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Abstract: In the past few years, object detection has attracted a lot of attention in the context of
human–robot collaboration and Industry 5.0 due to enormous quality improvements in deep learning
technologies. In many applications, object detection models have to be able to quickly adapt to a
changing environment, i.e., to learn new objects. A crucial but challenging prerequisite for this is the
automatic generation of new training data which currently still limits the broad application of object
detection methods in industrial manufacturing. In this work, we discuss how to adapt state-of-the-art
object detection methods for the task of automatic bounding box annotation in a use case where the
background is homogeneous and the object’s label is provided by a human. We compare an adapted
version of Faster R-CNN and the Scaled-YOLOv4-p5 architecture and show that both can be trained
to distinguish unknown objects from a complex but homogeneous background using only a small
amount of training data. In contrast to most other state-of-the-art methods for bounding box labeling,
our proposed method neither requires human verification, a predefined set of classes, nor a very
large manually annotated dataset. Our method outperforms the state-of-the-art, transformer-based
object discovery method LOST on our simple fruits dataset by large margins.

Keywords: automatic object annotation; image annotation; object detection; AutoML; deep learning;
Industry 5.0

1. Introduction

Reconfigurability and adaptability have become a major factor in small-lot industrial
manufacturing in the era of smart factories and Industry 5.0 [1]. Especially in the context
of human–robot collaboration (Cobots, [2]; Industry 5.0), a robot needs to be able to
quickly adapt to the changing demands of a human operator. This is a typical challenge
in the widespread field of bin-picking tasks [3,4]. In such a setting, the ability to detect
objects in the working area is crucial for a robot to react to an operator’s commands.
State-of-the-art (deep learning-based) object detection models typically operate under a
closed-world assumption; that is, all object classes of interest are known beforehand and
present in the training dataset. In practical applications, however, a robot often needs to
react to a changing environment, i.e., it is confronted with an open-world setting (open-
world/set recognition, [5–7]), where novel object classes need to be recognized that were
not present in the dataset used for model training. Besides the ability for fast retraining
of the object detection model [8], the question of how much data are needed for training
is of great importance in a challenging environment such as industrial manufacturing [9].
Notably, automatic labeling of new data is essential for a robot to adapt to changing
environments in order to avoid the usually time-consuming and therefore often expensive
manual labeling process.

In recent years, significant efforts have been made to automate all aspects of the tra-
ditional machine learning pipeline (AutoML, [10]). In object detection, where manually
labeling bounding boxes is especially time consuming, the potential benefits of an AutoML-
based approach are particularly significant and a crucial factor in enabling human–robot
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collaboration. However, the existing approaches for automatic bounding box annotation
are typically either trained on a fixed set of classes or rely on human verification while an-
notating datasets in an iterative manner, often requiring large manually annotated datasets
as a prerequisite (see Section 2).

In this work, we propose a deep learning-based automatic labeling approach which
neither requires human verification, a predefined set of classes, nor a very large manually
annotated dataset. Our approach is especially suitable for fast retraining of object detection
models in human–robot collaboration settings for smart factories. More precisely, we focus
on a use case with a homogeneous (but not necessarily simple) background (see Section 3.3.2
for an example), where new objects are incrementally learned with a human operator
simply initiating the training of new classes while only providing the new class label. This
workflow is visualized in Figure 1. We show that classical state-of-the-art object detection
models, such as Faster R-CNN and YOLO, can be used to distinguish new objects from
such a homogeneous background and that a small initial dataset is sufficient for training
the model for this task. In particular, our proposed method does not require retraining the
model for detecting previously unseen classes. Using object detection approaches in our
setting has the added advantage that a single model architecture can be used for both tasks
of bounding box annotation and object detection, which is beneficial, e.g., for use on edge
devices. We show that our proposed method outperforms the unsupervised state-of-the-art
object discovery method LOST [11] which, similar to our approach, is supposed to also
detect unknown classes that have not been part of a previous training dataset.

Figure 1. Overall workflow of object registration. A human operator initiates the training of a new
object by only presenting the new object and providing the label without bounding boxes. Without
any further human intervention, bounding boxes are then inferred by models trained on images using
only an “object” label. Optionally, additional post-processing is applied which consists of the two
steps (P1) and (P2) for merging of multiple bounding boxes and slightly increasing bounding boxes
(see Section 3.2 for a detailed description). The training images with these automatically inferred
bounding boxes are used to train the final object detection model.

Our work is structured as follows: Section 2 gives a short overview of deep learning-
based object detection methods relevant to our approach, learning on small datasets and
the current state-of-the-art in automated data annotation. Section 3 describes the use case
and test setting that our approach was deployed on, the overall workflow, as well as the
object detection architectures used during analysis. Section 4 gives an overview of the
datasets used (one specifically generated for this work, one publicly available) and details
the results of our experiments. Finally, Section 5 highlights our key findings and discusses
potential further improvements to our work.
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2. Related Work
2.1. Object Detection

Deep learning has been a driving force in the field of machine learning that has revolu-
tionized many tasks such as object detection [12], i.e., the task of classifying and localizing
objects in images. Object detection methods are utilized in various applications such as
face recognition [13], self-driving cars [14], and fruit recognition in the context of robotic
harvesting [15]. Although the history of multilayer networks dates back to the middle
of the 20th century, deep learning has only recently become popular with the develop-
ment of high performance parallel computing (e.g., GPU clusters) and the availability of
large annotated datasets such as ImageNet [16] for training large network structures [17].
One important breakthrough that marked a milestone for the wide application of deep
learning methods and laid the groundwork for modern object detection methods was the
development of AlexNet [18], a deep convolutional neural network (CNN) that achieved
outstanding results in the popular ImageNet Challenge (ILSVRC) [16] in 2012. During
the last decade, many CNN-based methods for object detection have been developed,
which can be mainly categorized into two classes: the two-step region proposal-based
methods, such as Faster R-CNN [19], FPN [20], and Mask R-CNN [21,22], and the one-step
anchor box-based approaches, such as the YOLO-family [23–25] and SSD [26] (see, e.g., [17]
for a detailed review). These two classes differ in their accuracy–speed trade-off, with
anchor box-based methods having a much smaller inference time, while region proposal-
based methods achieving higher accuracy [27,28]. However, recent results suggest that
newer versions of YOLO can attain accuracy levels comparable to region proposal-based
networks [29,30].

2.2. Small Datasets

Current object detection methods fall within the category of supervised learning algo-
rithms with complex network architectures that typically include millions of learnable
parameters and therefore require large labeled datasets for training [12,17]. Few-shot learn-
ing [31] is the research field which addresses the problem of learning high quality models
from small sample sizes. In general, approaches to few-shot object detection [32–34] use
an established architecture with pre-trained weights based on a large dataset with labeled
images, and then train an adapted architecture and/or loss function on novel object classes
with far fewer samples.

State-of-the-art few-shot object detection approaches fall into one of four categories.
(1) Data augmentation [35] tries to enhance a small dataset by adding additional im-
ages generated from the original images using suitable transformations. (2) Transfer
learning [36–39] tries to exploit knowledge gained from training a data-rich source task
to improve the performance of a target task with only a few images. (3) Distance metric
learning [40–45] uses a distance metric to map images into a lower-dimensional embedding
space where similar samples according to the metric lie closer together than less similar
ones. In the lower-dimensional feature space, a smaller dataset can then be trained with less
risk of overfitting and better generalization performance. Finally, (4) meta learning [46–49]
takes a number of meta datasets, e.g., the images belonging to each class in a training
dataset, and learns how to generalize from one subset of classes to another. This knowledge
can then be used to generalize to a previously unseen class with only a few samples, as the
meta learner already knows how to generalize to a new class.

To improve the detection performance of small-scale datasets, BackgroundNet [50]
uses samples of background images without any objects as additional inputs to a YOLO-
based architecture, thus enabling the network to not only learn object features, but also to
distinguish between objects and background. In addition, the strategy for which grid cells
are responsible for bounding box prediction is adapted to counter the difficulty of learning
the center point of objects when only a few samples are present in the dataset. Ref. [51]
presents a case study for the visual inspection of electrical utility assets with few images
taken by maintenance workers during routine inspections. The proposed framework is
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based on RetinaNet [28] and adopts several strategies (progressive resizing [52], learning
rate finder [53], and range optimizer [54]) to improve the training speed and accuracy when
training on a small dataset.

2.3. Bounding Box Annotation

The most popular open, large-scale datasets for object detection are the ImageNet [16],
Pascal VOC [55], and MS COCO [56] datasets, all containing thousands of annotated images
per class. However, the annotation of images is a time-consuming and therefore costly task.
This raises the need for solutions to automated annotation of images. While the problem
of automatic image annotation for classification tasks has been treated for more than two
decades now (see, e.g., [57] for a detailed review), the more challenging task of bounding
box annotation has only come into focus in the last few years. The available methods for
the latter task range from inferring the location of object proposals from edges [58], using
predictions from a U-Net neural network as a basis [59], and training the detector model
on a subset of manually labeled images [60]. Such methods have been used in various
applications such as industrial visual inspection [61], radiology [59], 3D images [62,63], and
object tracking in videos [64].

However, existing approaches typically rely on some human intervention to tackle the
trade-off between accurate, manually labeled training data and the prediction accuracy of
the trained models. In most cases, this intervention is some sort of verification [58,65] or
manual correction [66] of the inferred bounding boxes. Such approaches typically rely on
state-of-the-art object detectors such as Faster R-CNN or Fast R-CNN which are retrained
many times to predict bounding box annotations that are then corrected by a human
operator to serve as training data in the next training iteration cycle [58,60]. Similarly, there
exists commercial products such as Amazon SageMaker Data Labeling (https://aws.amazon.
com/sagemaker/data-labeling), Microsoft’s Azure, or Superb Labeling (https://www.superb-
ai.com, accessed on 1 February 2023) that also offer AI-assisted bounding box annotation;
however, they also heavily require human verification of the proposed predictions. These
products usually require annotated training datasets (often more than 1000 images) as a
prerequisite or are restricted to some predefined classes due to pre-training on some dataset
COCO. Moreover, the underlying AI model architecture often remains unclear. Another
strategy is active learning [67], which reduces the annotation costs by sampling the most
informative unlabeled images that are then labeled by a human operator. This decreases the
amount of manual labeling but is usually computationally expensive due to the sampling
step. The related assistive learning workflow of [68] reduces the computational costs by
including some contextual information in the sampling method; however, it still requires a
human-in-the-loop. Furthermore, there exists labeling approaches using attention maps
to extract bounding boxes; however, the accuracy is limited and a manual control step is
required [59]. Another group of approaches address the problem of image co-localization;
that is, objects are localized based on object similarity by using images containing objects of
the same category [69–71]. This, however, limits the application to new objects not similar
to available data. The self-supervised, transformer-based method LOST [11] is supposed to
generalize well to localizing objects that have not been seen during training; however, as
we will show in Section 4, this ability is limited.

For our use case of continuously learning new objects in a short time, manual correction
steps are not possible due to time restrictions. Moreover, we cannot guarantee that new
objects are similar to already known objects, as required by, e.g., co-localization approaches,
or fall into a predefined set of classes. On the other hand, we have seen in previous
experiments during our project that, for good training results, the bounding boxes do
not have to be perfectly accurate in the sense that some pixels can be missed in some
cases. Our approach of training object detector models to distinguish between objects
and background does meet these requirements and performs well for detecting unknown
objects. Our method has parallels to existing ones in the sense that it relies on state-of-the-
art object detection architectures but, in contrast to, e.g., [58,60,68], it applies small changes

https://aws.amazon.com/sagemaker/data-labeling
https://aws.amazon.com/sagemaker/data-labeling
https://www.superb-ai.com
https://www.superb-ai.com
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in the training data and uses optional post-processing steps instead of including human
correction steps.

3. Material and Methods

One of the main problems of annotating images for object detection tasks is the correct
identification of the bounding box. In this work, we consider the use case of a homogeneous
background, which allows us to use state-of-the art object detection methods to distinguish
the object from the background.

3.1. Use Case

As a use case we consider a robot that has to recognize objects and sort them into
predefined boxes (see setup in Figure 2). In addition, our setup is that of an open world;
that is, the robot has to learn new objects at later time points without forgetting the old
ones. For this object detection task, we assume that a human operator initiates the training
of the new object by presenting the object to a camera and providing the name of the object.
The rest of the pipeline, that is the generation of training images, labeling of the images,
and training of the model, is then performed automatically. In this work, we focus on the
automatic annotation of the training and validation images. The overall workflow of our
object registration pipeline is shown in Figure 1. For a more detailed description of the
whole pipeline including automatic image generation and the training process, we refer to
our recent contribution [8].

Figure 2. Showcase to demonstrate fast retraining of new object classes: A robot sorting different
types of fruits. The left box holds a mixture of different fruits, from which the robot picks up specific
ones and transfers them to the correct basket on the right. The new object needs to be placed in the
center of the white area by a human operator for the generation of training images. These images are
taken by a camera at the robot’s gripper while the robot is moving around the object. (Source: KEBA
Group AG).

The automatic annotation of images for object detection is in general not an easy task.
First, it is often not known at which time point a new object class has to be learned and
what the label of the new object class is. The identification of an object to be unknown is a
non-trivial task, which is not inherently captured by the design of current deep learning
models [6]. Second, for retrieving the corresponding bounding box, the model has to distin-
guish a new object from some—often complex and previously unknown—background. Our
use case differs from general object detection tasks in the following main points: (i) there is
a human signal whenever a new object has to be learned, (ii) the name of the new object
class is given to the AI model, (iii) the new class is trained on images contains only a single
object, and (iv) the background remains approximately the same, i.e., we can speak of a
homogeneous background. By homogeneous we do not necessarily mean that the background
must be monochromatic or exactly the same in each image (e.g., a white background in
all images) but we also speak of an homogeneous background if, for instance, each image
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contains different parts of a possibly complex environment (see, e.g., the iCubWorld dataset
in Section 3.3). This use case of a homogeneous background represents the realistic scenario
of a robot being used in a static environment, e.g., a robot installed at a fixed position in
a factory.

3.2. Our Approach

The task of annotating an image for object detection consists of two separate subtasks:
(1) determining the class label and (2) finding the bounding box. In our use case, the image
that needs to be annotated contains exactly one object and the label of its class is provided
by the human operator. Thus, the class label is already given and it remains to find the
corresponding bounding box coordinates. For this task, our approach is to train some
state-of-the-art object detection method for background separation and distinguish the new
object from the background. As training data, we provide the network with annotated
images of different objects in the same homogeneous background setup. In contrast to
conventional training of object detection models, in our approach, the same label “object”
is given to each object in the training and validation data. After successful training, the
bounding box coordinates of the object in the test image can now be extracted by applying
the trained object detection model on the image and retrieving the bounding box of the
resulting prediction. For some models, we found it to be beneficial to include two additional
post-processing steps to further refine the bounding box (for examples also see Section 4.1):

(P1) If the model erroneously predicts more than one bounding box per image, merge all
bounding boxes into one, which is the smallest bounding box containing all others;

(P2) Add some additional slack; that is, increase the bounding box by a few pixels on
each side.

This workflow will be applied to two different state-of-the-art object detection networks,
the two-step Faster R-CNN model and one representative from the one-step YOLO family.
These architectures have been chosen since they are the two most used deep learning-based
object detection approaches differing with respect to their performance–speed trade-off,
where Faster R-CNN is more accurate and robust while YOLO architectures are typi-
cally faster.

3.2.1. Faster R-CNN

The architecture of the Faster R-CNN network consists of two stages: (i) a region-
proposal network with a feature extractor network (in our case this is the VGG-16 backbone)
followed by additional convolutional layers and (ii) the network’s head consisting of two
outputs, one for object classification and the other for bounding box regression. These
two parts of the network are connected by an ROI Pooling Layer. The second part of
the network typically consists of fully connected layers. However, due to some technical
limitations in the overall project of our use case (see below), we replaced these fully
connected layers by convolutional layers; more precisely, our network’s head consists
of one single convolutional layer with Softmax activation for the classification and one
convolutional layer with linear activation for bounding box regression. These technical
limitations result from running the inference of our trained Faster R-CNN network on an
FPGA using the deep neural network development kit (DNNDK) (https://www.xilinx.
com/support/documentation/user_guides/ug1327-dnndk-user-guide.pdf, accessed on
1 February 2023) from Xilinx (see also [8] for a description of our full pipeline). The
architecture is shown in Figure 3.

https://www.xilinx.com/support/documentation/user_guides/ug1327-dnndk-user-guide.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1327-dnndk-user-guide.pdf
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Figure 3. Architecture of the adapted Faster R-CNN model with a VGG-16 backbone. Figure reused
from our recent work [8].

3.2.2. YOLOv4-p5

From the YOLO family of model architectures, we chose the recently developed Scaled-
YOLOv4-p5 [25] which was among the best performing YOLO architectures at the time
this study was performed. The framework is based on the large branch of the official
pytorch implementation (https://github.com/WongKinYiu/ScaledYOLOv4, accessed on 1
February 2023). The architecture of the Scaled-YOLOv4-p5 model is summarized in Figure 4.
It consists of 32 modules in total with 476 layers containing about 70 million parameters.

Figure 4. The architecture of YOLOv4-p5. Figure adapted from [25].

3.3. Datasets

The workflow presented in the previous section has been applied to two different datasets
with a homogeneous background. They are described in more detail in the following
sections and summarized in Table 1.

Table 1. Summary of (a) datasets and (b) models used in our study. The manually annotated images
are split into 90% training and 10% validation data. In addition, a set of unlabeled images is used
for testing. The Faster R-CNN models trained on the fruit and iCubWorld datasets are denoted by F
and I, respectively. The models F+ and I+ denote the corresponding models after application of the
post-processing steps (P1) and (P2).

(a) Datasets Used in Our Study

Dataset No. Images No. Classes
Training
Classes

Contained
Train and

val Test Train and
val Test in Test Data

Fruits 330 100 5 20 Some
contained

iCubWorld 659 82 7 20 All contained
(b) Faster R-CNN Models Used in Our Study

Model Training Dataset Post-Processing (P1) and (P2)
F Fruits no

F+ Fruits yes
I iCubWorld no

I+ iCubWorld yes

https://github.com/WongKinYiu/ScaledYOLOv4
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3.3.1. Fruits

This dataset has been created during the course of one of our industrial projects. It has
been inspired by a typical bin-picking application in the industrial domain: bin-picking
of fruits and vegetables [72]. The dataset consists of 330 images of five different imitation
fruits and vegetables made of plastic (apricot, banana, cucumber, onion, and tomato) on a
white background. Approximately half of these images contain only one object, the rest
contain a mix of different object classes with up to four objects. The pictures are of size
708 × 531 and 576 × 432 resp. 531 × 708 and 432 × 576, and have been manually annotated
using the labeling tool LabelImg (https://github.com/tzutalin/labelImg, accessed on 1
February 2023) (see Figure 5 for some examples). These data are split into training and
validation datasets (approximately 90% and 10% of the images, respectively). As a test
dataset we used 100 images of size 800 × 600, each containing exactly one object on a white
background. This dataset contains 20 different classes (five images each), including the
training objects and new objects such as other fruits and vegetables, pliers, measuring tape,
etc. (see Figure 6b).

Figure 5. Annotation examples from our fruits dataset. Annotations have been generated manually
using LabelImg. A piece of paper serves as background; however, the lighting differs and often
induces shadows. Figure reused from our recent work [8].

3.3.2. iCubWorld

As a second dataset, we chose the iCubWorld (https://robotology.github.io/iCubWorld/,
accessed on 1 February 2023) dataset [73]. This choice was made mainly because iCub-
World is one of the few publicly available datasets fitting our definition of homogeneous
background which, in addition, is not monochromatic and therefore serves as a good test
setup for analyzing to what extent our approach works on more complex backgrounds.
Besides, the iCubWorld dataset has been generated with the same rationale of automatic
data creation on which our study is based. Although the background in these images does
not represent an industrial scenario, there are still similarities (shelves and color/lightning)
that might also appear in certain industrial environments.

https://github.com/tzutalin/labelImg
https://robotology.github.io/iCubWorld/
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(a) Metrics

(b) Inference examples: Fruits model F and F+

(c) Inference examples: iCubWorld model I

Figure 6. Results on the fruits dataset and the iCubWorld dataset using Faster R-CNN. For both, the
corresponding models F and I has been trained for 200 epochs. Panel (a): The metrics (mAP@0.5,
recall and precision) on the validation datasets are calculated after each 10th epoch (orange line:
fruits, blue line: iCubWorld). For both models F and I, the metrics reach high values after only a
few epochs. Panel (b): Inference examples of F and F+ on the fruits test dataset. For each object, the
results of F and F+ are shown on the left and right, respectively. The potato is well annotated by both
models, while the carrot benefits from the additional slack in F+. For the pliers and the tape, F detects
multiple bounding boxes resulting in a very good annotation of F+. Figure reused from our recent
work [8]. Panel (c): Inference examples of I+ on the iCubWorld test dataset. The first two examples
are well annotated, while the inferred bounding boxes in the remaining examples are too large due to
inclusion of the human hand (hair clip) and incorrectly detected boxes merged with correct boxes
(perfume). More detailed results on the absolute numbers of correct and incorrect annotations can be
found in Figure A1.

The iCubWorld dataset contains more than 400k images of 20 different classes. In contrast
to the fruit dataset, the background in the iCubWorld dataset is not exactly the same in
all images, but homogeneous in the sense that all pictures have been taken in the same
environment, i.e., at different positions in one university lab and with the object held by the
same person with changing clothing. The data contain annotation information for object
detection, where the annotations also contain information about different poses such as
“Mix”, “2D rotation”, etc., describing how the images change from one frame to the next. In
the original dataset, these annotations have been automatically generated by a robot during
a human–robot interaction, where the human provided the label verbally and showed
the object in their hand. The robot then localizes the object by tracking either motion or
depth information. Example images, including the ground truth annotations, are shown
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in Figure 7. It can be seen that the annotations are not optimal in many cases. For this
reason, we again used LabelImg for manually creating our own ground truth annotations.
We randomly chose 659 images of seven object classes (mug, pencil case, ring binder, soap
dispenser, soda bottle, squeezer, and sunglasses) with 83–105 images per class and split
this into training and validation datasets (90% and 10% of the images, respectively). As a
test dataset we used a different subset of 82 images that contained all 20 object classes.

Figure 7. Example images from the iCubWorld dataset including the ground truth annotations that
have been automatically generated from a human–robot interaction. In many cases the object has not
or has only inaccurately been localized.

4. Results and Discussion
4.1. Experiments with Faster R-CNN

For the experiments with our adapted Faster R-CNN architecture (see Figure 3), we
used the pretrained weights from the Keras Applications Module (https://github.com/
fchollet/deep-learning-models/releases, accessed on 1 February 2023) for the VGG-16
backbone. We then trained two models: the model F on the fruits dataset and the model I
on the iCubWorld dataset (see Table 1). Both models were trained for 200 epochs without
freezing layers. We also tried freezing the VGG-16 backbone; however, the results were not
satisfying, therefore we do not further discuss this here.

The metrics (mAP@0.5, recall, and precision) were calculated after each 10th epoch.
Here, the mAP@0.5 refers to the mean average precision at IoU threshold 0.5 (Pascal VOC
Challenge) and recall and precision are calculated as TP

TP+FN and TP
TP+FP (TP = true positives,

FP = false positives, and FN = false negatives), respectively. As can be seen in Figure 6a,
all metrics reach very high values after only a few epochs. Model F performs slightly
better than model I, where F reaches mAP@0.5 values between 0.97 and 1.0 during the
entire training period, starting with 0.98 at epoch 10. The lower performance of model I
is not surprising due to the more complex background in the images of the iCubWorld
dataset. However, I also shows good performance with an mAP@0.5 constantly higher
than 0.91 after only 20 epochs. Note that recall and mAP show similar variation for both
models. This is due to the fact that the average precision (AP), i.e., the area under the
precision–recall curve, and the recall are almost identical in our case since the precision
is very close to 1. Inference examples of F on test data (see Figure 6b) show that (i) the
predicted bounding box is often tight around the object with sometimes missing parts of
the object (see, e.g., carrot) and (ii) in some cases the object is not detected by one single
bounding box but several boxes cover different parts of the object. These multiple bounding
boxes particularly occur for objects whose form is very dissimilar to the forms of the objects
in the training dataset (e.g., pliers and tape with long, almost separated parts). In order to
reduce such errors, we applied the two post-processing steps (P1) and (P2) introduced in
Section 3.2 to merge multiple bounding boxes and enlarge the boxes by some additional
slack (15 and 10 pixels for the fruits and iCubWorld datasets, respectively). The resulting
models are denoted by F+ and I+ for the fruits and the iCubWorld datasets, respectively.
Although the performance of model F is high, even after only a short amount of training

https://github.com/fchollet/deep-learning-models/releases
https://github.com/fchollet/deep-learning-models/releases
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time, these post-processing steps further increase the number of good annotations from
32 to 84 out of 100 test images at epoch 10 and from 51 to 87 at epoch 200 (see Figure A1
in the Appendix A for a detailed list of the absolute numbers). The remaining 12 cases
in epoch 200 of F+, in which the object is only partly covered by the inferred bounding
box, are mostly examples similar to the carrot shown in Figure 6b, where the bounding
box misses only a tiny fraction of the object. However, for many applications, such as
our use case of incremental learning of new objects, this small lack of impreciseness does
not pose a problem, since we observed that usually each part of an object is detected in a
decent amount of training images such that, in total, all parts are seen by the model during
training. On the other hand, we found in subsequent experiments that a slightly enlarged
bounding box, as it is for instance the case for the potato in F+ shown in Figure 6b, does
not result in poor training results for the new object as long as tight bounding boxes are not
an urgent requirement in the particular application. Note that the model shows slightly
better performance at epoch 180 than 200. However, as this difference is very small, we still
chose to evaluate after 200 epochs here to be in accordance with the more detailed results
in Figure A1, where an evaluation with even smaller epoch intervals also covering epoch
180 would have been infeasible.

Moreover, we compared the effect of different sizes of the training dataset, namely 50,
100, 200, and 300 training images, on the performance of the F+ model (see Figure 8). In
our experiments, there is a trend of larger datasets leading to faster convergence to smaller
loss values; however, the mAP@0.5 on the validation dataset is similar for all dataset
sizes. Looking at the inference on the test dataset, which—in contrast to the validation
dataset—also contains a large fraction of unknown classes, we observe that smaller datasets
show slightly more problems with the detection of unknown classes, especially with the
accuracy of bounding boxes, while missing detections are not significantly more frequent.
For a dataset of 50 images, we find that ∼50% more bounding boxes miss (small) parts of
the object compared to a dataset of size 300. Again, often the missing parts of the object are
small, hence we do expect only small decreases in accuracy of follow-up object detection
tasks that rely on these data annotations. We leave a deeper analysis of this aspect for
future work.

Figure 8. Comparison of different training dataset sizes. The Faster R-CNN model F+ is trained for
100 epochs on subsets of the fruits dataset with 50, 100, 200, and 300 images. Shown are the mAP@0.5
(left column) and the value of the Faster R-CNN loss function (the total Faster R-CNN loss is a linear
combination of four parts: the classification loss and the bounding box regression loss from both, the
region proposal part and the Fast R-CNN layers) (right column) over time. As in Figure 6a, recall
and precision are very similar to mAP@50; therefore, we did not include them here. The validation
dataset is the same for all training runs. The shown graphics are exported from Tensorboard with a
smoothing factor of 0.8 (dark lines), the unsmoothed values are included as light lines.

The results for I+ on test images of the iCubWorld dataset are shown in Figure 6c. Again,
we found that the majority of objects are well detected in I+ and the shift from I to I+

largely improves the performance (see Figure A1 in Appendix A). We find that most objects
are well detected even though they do not stand out clearly from the background (e.g., the
soda bottle in Figure 6c) or were not in the training dataset (e.g., the remote in Figure 6c). A
minority of the inferred bounding boxes either cover the object only partly (again, as in
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the case of F+, only a few pixels are missing), are too large due to inclusion of the human
hand (e.g., hair clip), or merge with incorrectly detected boxes (e.g., perfume). Moreover,
for both models F and I, and thus also F+ and I+, it occurs only very rarely that an object
is not detected at all.

Furthermore, we tested the transferability of such annotation models to a different
background. For this, we applied the model F+, that has been trained on fruits on a white
background, to images containing various objects on different backgrounds. The results are
shown in Figure 9 for images on a wooden floor (taken by us), modified images from the
MVTec Screws dataset [74], and images from the iCubWorld dataset. It can be seen that the
model transfers only poorly to other datasets. Applying I+ to other datasets gives similar
results on the MVTec dataset; however, the model performs well on the wooden floor
dataset in five out of six images and mainly well on the fruits dataset as well, where the
object is mostly detected but sometimes with an inaccurate bounding box. Repeating these
experiments with F and I results in many inaccurate bounding boxes as well as detection
of multiple boxes. In summary, these observations, together with the fairly good results
of I+ on the iCubWorld dataset, suggest that the model explicitly learns a given specific
background but it can often be transferred to less complex backgrounds in combination
with (P1) and (P2).

Finally, we compared our approach to the self-supervised transformer-based method
LOST [11] requiring no labeled data, which outperforms other state-of-the-art methods
in object discovery. This method is a good reference baseline for our experiments since
it does not rely on human correction. Moreover, similar to our method, it can be applied
to any image/object class without retraining. Apart from LOST, most other methods are
unsuitable for direct comparison with our approach because they either require some
human verification step or are trained on a set of fixed classes. Commercial, closed-source
methods are not included into our comparison either. Besides the obvious costs, it is often
not clear which are the underlying algorithms and, in addition, they often rely on large
manually annotated datasets as a prerequisite. We applied LOST to the 100 images of the
fruits test dataset. As shown in Table 2, our proposed method outperforms LOST by large
margins (87% vs. 65% correct bounding box predictions). The number of undetected objects
(12% vs. 1%) is significantly higher for LOST. In particular, while the 12% of partly detected
objects for F+ represent bounding boxes that are mostly only missing a few pixels, the 23%
partly detected objects for LOST represent low quality detections with, e.g., bounding boxes
covering one-third of the image, including large parts of the background. This suggests that,
despite the simplicity of our use case, LOST fails to adapt to it without further retraining.
Furthermore, the inference time per image is much smaller for F+ than for LOST (∼1.5 s
on a CPU vs. ∼3.5 s on a GPU, see Table 2 for more details). We would like to emphasize in
this context that there exists much more efficient Faster R-CNN implementations than the
one that we used as a basis for our code, hence the difference in inference speed between
the two methods could be even larger. The training time could not be compared since LOST
was designed and trained by its authors to be directly applicable to new datasets without
retraining.

To conclude, we found that Faster R-CNN can be trained to distinguish (unknown) objects
from a highly complex but homogeneous and specific background using a relatively small
amount of training data and without human verification. The ability to transfer a trained
model to a different dataset is limited but works in some cases where the background is
less complex than in the training data.
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Figure 9. Inference results of the Faster R-CNN annotation model F+ trained on the fruits dataset for
200 epochs and applied to different datasets. The images in the first row are taken on a wooden floor,
the second row contains images that have been modified from the original MVTec Screws dataset [74],
and the last row shows examples from the iCubWorld data test. Figure adapted from our recent
work [8].

Table 2. Comparison with LOST [11]. The inference results of the F+ model (at epoch 200) on the
fruits test dataset are shown in comparison to application of the unsupervised object discovery
method LOST on the same dataset. The Faster R-CNN-based model F+ achieves better results than
LOST (87% vs. 65% correct bounding box predictions). The inference time is much smaller for F+ on
a CPU (Intel(R) Iris(R) XE Graphics) than for the LOST model on a GPU (NVIDIA GeForce MX450).

F+ LOST [11]

Correct prediction 87% 65%
Not detected 1% 12%

Partly detected 12% 23%
Inference time per image ∼1.5 s (CPU) ∼3.5 s (GPU)

4.2. Experiments with Scaled-YOLOv4-p5

Using a Scaled-YOLOv4-p5 model architecture pretrained on COCO (https://github.
com/WongKinYiu/ScaledYOLOv4, accessed on 1 February 2023), we trained the model on
this iCubWorld dataset. The results are shown in Figure 10.

As for the YOLO model, the metrics reach high values close to 1.0 after only a few epochs
of training. In most cases, the model predicts good bounding boxes (see Figure 10b, top
row, for some examples). Poor results appear in cases where no object is detected or one
object is detected as two objects. Overall, in our test set with 82 images, only five objects
were not detected and only once was an object detected as two objects. In contrast to the
Faster R-CNN model, the bounding boxes are mostly very accurate although tight around
the object (parts of the object were missed in only 8 out of 82 test images). The additional
post-processing steps (P1) and (P2) were therefore omitted.

https://github.com/WongKinYiu/ScaledYOLOv4
https://github.com/WongKinYiu/ScaledYOLOv4
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(a) Metrics

(b) Inference examples

Figure 10. Results on the iCubWorld dataset using the Scaled-YOLOv4-p5 model. The model was
trained for 200 epochs. Panel (a): The metrics (mAP@0.5, recall, and precision) on the validation
datasets are calculated after each epoch and reach high values after only a few epochs. For more
details see Figure A2. Panel (b): Inference examples on the iCubWorld test dataset at epoch 175. Most
objects are detected well, some are not detected at all (5 out of 82). In contrast to Faster R-CNN, there
are only few cases where multiple bounding boxes have been detected (1 out of 82) and bounding
boxes are more accurate with only rarely missing parts of the object (8 out of 82), even though (P1)
and (P2) are not applied.

Finally, we tested the transferability of the model by applying it to datasets with different
backgrounds. While the results of the MVTec dataset are similarly poor as in the case of the
Faster R-CNN model, the predictions on the fruits dataset differ in comparison to I+ (cf.
Section 4.1) in the sense that the bounding boxes are similarly accurate yet tighter for the
YOLO model but, as already seen for the iCubWorld test dataset, the YOLO model fails
in detecting the object more often than Faster R-CNN. For the dataset with the wooden
floor, the YOLO model gives comparable good results to I+ if (P1) is applied, otherwise
only three out of six images are predicted correctly, while in two cases the object is detected
more than once.

In summary, the Scaled-YOLOv4-p5 architecture performs similarly well as the Faster
R-CNN model in distinguishing (new) objects from homogeneous backgrounds. While
the YOLO model fails to detect the object more often than the Faster R-CNN model, its
predicted bounding boxes are tighter and often more accurate. Moreover, the YOLO model
does not require the application of the post-processing steps (P1) and (P2) in most cases.

5. Conclusions

In this work, we discussed how to adapt state-of-the-art object detection methods for
the task of automatic bounding box annotation in a use case where the background is
homogeneous and a human collaborator only interferes by providing the object’s label.
In contrast to other existing methods, our proposed approach does not require a human-
in-the-loop for correcting predictions, thereby making the whole data annotation process
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much faster. Moreover, after being trained once on a relatively small manually annotated
dataset for a given background, the model does generalize well to new classes without
the need of retraining for those classes that have not been seen during training. In this
context, we showed that our approach outperforms the state-of-the-art object localization
method LOST.

In our experiments, we showed that both an adapted version of Faster R-CNN and
the Scaled-YOLOv4-p5 architecture can be trained to distinguish unknown objects from
a complex but homogeneous background using only a small amount of training data. In
contrast to YOLO, the Faster R-CNN strongly benefits from using two post-processing steps
that merge multiple bounding boxes and enlarge the final box. On the other hand, YOLO
fails more often in detecting objects than Faster R-CNN. Our results suggest that both
models explicitly learn the specific background in the training data, which limits the ability
to transfer a trained model to a dataset with a different background. However, it seems that
models trained on more complex backgrounds can be transferred to data with less complex
backgrounds. A further analysis of the specific limits of this transferability and to what
extent they can be defined would be an interesting question for future work. Moreover, it
remains to further evaluate the minimum amount of required training data depending on
the specific background as well as on transferability on different backgrounds.

An important advantage of using object detection methods for data labeling instead of
standard instance or semantic segmentation approaches is the usually smaller inference
time, which is crucial for fast generation of training data. Moreover, in our pipeline, it
has the added advantage that a single model architecture can be used for both tasks of
bounding box annotation and object detection. Nevertheless, it would be interesting for
the future to also extend our approach to segmentation methods such as Mask R-CNN
and possibly also develop corresponding post-processing steps such as (P1) and (P2) for
Faster R-CNN.

Author Contributions: Conceptualization, M.G., M.B. and M.Z.; methodology, M.G.; software,
M.G. and R.W.; validation, M.G. and R.W.; investigation, M.G. and R.W.; data curation, M.G. and
J.S.; writing—original draft preparation, M.G. and M.Z.; writing—review and editing, all authors;
visualization, M.G.; project administration, M.Z.; funding acquisition, M.B. All authors have read
and agreed to the published version of the manuscript.

Funding: The research reported in this paper was funded by the Federal Ministry for Climate
Action, Environment, Energy, Mobility, Innovation and Technology (BMK), the Federal Ministry
for Digital and Economic Affairs (BMDW), and the State of Upper Austria in the frame of the
COMET—Competence Centers for Excellent Technologies Programme managed by Austrian Research
Promotion Agency FFG.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The whole iCubWorld dataset is available here: https://robotology.
github.io/iCubWorld/. The fruits dataset as well as the subset of the iCubWorld dataset used
in this study (together with the created annotations) is available on our Github account: https:
//github.com/software-competence-center-hagenberg/Fruits-Dataset, accessed on 1 February 2023.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this section, we present more detailed results of the experiments in Section 4.
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(a) Metrics & Loss

(b) Inference Results on Test Data
Epoch 10 Epoch 50 Epoch 100 Epoch 150 Epoch 200

F F+ I I+ F F+ I I+ F F+ I I+ F F+ I I+ F F+ I I+

correct 32 84 10 17 43 83 37 67 58 92 36 62 48 85 51 66 51 87 50 70
improvement of “correct” by (P1)+(P2) - 163% - 70% - 93% - 81% - 59% - 72% - 77% - 29% - 21% - 40%
not detected 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1
multiple times 14 - 6 - 11 - 1 - 16 - 3 - 14 - 0 - 14 - 0 -
partly by single bounding box 54 16 33 2 46 17 38 5 26 8 32 6 38 15 27 8 34 12 24 4
correct + other parts 0 0 31 63 0 0 5 9 0 0 10 14 0 0 4 7 0 0 6 7
background 0 0 21 - 0 0 2 - 0 0 4 - 0 0 3 - 0 0 4 -
head/face, hand, body - - 42, 7, 6 - - - 1, 6, 2 - - - 4, 10, 2 - - - 1, 3, 1 - - - 1, 2, 0 -

Figure A1. Results on the fruits dataset and the iCubWorld dataset using Faster R-CNN. For both
datasets, the Faster R-CNN architecture was trained for 200 epochs. Panel (a): The metrics (mAP@0.5,
recall, and precision) of the validation datasets are calculated after each 10th epoch (orange: fruits
and blue: iCubWorld). For both datasets, the metrics reach high values after only a few epochs. The
loss of the training dataset is shown after each epoch. Panel (b): Inference results on the test datasets
of 100 (fruits) and 82 (iCubWorld) images, respectively, both containing more object classes than the
training data. For more details about the different categories see the text.

Figure A1 shows additional results for the experiments with the Faster R-CNN architec-
ture. In addition to the metrics that have already been shown in Figure 6, it also contains
the Faster R-CNN training loss. Moreover, detailed inference results for the models F and
F+ on the fruits test dataset and for I and I+ on the iCubWorld test dataset are shown for
different epochs from 10 to 200. The results are assigned to seven different classes:

Correct: Good detection, i.e., correct label, good bounding box, and no false positives/negatives.

Improvement in “correct” by (P1) and (P2): The improvement in the correctly identified
bounding boxes from F to F+ and I to I+, respectively.

Not detected: The object is not detected.

Multiple times: Multiple bounding boxes covering the object or parts of it are inferred.
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Partly by single bounding box: The object is detected by a single bounding box but the
box misses parts of the object. We explicitly emphasize that this mostly corresponds
to only very small missing parts (see also Section 4.1).

Correct and other parts: The object is well detected but other parts of the image are de-
tected as well (see also the remaining two categories). We also count here objects that
are detected by a bounding box that is at least twice as large as necessary, containing
also, e.g., the person’s hand in the iCubWorld dataset.

Background: The background is detected. For the iCubWorld dataset, we do not include
here the detection of (parts of) the person presenting the object. This is covered by
the next category.

Head/face, hand, and body: The head/face, hand, or other parts of the body of the person
presenting the object are detected (only applies to the iCubWorld dataset).

For the experiment with the Scaled-YOLOv4-p5, the complete set of metrics and losses is
shown in Figure A2.

Figure A2. Training losses and metrics for the Scaled-YOLOv4-p5 trained on the iCubWorld dataset
(see Section 3.3) for 200 epochs.
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