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Abstract: Cell viability is an essential physiological status for drug screening. While cell staining
is a conventional cell viability analysis method, dye staining is usually cytotoxic. Alternatively,
impedance cytometry provides a straightforward and label-free sensing approach for the assessment
of cell viability. A key element of impedance cytometry is its sensing electrodes. Most state-of-the-
art electrodes are made of expensive metals, microfabricated by lithography, with a typical size of
ten microns. In this work, we proposed a low-cost microfluidic impedance cytometry device with
100-micron wide indium tin oxide (ITO) electrodes to achieve a comparable performance to the
10-micron wide Au electrodes. The effectiveness was experimentally verified as 7 µm beads can be
distinguished from 10 µm beads. To the best of our knowledge, this is the lowest geometry ratio of
the target to the sensing unit in the impedance cytometry technology. Furthermore, a cell viability
test was performed on MCF-7 cells. The proposed double differential impedance cytometry device
has successfully differentiated the living and dead MCF-7 cells with a throughput of ~1000 cells/s.
The label-free and low-cost, high-throughput impedance cytometry could benefit drug screening,
fundamental biological research and other biomedical applications.

Keywords: microfluidic impedance cytometry; low-cost ITO electrodes; cell viability analysis; label-
free sensing; sensitive electrodes

1. Introduction

Cell viability analysis is of great significance in drug screening. Traditionally, cell
viability can be determined by staining cells with Trypan Blue (TB) and fluorescent in-
dicators [1–3]. TB is a commonly used dye to label dead cells that can pass through the
permeabilized membranes of dead cells to stain the nucleus blue, thus distinguishing living
and dead cells under the optical microscope [4]. However, the staining results of TB are
not very accurate. Previous studies have shown that when the cell viability is below 70%,
the results may be over-estimated [5]. Another fluorescent indicator used to stain living
cells is Calcein AM, which can hydrolyze through the cell membrane and the endogenous
esterase in living cells to produce a highly negatively charged polar molecule, Calcein,
which cannot penetrate the cell membrane, thus remaining in cells. Calcein can emit strong
green fluorescence. Dead cells lack esterase or have a very low esterase activity, so all dead
cells will not have a green fluorescence [6]. Nonetheless, cell staining usually requires
invading the interior of a cell, and the fluorescent indicator may be toxic [7]. Furthermore,
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while fluorescence flow cytometry is a conventional method for measuring cell viability, it
requires expensive and bulky equipment, as well as staining cells [8].

In recent years, with the development of microfluidics, the microfluidic impedance
cytometer (MIC) based on Coulter counter-conception has attracted extensive attention
from researchers [9–11]. Compared with a conventional flow cytometer, the MIC is non-
invasive, portable, and label-free, and has been widely used in the detection of cells [12,13],
bacteria [14,15], and other bioparticles [16]. Sensing electrodes are an important part of
MICs. The detecting electrodes generate an electric field to form a detection region, and
particles passing through the detection region will cause a variation in the electric field
to generate impedance signals [17]. The MIC has many applications in the field of flow
cytometry, such as in investigating the dielectric properties of white blood cells (WBCs)
and MCF-7 cancer cells [18], differentiating cell death and apoptosis morphology [19], and
blood cell counting [20]. The MIC device in this study provides an efficient and accurate
platform for cell viability analysis.

The detection electrodes in an MIC are generally made of Au, which is expensive [21].
Further, the detection electrodes often need to be fabricated with a critical dimension
of around 20-micron, which requires relatively high fabrication accuracy. Consequently,
the production cost and difficulty of the detection electrodes increase significantly [22],
especially for massive production in real applications. Therefore, narrow Au electrodes are
not viable for low-cost disposable detection cases. To solve this problem, many low-cost
methods to produce electrodes have been reported. For example, Tang et al. [23] used liquid
electrodes in their cytometer instead of Au electrodes to avoid the complex steps involved
in producing microfabricated metal electrodes. However, the accuracy and sensitivity of
the liquid electrodes were poor, and the conductive solution of the liquid electrodes was
suspected to potentially contaminate sample solutions. Recently, Cheng et al. [24] used
molten liquid metal for the 3D-detection electrodes in their device by using a Sn42Bi58
alloy solder wire instead of conventional electrode materials (e.g., Au and Cr). Instead
of making conventional electrodes, they melted the Sn42Bi58 alloy solder wire into metal
liquid and injected the melted alloy into the microelectrode layer at a controlled driving
pressure. Although this method provides a simple and low-cost method for electrode
fabrication, the accuracy of the electrode shapes was relatively low. As printed circuit
boards (PCBs) have become popular all over the world, electrodes on PCBs are cheap and
can be manufactured in large quantities. Guo et al. [25] reported a cheap copper electrode
integrated on a PCB and stacked the polydimethylsiloxane (PDMS) microchannel on the
PCB to detect circulating tumor cells. However, the electrodes on the PCB are always
separated from the microchannel by a layer of PDMS or glass, which weakens the electric
field in the channel and reduces the sensitivity of the electrodes [26,27]. In this study,
we proposed a low-cost microfluidic impedance cytometry device with 100-micron scale
indium tin oxide (ITO) electrodes to achieve a level of performance comparable to the
10-micron scale Au electrodes.

The relatively large sizes of ITO electrodes reduce the requirements for fabricating
accuracy and lower the cost. To improve the measurement accuracy, we used a seven-
electrode coplanar configuration as the detection region. This electrode configuration is
referred to as a double differential configuration. Previous work has verified that the
double differential configuration has a higher sensitivity and can eliminate the position
dependence of particles. The electric diameter after calibration has better performance [28].
We also built a 3D finite element method (FEM) of our MIC to compare the signals generated
by different sizes of particles passing through the detection region. The results showed that
our device has a minimum resolution size of around 5 µm particle. Then we tested our
device’s sensitivity by using polystyrene beads and MCF-7 cells. The experiment result
showed that our device can distinguish the 7 µm beads from the 10 µm beads. Thus, we
have further demonstrated that the living and dead MCF-7 cells can be separated with an
accuracy of 94.5% with our device. Our MIC device can discriminate between dead and
living cells by processing the cell impedance signal. It is also non-invasive, label-free, and
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has a very high accuracy. Previous studies have demonstrated that 20 µm Au electrodes
can distinguish living MCF-7 cells from dead MCF-7 cells [11]. In this work, we succeeded
in distinguishing living and dead MCF-7 cells using 100 µm ITO electrodes. The typical
differential current signals from the Au electrodes and ITO electrodes are provided in
Figure S1 in the Supplemental Materials. Our device, with a lower production cost (less
than USD 1 per chip; a cost breakdown table is shown in Table S2) and a high sensitivity,
has broad application prospects in biology tests and rapid detection technology.

2. Materials and Methods
2.1. Working Principles

The MIC can detect a single cell in real-time. When the suspension of cells passes
through the detection region, it will generate complex impedance signals that can indicate
the dielectric properties of cells, discriminate between living and dead cells, detect cell
apoptosis, etc. [19]. The cell’s electrical impedance is defined as the ratio of the voltage
to the current. The impedance is a measure of the dielectric properties (permittivity and
conductivity) of the system [29]. The cell electrical impedance equation is given by

Z̃ =
Ṽ
Ĩ

(1)

where Z̃ is the cell electrical impedance, Ṽ is the voltage, Ĩ is the current, and the superscript
‘’~” represents the complex number.

The complex permittivity of a mixture of cells in a suspension is usually described
by Maxwell’s mixture theory. The single-shelled spherical model has been widely used,
as shown in Figure 1a [30]. Based on Maxwell’s mixture theory, the single-shelled spher-
ical model is composed of a conducting sphere (cytoplasm) and an insulating thin shell
(cell membrane).
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Figure 1. (a) Single-shell spherical model represents a single cell in suspension. ε̃med, ε̃mem and
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plasm, respectively. (b) The process of fabricating an MIC chip: (i) preparing a clean silicon wafer,
(ii) negative photoresist spin coating, (iii) photolithography, (iv) PDMS pouring, (v) demoulding,
(vi) bonding. (c) Schematic of the MIC chip.
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The complex permittivity of the mixture is ε̃mix:

ε̃mix = ε̃med
1 + 2Φ f̃CM

1−Φ f̃CM
(2)

f̃CM =
ε̃c − ε̃med

ε̃c + 2ε̃med
(3)

where f̃CM is the Clausius–Mossotti factor, Φ is the volume fraction. The subscripts “c” and
“med” refer to cell and medium, respectively. The complex dielectric parameters of cell ε̃c
can be expressed by the following equation:

ε̃c = ε̃mem

γ3 + 2
(

ε̃i−ε̃mem
ε̃i+2ε̃mem

)
γ3 −

(
ε̃i−ε̃mem

ε̃i+2ε̃mem

) (4)

γ =
R + d

R
(5)

where the subscripts “mem” and “i” represent the cell membrane and cytoplasm, re-
spectively. R and d represent the internal radius of the cell and the thickness of the
cell membrane, respectively. The impedance of a system (Z̃mix) is expressed by the
following equation:

Z̃mix =
1

jωε̃mixG f
(6)

where G f is a geometric constant, generally the ratio of electrode area to electrode gap.
j =
√
−1, ω is the electric field frequency.

2.2. Finite Element Modeling

A 3D finite element model was established to simulate the current density within the
microchannel and the real-time differential current signal changes when particles or cells
pass through the microchannel. We used the AC/DC Module of COMSOL Multiphysics
5.6 (COMSOL AB, Kgs. Lyngby, Denmark) for the impedance cytometry simulation. Our
finite element model used the current conservation equation based on Ohm’s law from the
AC/DC modules:

J = (σ + jωε0εr)∇U (7)

where σ is conductivity, ε0 and εr is the vacuum dielectric constant and relative dielectric
constant, respectively, and ∇U is the potential difference.

The exterior boundary conditions of this model were set to ‘Electric Insulation’, the
interior boundaries between different sub-domains were set to ‘Continuity’, and the initial
potential value of all domains was 0 V. The central electrode was set as ‘Terminal’, and
the voltage amplitude was set to 1 V at 0◦ phase angle. It had two neighboring electrodes
set to the ground (GND) electrodes. Two extra electrodes on both sides of the detection
region were also set as ‘Terminal’, which had the same voltage amplitude but opposite
phase (180◦ phase angle). The floating electrodes used for particle size calibration were
located between the ‘Terminal’ electrodes and the GND electrodes. The floating electrodes
were set to ‘Floating Potential’. To simulate the flow of particles in the microchannel, we
defined the flow of particles as the change of materials inside the microchannel, rather than
creating a solid particle [31]. The initial coordinates of particles were set to x0, y0, and z0,
and parameter scanning x0 was used to simulate the flow of particles in the microchannel.
A variable DFC was defined to calculate the distance to the particle or cell center:

DFC = ((x− x0)
2 + (y− y0)

2 + (z− z0)
2) (8)
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The material inside the microchannel is defined as:

Electrical conductivity = sigma_par + (sigma_sol− sigma_par) ∗
(

DFC > r2
0

)
(9)

Relative permittivity = eps_r_par + (eps_r_sol− eps_r_par) ∗
(

DFC > r2
0

)
(10)

where sigma_par, eps_r_par, sigma_sol, eps_r_sol represent conductivity and relative per-
mittivity of particles and medium, respectively, and r0 represents particle radius. The
expression DFC > r2

0 is a Boolean expression. When the expression is true, the expression
is set to 1 outside the particle and 0 inside the particle for false. The equations can solve the
internal and external material of particles in the microchannel simultaneously [31].

2.3. Microfluidic Chip Fabrication and Measurement Setup

The MIC chip mainly contains two components: a PDMS microchannel and ITO
electrodes. The width of the microchannel is 100 µm, and the channel height is 30 µm. The
detection region has the dimensions of 1260 µm × 100 µm × 30 µm. Particles and cells can
achieve high throughput without blocking the microchannel at this size. The fabrication of
the PDMS microchannel was shown in Figure 1b. First, (i) prepare a 4-inch silicon wafer.
(ii) Spin the SU–8 photoresist (MicroChem, Westborough, MA, USA) onto the cleaned
silicon wafer at a speed of 3500 rpm by a spin coater (TB616 Spin Coater, Sysile) to form
a negative photoresist with a thickness of 30 µm on the silicon wafer. The mask pattern
on the silicon chip was pre-designed with Auto CAD software. (iii) After pre-baking,
UV exposure, and post-baking, wait for 5 min and let the photoresist develop at room
temperature. The silicon wafer containing the designed photoresist pattern was used as the
mold for the MIC channels. (iv) Prepare 40 g PDMS (SYLGARD 184, Dow Corning) and
4 g curing agent. After mixing, use a vacuum pump to remove the air bubbles. Then pour
the mixture onto the SU-8 mold and heat it at 80 ◦C for 60 min. (v) The solidified PDMS
was carefully removed from the mold, the microchannel was peeled off with a knife, and
0.7 mm diameter holes were punched at the inlet and outlet of the PDMS model. (vi) The
solidified PDMS and the glass with ITO electrodes were plasma cleaned and well bonded
using a plasma machine (PDC-MG, PTL Technology Co, Ltd., Shenzhen China). Finally, the
bonded MIC chip was placed on the heating plate for 30 min at 80 ◦C) [32]. The schematic
diagram of the bonded MIC chip is shown in Figure 1c.

We have also simplified the fabrication of the ITO electrodes. The traditional method
of fabricating ITO electrodes is by photolithography as shown in Figure 2a. Our ITO
electrode pattern was fabricated with a 355 nm UV laser cutting machine (MVU12, Wuhan
Hero Optoelectronics Technology Co., Ltd., Wuhan, China), as shown in Figure 2b. This
is an efficient and cost-effective method compared to photolithography. This fabrication
method enables the mass production of ITO electrodes.

Micromachines 2023, 14, x FOR PEER REVIEW 5 of 15 
 

 

The material inside the microchannel is defined as: 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑠𝑖𝑔𝑚𝑎_𝑝𝑎𝑟 + ሺ𝑠𝑖𝑔𝑚𝑎_𝑠𝑜𝑙 − 𝑠𝑖𝑔𝑚𝑎_𝑝𝑎𝑟ሻ ∗ ሺ𝐷𝐹𝐶 > 𝑟଴ଶሻ (9) 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑒𝑝𝑠_𝑟_𝑝𝑎𝑟 + ሺ𝑒𝑝𝑠_𝑟_𝑠𝑜𝑙 − 𝑒𝑝𝑠_𝑟_𝑝𝑎𝑟ሻ ∗ ሺ𝐷𝐹𝐶 > 𝑟଴ଶሻ (10) 

where 𝑠𝑖𝑔𝑚𝑎_𝑝𝑎𝑟, 𝑒𝑝𝑠_𝑟_𝑝𝑎𝑟, 𝑠𝑖𝑔𝑚𝑎_𝑠𝑜𝑙, 𝑒𝑝𝑠_𝑟_𝑠𝑜𝑙 represent conductivity and relative 
permittivity of particles and medium, respectively, and 𝑟଴ represents particle radius. The 
expression 𝐷𝐹𝐶 > 𝑟଴ଶ is a Boolean expression. When the expression is true, the expression 
is set to 1 outside the particle and 0 inside the particle for false. The equations can solve 
the internal and external material of particles in the microchannel simultaneously [31]. 

2.3. Microfluidic Chip Fabrication and Measurement Setup 
The MIC chip mainly contains two components: a PDMS microchannel and ITO elec-

trodes. The width of the microchannel is 100 μm, and the channel height is 30 μm. The 
detection region has the dimensions of 1260 μm × 100 μm × 30 μm. Particles and cells 
can achieve high throughput without blocking the microchannel at this size. The fabrica-
tion of the PDMS microchannel was shown in Figure 1b. First, (ⅰ) prepare a 4-inch silicon 
wafer. (ii) Spin the SU–8 photoresist (MicroChem, Westborough, MA, USA) onto the 
cleaned silicon wafer at a speed of 3500 rpm by a spin coater (TB616 Spin Coater, Sysile) 
to form a negative photoresist with a thickness of 30 μm on the silicon wafer. The mask 
pattern on the silicon chip was pre-designed with Auto CAD software. (iii) After pre-bak-
ing, UV exposure, and post-baking, wait for 5 min and let the photoresist develop at room 
temperature. The silicon wafer containing the designed photoresist pattern was used as 
the mold for the MIC channels. (iv) Prepare 40 g PDMS (SYLGARD 184, Dow Corning) 
and 4 g curing agent. After mixing, use a vacuum pump to remove the air bubbles. Then 
pour the mixture onto the SU-8 mold and heat it at 80 °C for 60 min. (v) The solidified 
PDMS was carefully removed from the mold, the microchannel was peeled off with a 
knife, and 0.7 mm diameter holes were punched at the inlet and outlet of the PDMS model. 
(vi) The solidified PDMS and the glass with ITO electrodes were plasma cleaned and well 
bonded using a plasma machine (PDC-MG, PTL Technology Co, Ltd., Shenzhen China). 
Finally, the bonded MIC chip was placed on the heating plate for 30 min at 80 °C) [32]. 
The schematic diagram of the bonded MIC chip is shown in Figure 1c. 

We have also simplified the fabrication of the ITO electrodes. The traditional method 
of fabricating ITO electrodes is by photolithography as shown in Figure 2a. Our ITO elec-
trode pattern was fabricated with a 355 nm UV laser cutting machine (MVU12, Wuhan 
Hero Optoelectronics Technology Co., Ltd., China), as shown in Figure 2b. This is an effi-
cient and cost-effective method compared to photolithography. This fabrication method 
enables the mass production of ITO electrodes. 

 
Figure 2. (a) Diagram of the photolithography microfabrication process for the ITO electrodes. (b) 
Diagram of the UV laser cutting fabrication process for the ITO electrodes. 

Figure 2. (a) Diagram of the photolithography microfabrication process for the ITO electrodes.
(b) Diagram of the UV laser cutting fabrication process for the ITO electrodes.



Micromachines 2023, 14, 407 6 of 14

Figure 3 shows the configuration of the double differential microfluidic impedance
cytometry system. Particle or cell suspensions are passed through the detection region
by the pressure pump (OB1 MK3+, Elveflow, Paris, France). The impedance spectrometer
(HF2IS, Zurich Instrument, Zurich, Switzerland) provides the exciting signals at ±1 V AC
voltage with a phase angle of 0◦ and 180◦, respectively. As shown in Figure 2, 1 V AC
voltage with a phase angle of 0◦ was applied to the central electrode, and a voltage with a
180◦ phase angle was applied to two side electrodes. Two GND electrodes were connected
to a current amplifier (HF2TA, 100 dB gain), and the sampling frequency was set to 899
Hz. The impedance spectrometer was connected to a computer to process the differential
current signal.
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Figure 3. Schematic of the double differential microfluidic impedance cytometer setup consisting
of a PDMS microchannel and ITO electrodes. A pressure pump injected particles into the PDMS
microchannel. AC voltage signals generated by impedance spectroscope were applied to the detecting
electrodes. A current amplifier was used to obtain the differential current signal, which is fed to the
impedance spectroscope. Eventually, the signal is transmitted to a computer for processing.

When the particles or cells entered the microchannel, we used the inverted microscope
(Nikon Eclipse TI-S, Tokyo, Japan) equipped with a CCD camera (Nikon DS-QI 2) to take
optical observations. At the beginning, 7 µm and 10 µm polystyrene beads were injected
into the MIC chip to verify the accuracy of our device, and then the cell suspensions
were pumped into the channel. Here, we used living and dead MCF-7 cells for cell
viability analysis. A custom-built Python script was used to process the data and extract
the electrical signal of particles or cells, including the position calibration factor and the
original electric diameter, and to obtain the calibrated electrical diameter through the linear
fitting algorithm [33], as described in the Supplemental Material.

2.4. Sample Preparation

To evaluate the sensitivity of our MIC device, we prepared 7 µm and 10 µm polystyrene
beads. The beads were diluted in tubes containing a photographic buffered saline (PBS)
with a concentration of around 3× 105 particles per mL. The conductivity of the medium
measured by the conductivity instrument (DDS-307A, Shanghai Rex Instruments, Shanghai,
China) was 1.6 S m−1. Before the beads were loaded into the impedance flow cytometry
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device, the 7 µm (10 µL, 3 × 105 beads/mL) and 10 µm (10 µL, 3 × 105 beads/mL) beads
were mixed well.

As shown in Figure 4, we also prepared the living and dead MCF-7 cells to verify
that our device can discriminate between living and dead cells. The MCF-7 breast cancer
cells were observed under a microscope, and when they had grown to 70% to 80% in a
cell culture flask (BD Biosciences), the passage culture operation could be performed. The
cell passage culture operation is shown in Figure 4a. The supernatant was discarded from
the cell culture bottle, and a pancreatic enzyme digestion solution was added and left to
stand. When the cells fell down, the PBS medium was added to stop digestion, and the
mixture was then repeated with a sterile dropper. The mixture was placed in a 15 mL
centrifuge tube and centrifuged at 1000 r/min for 5 min, with the supernatant discarded
after centrifugation. The medium was added into the tube for full mixing, and finally,
the cell suspension was inoculated into the cell culture bottle. The cell culture flask was
placed in a cell incubator (Forma 381, Thermo Fisher Scientific, Waltham, MA, USA) at
37 ◦C with 5% CO2 for further culture. Before injection into our device, the MCF-7 cells were
trypsinized and resuspended in DPBS (Thermo Fisher Scientific) with a concentration of
0.2 wt% polyethylene oxide (PEO, MW = 600 kDa, Sigma-Aldrich, St. Louis, MO, USA) for
consistent cell alignment and ordering in the impedance sensing channel [19]. Additional
steps are required for dead cell preparation. The MCF-7 cells were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM, Thermo Fisher Scientific) supplemented with 10% fetal
bovine serum (FBS, Thermo Fisher Scientific) and in a cell incubator at 37 ◦C and 5% carbon
dioxide. To induce necrosis, after overnight incubation in a cell incubator, the cells were
exposed to heat shock through incubation at 60 ◦C for 30 min. Then, the cells were washed
3 times in the PBS and centrifuge, as shown in Figure 4b. When the live and dead cells are
well prepared, a suspension containing both live and dead cells were obtained to mimic
the mixture of cells.

Micromachines 2023, 14, x FOR PEER REVIEW 7 of 15 
 

 

As shown in Figure 4, we also prepared the living and dead MCF-7 cells to verify 
that our device can discriminate between living and dead cells. The MCF-7 breast cancer 
cells were observed under a microscope, and when they had grown to 70% to 80% in a 
cell culture flask (BD Biosciences), the passage culture operation could be performed. The 
cell passage culture operation is shown in Figure 4a. The supernatant was discarded from 
the cell culture bottle, and a pancreatic enzyme digestion solution was added and left to 
stand. When the cells fell down, the PBS medium was added to stop digestion, and the 
mixture was then repeated with a sterile dropper. The mixture was placed in a 15 mL 
centrifuge tube and centrifuged at 1000 r/min for 5 min, with the supernatant discarded 
after centrifugation. The medium was added into the tube for full mixing, and finally, the 
cell suspension was inoculated into the cell culture bottle. The cell culture flask was placed 
in a cell incubator (Forma 381, Thermo Fisher Scientific, Waltham, MA, USA) at 37 °C with 
5% CO2 for further culture. Before injection into our device, the MCF-7 cells were tryp-
sinized and resuspended in DPBS (Thermo Fisher Scientific) with a concentration of 0.2 
wt% polyethylene oxide (PEO, 𝑀ௐ = 600 kDa, Sigma-Aldrich, USA) for consistent cell 
alignment and ordering in the impedance sensing channel [19]. Additional steps are re-
quired for dead cell preparation. The MCF-7 cells were cultured in Dulbecco’s Modified 
Eagle’s Medium (DMEM, Thermo Fisher Scientific) supplemented with 10% fetal bovine 
serum (FBS, Thermo Fisher Scientific) and in a cell incubator at 37 °C and 5% carbon di-
oxide. To induce necrosis, after overnight incubation in a cell incubator, the cells were 
exposed to heat shock through incubation at 60 °C for 30 minutes. Then, the cells were 
washed 3 times in the PBS and centrifuge, as shown in Figure 4b. When the live and dead 
cells are well prepared, a suspension containing both live and dead cells were obtained to 
mimic the mixture of cells. 

 
Figure 4. (a) The passage culture process for the MCF-7 cells. When the cells were attached to the 
wall and cell passaging could be performed, the old culture medium in the culture bottle was 
poured out, and the trypsin digestion solution was added for digestion. The cells were then centri-
fuged with a trypsin digestive juice mixture. After centrifugation, the supernatant was discarded 
and a new medium was added to the cell culture flask. The culture was carried out in a cell incuba-
tor. (b) Treatment of dead cells. First, the cultured live cells were removed from the cell incubator 
and heated at 60 °C for 30 min. Then we washed the dead cells 3 times with PBS before centrifuga-
tion. The dead MCF-7 cells were thus obtained. 

  

Figure 4. (a) The passage culture process for the MCF-7 cells. When the cells were attached to the
wall and cell passaging could be performed, the old culture medium in the culture bottle was poured
out, and the trypsin digestion solution was added for digestion. The cells were then centrifuged
with a trypsin digestive juice mixture. After centrifugation, the supernatant was discarded and a
new medium was added to the cell culture flask. The culture was carried out in a cell incubator.
(b) Treatment of dead cells. First, the cultured live cells were removed from the cell incubator and
heated at 60 ◦C for 30 min. Then we washed the dead cells 3 times with PBS before centrifugation.
The dead MCF-7 cells were thus obtained.
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3. Results and Discussion
3.1. Differential Current Signal by FEM

In Section 2.2, we described the process for establishing the finite element method
of microfluidic impedance flow cytometry. In this section, we will discuss the process of
finite element calculation and the simulation of differential current signals. The geometry
and physical settings were kept the same as the experimental system. In this model, free
quad meshes were employed as domain elements due to their excellent shape adaptation
characteristics. Distribution meshing (number of elements was set at 20) was used in the
electrodes area to achieve an accurate calculation of the current. The maximum element
size of the meshes was set to 8 µm and the minimum element size was set to 0.01 µm. The
floating electrode size was set to 80 µm. All other electrodes were set to 100 µm. The gap
between the electrodes was set to 100 µm.

Electric field strength is critical to the sensitivity of the MIC detection of particles. The
current density can reflect the magnitude of the electric field strength. From the current
density distribution diagram as shown in Figure 5a, we can also see that the current density
is relatively low at the top of the channel away from the electrodes, while the current density
is relatively high at the bottom of the channel near the electrode. The current density also
gets higher when it is close to the central electrode. This also explains why the signal peak
at the center electrode is higher. After simulating the signals generated by particles of
different sizes passing through the detection region, we set the particles’ diameters to 5 µm,
7 µm, 10 µm, 12 µm, and 15 µm. The differential current signals generated by different
sizes of particles passing through the detection region are shown in Figure 5b. It can be
seen that the amplitude of the signal increases with the particle diameter. Meanwhile, with
the increase in particle diameter, the pulse width of the signal will also get bigger, which
indicates that the particles may need more travel time to pass through the detection region.
When the particle diameter is 5 µm, the differential signal is very close to the base line.
The result showed that our device has a minimum resolution size of about 5 µm particle.
The ratio between the cells/beads size and the electrode width is around 1:20. To the best
of our knowledge, this is the lowest geometry ratio of the target to the sensing unit in
the impedance cytometry technology. Such a low ratio allows reduced device fabrication
difficulty and cost.

3.2. Particle Detection

To test the sensitivity of our MIC device, we used a pressure pump to inject the 1:1
mixture of 7 µm and 10 µm beads into our device. A 1 V AC voltage was applied to the
center electrode at a frequency of 500 kHz, and −1 V AC voltages were applied to the left
and right side electrodes at a frequency of 500 kHz. The beads passed through the detection
region and generated a differential current signal, which is shown in Figure 6a. As reflected
in Figure 5a, the signal generated by the beads is obviously different from the noise, and its
signal-to-noise ratio (SNR) reaches 23.45 dB. The signal amplification diagram of a single
bead passing through the detection region is shown in Figure 6b. Our device can perfectly
generate a double differential current signal, and as the signal-to-noise ratio is high, it can
accurately extract the characteristics of the signal. Details of the data analysis of the double
differential current signal are described in the Supplementary Material. Figure 6c shows the
histogram of the beads with an electric diameter after calibration and the Gaussian fitting
curves of the beads. It can be seen that the 7 µm and 10 µm beads can be discriminate and
counted clearly. Figure 6d shows the density map of the beads. Drom different clusters
in the figure, we can discriminate between the 7 µm and 10 µm beads. The coefficient
of variation (CV) for the 7 µm and 10 µm beads measured with our device are 10% and
12.1%, respectively.
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current signals for different particle sizes: green represents 5 µm particles, pink represents 7 µm
particles, blue represents 10 µm particles, red represents 12 µm particles, and black represents
15 µm particles.

3.3. MCF-7 Cell Viability Profiling

To verify the biological application of our device, living and dead MCF-7 cells were
prepared for testing. In the single-shell spherical model, the cell membrane is equivalent to
a dielectric insulator. Cell membranes of dead cells are permeable because the membrane
protein function and membrane integrity of dead cells are lost [34]. In addition, the
composition of the cytoplasm will also change because the conductive medium can freely
diffuse into dead cells and release intercellular contents. As a result, the dielectric properties
of living cells and dead cells are different [19]. According to a previous study [29], electrical
signals cannot penetrate the cell membrane below 1 MHz, and the information expressed
by the impedance signal is the cell size. At a frequency above 1 MHz, the electrical signal
can penetrate the cell membrane and express the information inside the cell. Opacity is
defined as the ratio of high-frequency impedance amplitude to low-frequency impedance
amplitude, which can be used to indicate the dielectric properties of cells, regardless of cell
size changes [17]. Cheung et al. [10] proved that the opacity of red blood cells (RBCs) is
different between living and dead cells. In this experiment, we used opacity as an indicator
to test the dielectric properties of living and dead MCF-7 cells.
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We used a pressure pump to inject the mixed suspensions of living and dead MCF-7
cells into the microchannel at a pressure of 10 mbar. The central electrode was applied
with a voltage of 1 V, and the left and right side electrodes were applied with a voltage of
−1 V. The AC voltage frequency was set to 500 kHz and 10 MHz, respectively, and the
signal caused by the MCF-7 cells passing through the detection region is shown in Figure 7a.
It can be seen from Figure 7a that the signal is distinct from noise, which can be used for cell
counting and viability analysis. Figure 7b is the histogram of cell count, and the horizontal
axis is the calibrated electric diameter. The living cells are larger than the dead ones, which
is probably due to cell collapse after death. Moreover, the standard deviation of living cells
is relatively larger than that of dead cells, which may be because the cell sizes of living
cells are uneven in nature. After cell death, the membrane permeability changes, and the
cell sizes tend to be the same. Figure 7c shows the density map of the MCF-7 cells. The
horizontal axis of the density map is the calibrated electric diameter, and the vertical axis is
the opacity. It can be seen that living cells could be distinguished from dead cells using the
electrical diameter. Due to the difference in dielectric properties between the living and
dead cells, their opacity also shows different behaviors. The living cells could be well fitted
using both the Binomial distribution and Normal distribution models, with a mean value
of 0.04219. However, the Normal distribution model fails to fit the opacity of the dead cells
or mixed cells. Thus, we could distinguish the cell viability by the coefficient of variation
(CV = SD/mu for Normal distribution). The CV of the living cells, the dead cells and the
mixture is 26%, 178%, and 213% respectively. Thus, our device offers a novel strategy for
cell viability evaluation for the MCF-7 cells. Our MIC is a label-free and low-cost strategy
compared to the conventional flow cytometer.
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3.4. Advantages and Limitations

This work presents an impedance cytometry system using a 100 µm wide ITO elec-
trode, which is easy to fabricate at a low cost. Previous works have tended to adopt
ten-micron scale gold electrodes as the detection electrodes, which are costly. Our larger
ITO electrodes could achieve a comparable performance as the 10-micron scale Au elec-
trodes. A comparison of this work and existing technologies is given in Table S1 in the
Supplementary Material. Moreover, we have tested the repeatability of our device using
the same device, using different devices, and by different operators. With a correlation
coefficient of 0.952, the experimental results show a strong consistency.

Our device also has some limitations. For example, it can only identify dead cells
from living cells or distinguish different cells or beads with electrical characteristics. To
achieve cell screening, we may need to integrate another unit to separate the living and
dead cells. Adding a negative pressure pump or an electric field unit to collect living cells
at the downstream for further analysis is suggested. The key technology is to define the
triggering signal, which is the threshold to identify living cells. Thus, more work should be
taken to improve the screening capability of our device.

4. Conclusions

In this work, we reported a low-cost MIC device that integrates large size ITO elec-
trodes and a PDMS microchannel. The ITO electrodes are fabricated by wet-etching the ITO
(Indium Tin Oxides) coated on borosilicate glass. This method can mass-produce ITO elec-
trodes. Due to the electric field generated by coplanar electrodes being non-homogeneous,
particles flowing through the channel with different trajectories will generate different
signals. The double differential measure was used to eliminate the position dependence
of particles and increase the sensitivity of our device. The electric diameter after calibra-
tion has shown a significant enhancement in our device’s accuracy for particle and cell
detection. The detection electrodes of traditional impedance cytometry are made of Au,
which is expensive and labor-intensive to produce. Our MIC device uses ITO electrodes
with a 100-micron width, which is cheap and can reduce the difficulty in fabrication. To
our knowledge, this is the lowest geometry ratio of the target to the sensitive unit in the
impedance cytometry technology. We have demonstrated the sensitivity of our MIC device.
First, we explored two different-sized beads, mixed them, and injected them into the MIC
device. The results show that our MIC device can distinguish between the 7 µm and 10 µm
beads. After testing the MCF-7 cells, the results showed our low-cost MIC device is able
to characterize and discriminate between living and dead MCF-7 cells, which previously
could only be discriminated by fluorescence staining in flow cytometry. The diameter
of the cells can also be estimated from the calibrated electrical diameter obtained by our
calculation. In conclusion, our device provides a simple and low-cost fabrication process
and is promising for drug screening and biomedical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi14020407/s1, Figure S1: Comparison of typical signal from
10 µm-scale Au electrodes and 100 µm-scale ITO electrodes. (a) differential current from 10µm-
scale Au electrodes. (b) differential current from 100µm-scale ITO electrodes. Figure S2: The signal
of the double differential microfluidic impedance cytometry. Number 1 represents the height of
the double-peak, 2 represents the height of the valley, and 3 represent the high of major peak.
Table S1: Comparisons of our device with representative devices in previous studies. Table S2: Cost
breakdown of our device.
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