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Abstract: An analytically separated neuro-space mapping (Neuro-SM) model of power transistors
is proposed in this paper. Two separated mapping networks are introduced into the new model
to improve the characteristics of the DC and AC, avoiding interference of the internal parameters
in neural networks. Novel analytical formulations are derived to develop effective combinations
between the mapping networks and the coarse model. In addition, an advanced training approach
with simple sensitivity analysis expressions is proposed to accelerate the optimization process.
The flexible transformation of terminal signals in the proposed model allows existing models to
exceed their current capabilities, addressing accuracy limitations. The modeling experiment for the
measurement data of laterally diffused metal-oxide-semiconductor transistors demonstrates that the
novel method accurately represents the characteristics of the DC and AC of transistors with a simple
structure and efficient training process.

Keywords: power transistor; modeling; neuro-space mapping; optimization method

1. Introduction

Power transistors are essential components in the microwave circuit system [1,2].
Therefore, high-precision transistor models play significant roles in system design [3-5].
Conventional modeling approaches, such as equivalent circuit models and empirical for-
mula models, require slow trial-and-error processes. Due to the lack of freedom, traditional
models often fail to meet the accuracy requirements. The electromagnetic (EM)-based
design method is essential for accurate modeling. However, the EM model requires more
information about device structure and material. In addition, expensive computing costs in
EM simulation reduce transistor design efficiency [6-9]. Data-driven modeling methods
with good flexibility and generality are applied to transistors, which eliminate the need
for underlying device physics and laborious equation development [10-12]. The authors
of [13] proposed a fully adaptive regression model (FARM), where processing functions
and network components are obtained by the tree Parzen estimator automatically.

Recently, neuro-space mapping (Neuro-SM) has become an essential alternative to
conventional modeling approaches in the microwave domain [14-16]. This method com-
bines space mapping (SM) and an artificial neural network (ANN) as a Neuro-SM model.
The measured or simulated data of the modeled devices are called fine models. Existing
empirical formulas or equivalent circuits, which roughly represent the modeled device
performance, are called coarse models. Mapping networks in Neuro-SM models make
connections between coarse models and fine models. As a result, Neuro-SM methods
could exceed the existing model’s accuracy limit and address the growing computational
challenges in EM simulation. Neuro-SM modeling methods have been applied in many
microwave device modeling fields [17-19]. The first Neuro-SM modeling technique, modi-
fying the behavior of existing device models with novel formulations of space mapping, is
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presented in [20]. The trained model can accurately match device data and be applied to
large signal circuit simulations. Compared with the circuit-based Neuro-SM method, an
analytical Neuro-SM method with high computational efficiency is proposed in [21]. In [22],
a dynamic neural network is introduced into the Neuro-SM model for microwave devices.
The dynamic modeling technique makes up for non-quasi-static effects and any capacitive
effects while retaining the response of static Neuro-SM. Two mapping networks are used to
modify the current and voltage signals from the existing device model to the fine data in
large-signal simulations [23]. A small-signal knowledge-based modeling approach, which
uses the input and output package modules to improve the small-signal characteristic of
transistors, is proposed in [24].

These existing methods use the same optimized variables to improve the characteristics
of the DC and AC. The values of variables in mapping networks affect each other, resulting
in increased difficulty in the training process. When the response trend between fine
data and coarse models is inconsistent, or the nonlinearity of the characteristics of the
DC and AC is high, existing Neuro-SM modeling approaches fail to satisfy the accuracy.
The nonlinearity of the mapping network is controlled by both DC and AC performance,
so an enormous number of free variables and complex neural network structures are
needed to match the DC and AC responses. Different from DC characteristic modeling,
AC characteristic modeling is more difficult for some existing methods. Existing methods
can easily match the fine data at low power but fail to meet the accuracy requirement
at high power. In order to enhance the accuracy, parameters in the model need to be
constantly corrected, which has massive computing resource and time costs. Therefore,
existing modeling methods could not meet the requirement of high precision and high
efficiency at the same time.

A separated Neuro-SM for power transistor model is addressed in this paper. We
propose adding two mapping networks to the traditional model, making the model more
flexible. The proposed technique, which changes the characteristics of the DC and AC
separately, can achieve better accuracy with simpler mapping networks than existing
Neuro-SM modeling methods. In addition, an automatic training method is proposed to
achieve higher accuracy and significantly reduce the repetitive training process to improve
the modeling efficiency. The applications of the measured power transistor model verify
the advantages of the separated Neuro-SM approach.

2. Model and Methods
2.1. Structure of the Separated Neuro-SM Model

Sometimes, the responses of existing models, such as empirical formulas or equivalent
circuits, do not match those of the modeled device accurately, even if the parameters in the
existing models are adjusted as much as possible. Mapping networks are introduced on the
existing models to increase the degree of freedom. In this way, the existing model with low
precision is taken as the coarse model, while the model combining the coarse model and
mapping networks is called the Neuro-SM model. The goal of modeling is to obtain the
same output response when the fine model and the Neuro-SM model operate with the same
input parameters. To improve the modeling accuracy, we propose introducing inductors
and capacitors into the traditional Neuro-SM structure, changing the characteristics of the
DC and AC, respectively. The separated model’s circuit-based structure is given in Figure 1.

Here, the drain and gate of the transistor are denoted by subscripts d and g, respectively.
Let subscripts f and c represent the fine model and the coarse model, respectively. In
the proposed model, the input signals are the fine model’s voltage information, namely
vr = [vgf, vdf]T. ver and v,¢ represent the gate and drain voltage information of the
transistor, respectively. Instead of directly acting on the coarse model, the two voltage
signals are divided into DC and AC signals by inductors and capacitors, respectively.



Micromachines 2023, 14, 426

3o0f11

Fine Model .
Output Mapping Output Mapping
A A

Coarse
Model

Input Mapping Input Mapping

Figure 1. Circuit-based structure of the separated model.

The DC component is changed by the input mapping network, while the AC signal is
not affected by the mapping relationship. In this way, the proposed model can improve
the DC characteristic and keep the AC characteristic unchanged. Then, the input voltage
information of the fine model is transferred to the coarse model defined as v, = [vgc, vdc]T.
The coarse model’s output currents ic = [ig, idc]T are obtained with the input voltage
vc. In this structure, instead of changing by the output neural network, i, is separated
into two components. The DC component can pass directly without adjusting, but the
AC component must be changed due to the inductance. The output mapping obtains
a better AC characteristic without changing the DC characteristic. The response of the
Neuro-SM model with two separated mapping networks can match the fine model output
signals i = [igf, ig f]T. This proposed method can improve the characteristics of the AC and
DC and represent the device characteristics well with simple mapping relationships and a
few optimization variables.

2.2. Analytical Formulation for Neuro-SM Method

New analytical formulations for the separated Neuro-SM model are proposed to repre-
sent the mapping mechanisms between the input and output signals. Instead of Kirchhoff
equations and controlled sources, the model established by the analytical formulas can be
trained and tested in one program, which speeds up the operation process. We achieve the
analytical formulations within the environment of DC and AC cases.

2.2.1. Analytical DC Signal Expression

The DC signals of the transistor are supplied by the DC offset source, which directly
affects the DC characteristic of the model. If the DC characteristic of the coarse model does
not match the fine data well, the input mapping network is added to the input ports of the
coarse model. Figure 2 shows the schematic of the analytical DC model.

b
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‘ Coarse Model ‘
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Figure 2. Schematic of the analytical DC model.
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In Figure 2, the fine input signals V¢ pc are operated in the input mapping network
instead of the coarse model. The DC response of the coarse model obtained with the coarse
DC voltage signals V, pc matches that of the fine model, i.e., It pc = I;,pc- The mapping
network /14NN represents the nonlinear relationship between coarse signals V. pc and fine
signals V¢ pc. The function is

(Vee,0cs Viae,pc) = hann (ng,Dc, Vdf,DCrwl) (1)

where 114 yn denotes the multilayer perceptron network [6]. w is the internal weights in
h annN, which can be optimized in the training process. The activation function in i 4y is a
sigmoid function, which is smooth and the derivative of which is easy to take. When the
difference in the DC characteristic between the coarse model and the fine data is large, a
complex network such as deep learning can be taken as the mapping network.

2.2.2. Analytical AC Signal Expression

The AC signals of the transistor mainly contribute to the large signal response. By ad-
justing the AC signal, the power response of the model can meet the precision requirements.
If the AC characteristic of the coarse model does not match the fine data well, the output
mapping network is added to the output ports of the coarse model. The output mapping
network can improve the AC characteristic of the coarse model without affecting the DC
characteristic of the coarse model. The schematic of the analytical AC model is given in
Figure 3. The terminal signals of the new Neuro-SM model are shown in Figure 3a. The
input signals of the AC model are bias voltages V,r pc and Vjf pc, load impedance Zp,
source impedance Zg, input power P, and frequency freq. The output signals of the model
are output power P, power-added efficiency PAE, gain Gain and power efficiency 7.
Figure 3b shows the detailed process of the AC model, which includes the inverse fast
Fourier transform module, coarse model, output mapping network and fast Fourier trans-
form module. The accurate outputs of the AC model, which are P,,¢, Gain, 7 and PAE, can
be calculated with the mapping currents and the excitation signals. The AC characteristic
of the device is represented by the nonlinear relationship between the input and output
signals of the AC model. An appropriate coarse model can provide a good foundation for
AC characteristic modeling.

The proposed AC model is operated in harmonic balance (HB) simulation to demon-
strate AC characteristics. HB simulation operates the frequency domain information of the
terminal signals of the device, while the neural mapping network handles the terminal sig-
nals in the time domain. The output mapping network maps the time domain information
of the current signals from the coarse model to the fine model. In Figure 3b, inverse fast
Fourier transform (IFFT) converts input signals of the fine model to the time domain, and
fast Fourier transform (FFT) converts output signals of the output mapping to the frequency
domain. V,r(wy) and V¢ (wy) represent the harmonic voltages generated by the fine model
at the harmonic frequency wy. Iy¢(wy) and ;s (wy) represent the harmonic current of the
fine model. The index of the harmonic frequency is denoted by the subscript k, where
k=0,12,...... ,N and N is the maximum harmonic number. v.(t,) represents input
signals of the coarse model, which are equivalent to the signal of the fine model vf(ty).
The DC and AC components of the coarse output signals are named i, pc(t,) and i ac(£4),
respectively. The AC current if oc(ts) is obtained by the output mapping network, and it
can be expressed as follows:

if,ac(tn) = fann(ic,pc(tn), ic,ac(tn), w2) 2)

where fann denotes the multilayer perceptron network [6]. w» is the internal weights in
fANN, which can be optimized in the training process. The activation function in f,yy is a
sigmoid function, which is smooth and the derivative of which is easy to take. When the
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difference in the AC characteristic between the coarse model and the fine data is large, a
complex network such as deep learning can be taken as the mapping network.
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Figure 3. Schematic of the analytical AC model. (a) The input and output signals of the AC model.
(b) The detailed process of the AC model.

Let () denote the FFT calculation in HB simulation, and then I¢(wy) in the form of
harmonics of the AC model is expressed as follows:

1 Nr-1

Ie(wi) = Flif(tn)) = Ny ;) lic.oc(tn) + fann(ic,pc(tn),ic ac(tn), w2)] - Wi, (1, k) (3)

where 7 represents the sampling time point and Nt is the maximum number of time points,
ie,n=20,12,...... ,Nr. Wny (k) = e~ /2mnk/ Nt ig the Fourier coefficient for the nth
sampling and the kth harmonic.

2.3. Sensitivity Analysis Expressions and Training Method

An efficient training algorithm is an important part of transistor modeling, which
determines the efficiency of the modeling process. This section introduces the new training
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method for the separated model. The training process of the DC characteristic model is
shown in Figure 4a. In the DC model training, the input mapping neural network is trained
to minimize the deference of DC between the new Neuro-SM model and the fine data.
During training, the weights w; in the input mapping neural networks are optimized with
the gradient information from the sensitivity analysis. We set V., pc = V¢ pc to establish
the input unit network, which prevents the training error from increasing. Meanwhile, the
parameter w1 in h oy is changed in the training process, decreasing the errors between
the data and the model conspicuously. When the training error between the data and the
model meets the user-defined threshold ¢, the DC training stage finishes. The training error
reflects the learning ability of the developed model, and the test error is used to check the
prediction ability of the developed model. When the training error is small and the test
error is large, we can add more training data or reduce the hidden neurons of the mapping
network. When both training error and test error are reduced to the threshold, the model
can represent the modeled device well.

Send input signals to model and
set training stop conditions

Vz D(‘L

_ | Input mapping network
T Ve = R Ty e W1) A

Vc,DC‘¢

‘ Coarse model ‘

Data generation
from device

Adjust the neural
network weights

Sensitivity analysis

CE(wr)/Omw

Send mput signals to model and set
training stop conditions

A 4
IFFT
l‘c(tn)
i oc(ts) Data generation
feAc(tn) from device
Output mapping network
. : S
Lp ac (1) = LU pe G0, 1o (1,0 w3)
v
Adjust the neural Fr(ta),
netwoik weights B i
s ir(e.)
A

Sensitivity analysis |

OE(wn)/Ow

(b)

Figure 4. Advanced training process of the separated model. (a) DC model training. (b) AC model training.
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The training process of the AC characteristic model is shown in Figure 4b. The training
data of the AC model are the harmonics of voltage signals and current signals. In the
AC model training, the output mapping network is trained to minimize the gap between the
harmonic balance response of the new model and the device data. The weight w; is adjusted
with the gradient information. Set if ac(tn) = ic,ac(tn) to obtain a suitable initial value
of wy establishing the output unit network. Then, the weight parameter w; is optimized to
reduce the difference between the data and the model output. The unit mapping networks
maintain the error of the overall model while introducing new mappings. After training,
the developed model is tested with the test data, which are never used in the training
process. If the test error meets the accuracy requirement, the trained model is used instead
of devices in large-scale circuits.

In the DC characteristic training method, the first-order derivative oI b /0wy ; is required
to speed up the training process. The parameter w; is the optimization variable. The
sensitivity analysis expression of the DC model can be expressed as follows:

4)

= c
owr ; oV, pc owr ; Jdwy;

olf ( oIf )T. OVepc _ o | ohann (V,pc, w1)
where G, denotes the conductance matrix of the coarse DC characteristic, while dhsnn
(V¢ pc, w1) /0wy ,; denotes the first-order derivative calculated by the multilayer perceptron
network [6].

In the AC characteristic training method, the first-order derivative dl(wy)/dwy,
provides the right direction for the next iteration, which can speed up the training process.
The parameter wy is the optimization variable. The sensitivity analysis expression of this
model can be expressed by the equation as follows:

aIf(wk) _ LNT?l afANN(ic,DC(tn)/ic,AC(tn)rWZ) .e—j-2n~nk/NT (5)
aZUZ/i NT =0 8w2/i

The I; error represents the training error and test error between the separated model
and the fine data, and the expression of the I, error is represented as follows:

1
2
1 NN qu(w) _Y;D

NgNp ;= =1 ’Yg

E(w) = (6)

max

where Y;D and Y; (.) are the DC or AC response of the fine data and the separated model;
p and N, represent the index and the maximum number of the output signals, respectively,
ie,p=12,...... ,Np; and q and N, represent the index and the maximum number of the
training data, respectively,ie., g =1,2,...... , Ng.

3. Experiment and Discussions

The proposed method is applied to the laterally diffused metal-oxide-semiconductor
transistor AFT185230. In this example, the measured AFT185230 data are the fine model [24].
The transistor AFT185290 model in Advanced Design System (ADS), which has a similar
performance to the fine model, is chosen as the coarse model. The coarse model with fixed
parameters is used in DC and AC characteristic modeling. For DC characteristic modeling,
the proposed model is trained at 180 different biases for 370 training iterations. Data for
50 biases different from the training data are used as the test data. For AC characteristic
modeling, the device is operated with Z; = 1.403 —j3.748 (), Zs = 1.535 — j4.232 (),
Var = 28V, Vor = 275V and freq = 1.805 GHz. The input power P, operates from
4.25 dBm to 40.25 dBm with a step of 2 dBm. The input powers 10.25 dBm, 20.25 dBm and
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28.25 dBm are used as the test data, while other input powers are used as the training data.
The proposed training process is operated in the software NeuroModelerPlus 2.0.

Before developing the separated Neuro-SM structure, a three-layer multilayer per-
ceptron with 30 hidden neurons establishes the coarse model in NeuroModelerPlus. A
model with the trained coarse model and two separated networks is developed after the
development of the coarse model. The layers and the hidden neuron numbers of the
mapping networks are determined after a lot of attempts. The higher the nonlinearity, the
more layers and hidden neurons. The input mapping network has five. The training error
combined with the DC response and AC response is 1.18%, while the test error for that is
1.24%. Both training error and test error are obtained by Equation (6). The trained model
can process 10 sets of data in 0.005 s. The separated model with high accuracy and high
efficiency can meet the requirements of electronics.

To verify the advantages of the separated model, we use two existing modeling
methods. The traditional Neuro-SM model adding mapping networks at the coarse model’s
input port in [21] and the Neuro-SM model improving both the current and voltage signals
in [23] are called existing model 1 and existing model 2, respectively. The errors and the
hidden neurons used in models are shown in Table 1. The test errors between the fine data
and three Neuro-SM models are less than 3%, while the test error between the fine data
and the coarse model is 8.82%. In addition, hidden neurons used in the proposed model
are less than those of the two existing Neuro-SM models. In other words, the proposed
modeling method matches the fine model with a much simpler mapping relationship.

Table 1. Modeling results of four modeling methods.

Hidden Neurons Hidden Neurons Training

Model Type in Input Mapping  in Output Mapping Error Test Error
Coarse Model 8.77% 8.82%
Existing Model 1 30 2.83% 2.81%
Existing Model 2 15 15 2.21% 2.35%
Proposed Model 5 12 1.18% 1.21%

To further show the detailed results, we compared the DC responses of four models
with the fine data at 230 bias. The errors of existing model 1, existing model 2 and the
proposed model are 0.82%, 0.73% and 0.76%, respectively, while the error between the
fine model and coarse model is 8.55%. It demonstrates that the separated model enhances
the DC response of the coarse model, achieving the accuracy of the existing models. The
I-V curves in Figure 5 show that the separated model perfectly represents the fine DC data.

10

—— Fine Model -==- Coarse Model O Existing Model 1
+ Existing Model 2 Proposed Model

14 (A)

35
Va(V)

Figure 5. I-V comparison between the fine data and the models.
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For AC characteristic modeling, the proposed model has better accuracy than other
existing Neuro-SM models. The AC error comparison of the coarse model, two existing
Neuro-SM models and the proposed model is given in Table 2. Owing to the mapping
networks with extra degrees of freedom, the separated model exceeds the capabilities
of the coarse model. As a result, errors of the separated model are much smaller than
those of existing model 1 and existing model 2. Two separated mapping networks are
introduced into the proposed model to modify the DC signals and AC signals, avoiding
variables’ interaction and reducing the optimization difficulty. Therefore, the proposed
method has higher accuracy with fewer optimized variables. Figure 6 displays the gain and
PAE comparison of the five models. The results verify that the separated model can match
the measured data at all input powers, while existing model 1 and existing model 2 can
only match the measured data at low powers. In a word, the proposed modeling method
accurately shows the AC characteristics of the modeled device.

Table 2. HB simulation results of the four models.

Model Type Pout Gain 7 PAE
Coarse Model (%) 411 11.52 4.68 4.61
Existing Model 1 (%) 2.74 7.77 3.67 4.09
Existing Model 2 (%) 2.15 6.04 3.58 3.79
Proposed Model (%) 0.82 211 2.28 2.59
24
— Fine Model —-—- Coarse Model ~©  Existing Model 1
+  Existing Model 2 Proposed Model
224
@ 20
:E: P o O 0o o 0 ©
] 5 F £
18
4 - -
14 T T T T
4 12 20 28 36 44
P (V)
(a)
60
Fine Model
==+ Coarse Model
301 O  Existing Model 1
+  Existing Model 2
40 4 Proposed Model
S
g 30

20

4 12 20 28 36 44
P,, (dBm)

(b)

Figure 6. The parameters comparison between the models and the fine data. (a) Gain versus Pj,.
(b) PAE versus P;,.
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References

This paper derives sensitivity formulations of the separated model with mapping
network weights. The proposed training algorithm with simpler sensitivity formulations
can speed up existing training processes with perturbation sensitivity analysis. In contrast,
the model developed by the circuit-based Neuro-SM method with three-section formulas
at the coarse model output in [25] is used in this example. Simulated data from the ADS
software are used to compare the training CPU time between the circuit-based model
and the analytically separated Neuro-SM. The detailed results in Table 3 confirm that the
analytically separated model has better efficiency.

Table 3. Training time comparison of the models.

Data Circuit-Based Model Proposed Model
20 Hidden Neurons 30 Hidden Neurons 20 Hidden Neurons 30 Hidden Neurons
10 sets 12.7 s 13.8s 15s 19s
30 sets 623 s 712s 58s 72s
50 sets 79.7 s 84.4s 6.7s 10.1s

4. Conclusions

In this paper, an effective model based on the separated Neuro-SM is proposed. Two
mapping networks in the new model modify the characteristics of the DC and AC. A
combination of the coarse model and the mapping structure is supplied by capacitors and
inductors. The proposed training method’s analytical expressions and sensitivity analysis
are derived to optimize appropriate weight values for mapping networks. Compared
with the existing methods, the proposed model not only achieves good accuracy with
less optimized variables but also speeds up the training process, improving the modeling
efficiency. The measured power transistor example verifies the advantage of the separated
model. In future work, larger-scale and more complex circuits with more measured data will
be studied to verify the validity of the proposed method. In addition, various advanced
modeling methods such as support vector regression machine (SVRM) and Gaussian
process regression (GPR) will be applied for transistor modeling to further improve the
modeling efficiency and accuracy.
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