with G5. Freq and the bandwidth with G6. Freq under the same spacing.

Table 6. SSTC SPICE simulation and bandwidth change on 28 nm node.

Original 0.9 Spacing 0.8 Spacing 0.7 Spacing 0.6 Spacing 0.9 Length 0.8 Length 0.7 Length

Delay 874 946 1036 1156 1316 709 560 430

G6 Delay 701 752 821 909 1036 566 447 338

G6. Freq 0.457 0.423 0.396 0.346 0.304 0.564 0.714 0.930

G5. Freq 0.570 0.532 0.487 0.440 0.386 0.707 0.895 1.183

B1 rate 0 0.026 0.054 0.080 0.107 0.233 0.561 1.032

B2 rate 0.247 0.258 0.262 0.270 0.272 0.252 0.253 0.272

Table 6 shows that both the B1 rate and B2 rate increase with the decrease of wire
spacing. However, with spacing decreasing, the maximum frequency is lower as well.

The simulation results for the 28 nm node are similar to those for the 65 nm node.
Generally, the reliability system has the possibility to break down when the occurring

error is out of the design range. The breakdown phenomenon is called collision. In Table 7,
(20,16) the CRC collision rate is simulated with different injection bit error rates.

Table 7. Possibility of (20,16) CRC collision.

Bit Error Rate/% 0.5 1.04 2 3 4 4.5 5 5.21

Collision Possibility/‱ 0.1 1.9 6.5 14 28.2 33.4 46.5 50.2

Table 7 shows that under G6 crosstalk error, the CRC has a 1.9‱ chance to break
down; under a G5 crosstalk error, the CRC has a 50.2‱ chance to break down.

Table 8 shows average sending times and collision times of RSHARQ with different
error rates under 100,000 cycles of simulation.

Table 8. Average sending times of different error rates.

Bit Error Rate/% 0.1 0.3 0.5 1.04 2 3 4 4.5

Average Sending Times 1.0178 1.049 1.086 1.174 1.341 1.511 1.704 1.803

Effective Throughput 0.983 0.953 0.921 0.852 0.746 0.662 0.587 0.555

Under the G6 crosstalk error rate, RSHARQ has a 17.4% cost to ensure data reliability.
Under the G5 crosstalk error rate, RSHARQ has a 80.3% cost to ensure data reliability.
Assuming that RSHARQ is designed on 65 nm nodes, according to the system frequency
required, the spacing of lines could be chosen and the effective bandwidth of system could
be calculated out before the real design is implemented.

4. Discussion

In Section 3, Table 4 evaluates the bandwidth change with the B1 rate and B2 rate.
The B1 rate represents the impact of interconnect spacing changes on bandwidth. The B2
rate represents the bandwidth improvement ratio before and after the hardening design.
Through the simulation, the B1 rate increases with the decrease of spacing, which means that
although the frequency decreases with the decrease of interconnect spacing, the bandwidth
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of interconnects increases with the decrease of spacing. The B2 rate decreases with the
decrease of spacing, which means that the bandwidth improvement ratio of the hardening
design decreases. The reliability design guarantees the accuracy of signal transmission
and allows the decrease of the interconnection distance while maintaining the original
frequency. The bandwidth is increased by tolerating a part of the crosstalk error with the
reliability design. With the decrease of the interconnection spacing, the improvement of
this method become lesser.

For NoC design, we hope that each IP has enough bandwidth allocation. In fact, the
area of a chip is limited, which leads to the limitation of the wiring area and bandwidth
for each IP. The current digital integrated circuit design, especially regarding router design
with large traffic, often adopts a lower frequency and smaller interconnection spacing in
order to pursue greater bandwidth. However, the premise of adopting this method in the
stage of layout is to change the NoC design from an isomorphic design to a heterogeneous
design, which increases the complexity of router design.

In this paper, a BFRS is proposed to formulate the relationship between bandwidth
and interconnect parameters, which determines the chip area with the IP area. By using the
proposed model in the analysis stage of the integrated circuit library, an evaluation model
for length, spacing, working frequency and bandwidth could be established. The length
and spacing of the interconnects between each route are determined by combining the area
size and bandwidth demand analysis of the IP selected.

5. Conclusions

A reliability system evaluation model of NoC communication with analysis from
backend to frontend (BFRS) has successfully been validated against the well-established
model. With the model proposed and a simulation of a PTM 65 nm library, we establish
the crosstalk error rate model and the relationship between interconnect spacing, length,
working experience and bandwidth. The B1 rate and B2 rate are proposed to evaluate
the change rate of the bandwidth. In order to verify the accuracy of proposed model, the
interconnect parameters are simulated with the proposed model and simulated with a real
circuit in a TSMC 28 nm library. The simulation results show that the SSTC spice model is
close to the real circuit model.

In the stage of analysis of the library, with the BFRS model, we could obtain a prelimi-
nary judgment on chip area, bandwidth, frequency and reliability with the selected IP’s
information. The BFRS model can help designers to evaluate the reliability system with real
error rates using selected technology nodes, rather than assuming the error injection model.

Meanwhile, in order to evaluate the crosstalk influence in a real circuit, parasitic extrac-
tion and a circuit spice model are required. With the development of Golden Spice+GPU
and Fast Spice, spice simulation analysis can be carried out on key modules of digital
circuits. The simulation speed cannot meet the requirements of digital integrated circuit
system verification, and the reliability of the system cannot be fully verified. With model
proposed and delay replacement, in the early design period, the crosstalk delay influence
can be evaluated with transfer simulation.

6. Patents

Patents “A highly Reliable Communication System for Network on Chip of Multi-
core Processor System” (No. CN202210261693.4) and “A Design Performance Evaluation
Method and System of NoC Communication Architecture” (No. CN202210253790.9) are
resulting from the work reported in this manuscript.
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