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Abstract: Transmission Control Protocol (TCP) is a connection-oriented data transmission protocol,
and it is also the main communication protocol used for end-to-end data transmission in the current
Internet. At present, the mainstream TCP protocol processing service is implemented by software
running on the Central Processing Unit (CPU). However, with the rapid growth of transmission
bandwidth and the number of connections, the software-based processing method is not ideal in
terms of delay and throughput, and also affects the processing performance of the CPU in other
applications such as virtualization services. Moreover, other hardware solutions can only support
a limited number of TCP session connections. In order to improve the processing efficiency of the
TCP protocol and achieve highly concurrent network services, this paper proposes a TCP offload
engine (TOE) prototype system based on field programmable gate array (FPGA) chips. It not only
provides hardware-based data path processing, but also realizes hardware management of large-scale
TCP session connection status through a multi-level cache management mechanism. Studies have
shown that this solution can support 100 Gbps high-performance throughput characteristics, and
allow concurrent processing of hundreds to 250,000 TCP connection state hardware maintenance on
a single network node, improving the overall performance of the network system.

Keywords: TOE; FPGA; session management; multi connections

1. Introduction

In the contemporary Internet, with the rapid development of the traffic carried by
by network, the transmission bandwidth and the number of network connections have
ushered in an explosive growth, which makes the data path become wider and more dense.
The frequent interaction of massive data and the continuous abundance of Internet services
have put forward higher requirements on the transmission performance and flexibility
of network equipment, and the network architecture has become more complex. The
introduction of Network Functional Virtualization(NFV) technology allows the flexible
definition of the network in the form of software on general server equipment, thus bringing
huge benefits to the management and maintenance of the network [1–3]. By migrating
complex network functions to run in virtual machines or containers on servers, it is also
possible to provide more diverse network services on a single computing node. This is also
conducive to efficient utilization of network equipment resources and bandwidth. However,
limited by Moore’s Law, general-purpose CPU performance growth slows [4], which makes
it difficult for network communication services that rely entirely on software design to be
suitable for high-performance application scenarios. Especially in virtualized cloud data
centers, highly concurrent network data brings huge network protocol processing overhead,
which largely limits the available CPU cycles of virtualized network applications, thereby
affecting the quantity and quality of network services. In a 10 Gbps network, the packet
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protocol processing overhead will require half of the computing power of an 8-core high-
end CPU [5]. Therefore, how to improve the processing efficiency of the network protocol
has become an important bottleneck in improving the performance of the network system.

As the core component of the current network communication protocol, TCP provides
reliable end-to-end data transmission, and has been widely used on computing nodes in
the end, edge, and cloud. But it is also the most complex and demanding communica-
tion protocol, so the resource overhead it brings cannot be ignored. This is because of its
connection-oriented transmission characteristics. In the process of data transmission, it is
necessary to provide connection state management overhead for each session connection.
Specifically, it can be divided into many operations such as reading, judging, updating, and
saving the connection state. Every time a TCP session connection is added, its maintenance
cost will also increase accordingly. The second is about the order-guaranteed transmission
of data. For the TCP protocol, the sender and receiver need to make judgments based on
the accumulation of sequence numbers to ensure that the data packets can be delivered
in the original order. This will also introduce a large number of small packet interruption
transmission problems. In addition, it also includes various optimization strategies for
reliable data transmission such as flow control and congestion control. The traditional
TCP protocol processing is realized through the operating system kernel installed in the
general-purpose processor chip, and it can support a complete TCP processing mechanism.
However, the versatility of the kernel protocol stack also brings complicated branch judg-
ment and data copy problems, resulting in a large amount of CPU overhead. Therefore,
it is not suitable for increasingly higher network transmission bandwidth and large-scale
network session connection management.

In order to improve network transmission performance, researchers have proposed
many optimization measures, which include improving the existing TCP/IP kernel protocol
stack to ensure good compatibility with general-purpose operating systems [6–8].The
second type of work is to use the user-mode protocol stack that completely bypasses the
kernel [9–12], which can reduce the overhead of kernel data replication and interrupt
processing. However, no matter the improved strategy proposed in the kernel or in the
user space, it still requires high software data distribution cost and state maintenance
overhead. For example, the fast path method proposed in Reference [12] is used to reduce
TCP processing overhead and provides processing efficiency up to 40 Gbit/s line rate.
However, for communication-intensive applications, this solution needs to spend up to
74% of CPU cycles on network packet processing.

The heterogeneous model using TOE-assisted CPU has become a new solution. TOE
can offload part or all of the TCP/IP protocol stack to Application Specific Integrated Circuit
(ASIC), FPGA and other hardware devices for implementation. In this way, the host CPU
processing overhead brought by the communication primitives of the operating system is
effectively reduced. Among them, ASIC [13], as a special-purpose processing chip, provides
customized processing for network functions and has high transmission performance, but
due to the limitation of its design structure, there are bottlenecks in performance and
scalability. In contrast, the FPGA Smart Network Interface Card (SmartNIC) [14,15] as a
programmable hardware acceleration unit, not only has high performance at the hardware
level, but also allows flexible adjustment of design functions through rewiring or parameter
configuration. It is more suitable for this kind of virtualized cloud data center network
that has high requirements for throughput and scalability. At present, most commercially
successful TCP offload functions are stateless offloads for traffic-intensive applications.
Stateless means that the internal storage of the Network Interface Card (NIC) is read-only
during packet processing. For example, TCP Checksum offload [16], TCP segmentation
offload (TSO), etc. The core function of the TCP transport protocol is to maintain the
connection state, which not only has the characteristics of data-intensive services, but
also involves a large number of control logic implementations. At present, there are few
related studies in this area, and some commercial accelerator cards [17,18] that support
stateful TCP function offloading are mainly aimed at high-frequency trading scenarios
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with ultra-low latency requirements. To minimize latency, these schemes only support a
small number of session connections. This solution is mainly aimed at the high throughput
and large-scale network session connection management requirements of the virtualized
cloud data center network, and proposes a prototype of a high-concurrency TCP session
connection management deployed on the FPGA SmartNIC. The main contributions of this
paper are as follows:

(1) We implemented the hardware processing logic of the TCP protocol in the FPGA,
which includes protocol parsering and frame encapsulation of the sending and re-
ceiving data paths, as well as connection state maintenance including establishment
and teardown.

(2) The solution provides a multi-level state management mechanism, using on-chip
storage resources and off-chip storage devices to jointly maintain the TCP session
connection state including four-tuples. The method supports high-performance data
transmission for 128 TCP connections and state maintenance for hundreds of thou-
sands of long TCP connections. Thereby achieving a balance of high throughput and
high scalability within limited hardware resources.

(3) The solution is completely designed with the hardware description language Verilog,
and provides stateful data processing logic based on hardware timing transmission,
which has high stability and portability.

The rest of this paper is organized as follows. The Section 2 reviews some existing
TOE schemes. The third part introduces the hardware offloading implementation of the
high concurrent TCP session connection management mechanism based on the FPGA
SmartNIC, and elaborates on the implementation details of data sending and receiving
and state management. In Section 4, we deploy the TOE on a Xilinx FPGA platform and
evaluate the data transfer performance of this method. Finally, we summarize the scheme.

2. Related Work

Over the past few years, there have been several case studies on TOE in academia and
industry. Reference [16] deployed a TCP checksum offload scheme for 100 Gbps high-speed
networks on a programmable acceleration platform. The hardware-based low-latency
checksum processing operation is realized through the pipeline design, which alleviates
the data path processing overhead. Reference [19] offloads the data path of the TCP
protocol to the network processing unit (NPU), and adopts a fully customizable processing
method to support the high throughput and high flexibility requirements of the data center
network. But it mainly targets the TCP data path of the established connection to avoid
constructing complex control logic in the NIC. Reference [20] present a dual-stack TCP
design that splits functionality between the host and NIC stacks. The host stack holds the
master control of all TCP operations, and offloads connection establishment and teardown
to the NIC, which avoids the frequent interaction of small control packets to a certain
extent. However, state maintenance for established connections remains implemented in
the host, and thus still involves Direct Memory Access (DMA) transfers of a large number
of acknowledgment packets with smaller sizes, and software handling of order-preserving
transfers for each stream. Reference [21] achieved 10 Gbps throughput performance on
a single TCP connection, providing end-to-end accelerated processing services for short-
distance or low-latency applications in tightly coupled networks. Reference [22] also
proposed a hardware TOE for 10 Gbps Ethernet. It supports the establishment and closure
of TCP sessions, as well as various optimization options including timestamps. But it can
only achieve 10 Gbps throughput performance when the size of the transmitted data packet
is a jumbo frame with a length of 65,536 Bytes. The multi-session TOE for delay-sensitive
applications proposed in Reference [23] allows low-latency and scalable TCP session
management through kernel bypass technology and hardware-based parallel connection
management. But this solution needs to create an instantiation unit for each connection,
and each instance implements a complete processing pipeline. Therefore the number of
supported connections is limited and resource utilization is inefficient. Reference [24]
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implemented a video-on-demand-oriented asymmetric TCP/IP offloading in hardware.
As a client, it provided a high throughput performance of 40 Gbit/s and connection
management of more than 10k channels. However, as a server, it also only supports a limited
number of connections and low transmission efficiency. Reference [25] and Reference [26]
used high-level synthesis (HLS) to implement scalable TOE of 10 Gbps and 100 Gbps
respectively, supporting large-scale session connection management. However, they need
to consume a lot of expensive on-chip memory resources for maintaining connection
state. To further reduce BRAM overhead, Reference [26] uses the three-tuple to obtain the
sessionID, which is not suitable for use in virtualized networks with multiple local (Internet
Protocol) IP addresses. In addition, as a high-level hardware programmable language, HLS
needs to go through complicated translation processing when used, which also increases
the design instability for complex protocol designs such as TCP. Reference [27] implements
TCP services using extended Finite State Machines (XFSMs). The platform-independent
programming abstraction interface it provides allows flexible deployment on a variety
of platforms, but specific details about throughput performance and scalability are not
disclosed here. Reference [28] provides a collective communication library for FPGA-to-
FPGA network for Xilinx devices, and realizes session management of 1000 connections
and 100 Gbps transmission performance in Xilinx Vitis. In addition, there are currently
many commercial TOE solutions for high-speed networks [17,18,29,30], and they are mainly
aimed at high-frequency trading scenarios with high latency requirements. The number of
supported connections is limited, and it is often provided in the form of a netlist file, which
has poor scalability.

By analyzing the TOE schemes mentioned above, we found that the current main-
stream TOE schemes cannot well support the hardware management of large-scale TCP
session connection states. Therefore, we propose a hardware model for high-speed network-
oriented large-scale TCP session connection management, which provides a new solution
for high-concurrency session connection management in virtualized cloud data centers.

3. TOE Architecture

The hardware model of large-scale TCP session connection management implemented
in this solution is shown in Figure 1, which is mainly composed of two parts: data path
processing logic and shared connection state management logic based on multi-level
cache units. Among them, the sending and receiving data path provide the parser and
encapsulation operation of TCP packets, which includes the processing logic of various
TCP packets distinguished according to the TCP flag field, as well as the interface for
reading and writing connection status and event triggering. Connection state information
is stored and shared between the sending and receiving paths through a variety of shared
data structures. Here we use the combination of FPGA on-chip storage unit Block Random
Access Memory (BRAM) and off-chip storage unit Double Data Rate Synchronous Dynamic
Random Access Memory (DDR). We place the more frequently used connection state
in BRAM and store the lower priority connection state in DDR. This method allows to
provide 100 Gbps high throughput performance for 128-way connections, and provides
state maintenance for large-scale long connections. Next, we introduce the main functional
logic involved in the design in detail.
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Figure 1. TOE system structure diagram.

3.1. RX Processing Core

The TOE offload engine provided in this study provides a bidirectional data transmis-
sion channel. The RX processing core is responsible for receiving and parsing TCP packets,
and sending the payload and metadata information to the RX buffer. A series of status
checks and update operations are also performed before this.

When the TCP packet containing the pseudo-header arrives at the TOE module, it is
first necessary to separate the metadata and valid fields. The TCP metadata separation
module provides the extraction logic of the configurable header length, and adjusts it
to the little-endian mode for easy parsing and then outputs it. Extract the destination
port and four-tuple {SIP, DIP, Sport, Dport} information in the header to initiate a request
to the port management table and the connection state management table respectively.
Afterwards, the result and the meta signal of the data packet are synchronously sent to the
RX processing logic for further inspection processing. The specific inspection process is
shown in Figure 2. First we need check whether the destination port of the data packet is
monitored. If the port is in the listening state, it is further judged whether the connection is
valid, that is, whether the currently stored connection socket information is consistent with
the packet four-tuple. The receiving state machine we provide makes specific distinctions
for TOE packets according to the flag. For an active session connection, if a RST packet is
received, we need to close the connection. When a packet marked SYN is received and the
current connection state is CLOSED, we update the connection state to the SYNC_RCVD
state. Then the doorbell event management module will notify the TX logic to generate a
synchronous confirmation packet for the second handshake. For packets such as SYN_ACK,
FIN, ACK, etc., state judgment and serial number inspection operations are also provided
respectively. When the check is completed, we will update the connection’s RX control
state and connection state based on the processing result. If the packet has a payload, we
will set the extraction period according to the length of the payload, and send the payload
data to the receiving buffer in turn to wait for the upper-layer application to read. For
packets that do not meet the requirements, they will be discarded through the drop logic.
The RX processing core can not only receive data requests from the server, but also receive
confirmation responses from the client. If there are unacknowledged packets in the sending
window, but the receiving end receives three consecutive identical acknowledgment signals,
the fast retransmission logic will be triggered to ensure the reliability of data transmission.
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3.2. TX Processing Core

The TX processing core provides the data path opposite to the RX logic and is respon-
sible for merging and forwarding packets. The generation of each sent packet is triggered
by a doorbell event. These doorbell events include confirmation reply events from the
RX processing core, passive handshake and disconnection events as the server, active
establishment and release connection events from upper-layer applications, and packet
sending events. After the application logic receives the sending request, it also needs to
obtain the connection status according to the four-tuple, and send the query result to the TX
processing core. Unlike the receive path, in order to ensure reliable transmission of data, we
provide each connection with 64 KBytes size of the off-chip buffer, to enable the update and
maintenance of the send window. For the packet of the connection establishment request,
the TX processing core generates a random sequence number through the four-tuple hash
and nanosecond time stamp information, which is used for the sequential transmission
of the packet. Finally, we pack the generated packet header information and payload
field into a new data packet, and then send it out in the form of Advanced eXtensible
Interface Stream(AXIS) bus. Then update the connection control information including the
sequence number.

3.3. Multi-Level Cache State Management Mechanism

As a key feature of this solution, the multi-level cache state management mechanism
is used to realize the high throughput performance of 128-way connections and maintain
the state of large-scale long-session connections.

L2 Table: L2 Table provides a variety of control information for connection state
management, which can be shared in the sending and receiving path. As shown in Figure 3,
it consists of an Exact Match (EM) table and four sets of connection state control tables
(Socket Table, Rx_Ctrl Table, Tx_Ctrl Table, APP_Ctrl Table). The EM table implemented
based on the register group provides accurate matching of the four-tuple information, and
obtains the matching hit identifier and index information according to the input four-tuple
key value. The Socket Table stores the status information of the current connection and
the hash value of the four-tuple. The other three groups of entries respectively store the
connection state information written by each processing logic control. Careful partitioning
of the data structure for storing connection states can help reduce the number of opera-
tions and improve retrieval efficiency. For example, in the packet receiving link, the RX
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processing core is responsible for updating the local and peer acknowledgment numbers,
while the update of the local sequence number is implemented by the packet sending logic.
In addition, in the data forwarding link, the APP logic updates the write pointer, the TX
logic updates the read pointer, and the RX logic updates the confirmation pointer after
receiving the confirmation signal from the peer, thereby dynamically estimating the size of
the sliding window during the forwarding process. After receiving the four-tuple key, we
first send it to the EM table to check whether it is hit. If the target connection exists, then
further obtain the specific connection status in each control information entry according to
the index value. The whole process can be completed within two clock cycles. After the
data processing is completed, we update further the corresponding connection status. In
order to improve the retrieval efficiency of table items, we use registers to design EM tables.
As the number of management connections doubles, the Look-Up-Table (LUT) resources
they occupy grow exponentially. After analysis, it is a reasonable choice for the currently
selected FPGA platform to provide high-frequency access to the 128-way connection status.
Of course, we also provide parametric design, which allows flexible adjustment of the
depth of the table according to different FPGA models.

L2 Table

EM

Table

index

Socket Table

RX_Ctrl Table

TX_Ctrl Table

APP_Ctrl Table

key

req

value

resp

update
socket

update
rx_ctrl

update
tx_ctrl

update
app_ctrl

Figure 3. State management structure diagram.

L3 Table: Although the L2 Table provides efficient retrieval of the connection state,
it is limited by the resource and wiring complexity and supports a limited number of
connections. In order to maintain the state of larger-scale long-session connections, we
introduce a three-level cache table on this basis. This is a design method based on DDR.
Compared with expensive on-chip storage resources, DDR has larger storage space and
lower cost, but the read and write efficiency is relatively low. Here, we allocate 64 Bytes
of space for each connection to store the connection state, including a certain amount of
redundant space to facilitate future function expansion. A piece of DDR space of 256 KBytes
is enough to support the storage of hundreds of thousands of connection states, so as to
realize the large-scale session connection state management. For L3 Table access, we use a
lookup method based on hash values. When the L2 Table misses, the packet flows to the
slow path for L3 Table lookup, and the query result is updated to the L2 Table. The specific
update logic will be introduced in detail in the following chapters.

L1 Table: The branch judgment of the fast path and the slow path introduces a certain
processing delay in the transmission process of the data packet. Although there is a certain
loose coupling phenomenon between the sending and receiving logic in the state sharing
of the TCP connection, for the same connection, the sequence number update has a strict
order dependency. Excessive latency affects transfer performance on a single connection.
In order to reduce the delay overhead in the state access process, this solution introduces
a first-level cache table inside each processing core to store the connection state update
of the current processing logic. For example, in the data sending link, every time a data
packet is generated, the TX processing core updates the sequence number to the L2 Table
and the L1 Table at the same time. When updating the L1 Table, it is also necessary to add
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timestamp information to the updated information. When data needs to be sent again on
the connection, it is first necessary to obtain the timestamp information in the L1 Table
for judgment, we need to read the status information in the L1 Table to make a judgment.
According to statistics, in each path, the maximum budget window from reading the
connection state to updating is 160 ns. But the introduction of L1 Table can reduce the
minimum frame interval to 20 ns. This approach allows high throughput performance
close to line rate on a single session connection.

3.4. State Table Update Logic

Figure 4 shows the specific logic of obtaining the connection status of the receiving
path. First, the L2 Table is accessed. If it is hit, the query result is sent to the RX processing
core through the fast path. After the processing is completed, the L1 Table and L2 Table are
updated respectively. If it is not hit, it is sent to the slow path to query the L3 Table. Here we
obtain the four-tuple information of the packet from the packet header for hash calculation,
and initiate a search command to the third-level buffer stored in DDR according to the hash
value. Regardless of whether the query result is valid or not, it is sent to the subsequent
processing logic for judgment. And the cold connection in the L2 Table is replaced. The
so-called cold connection refers to the connection with the lowest access frequency in
the secondary table at present. Here we use the hot management module (Hot mgr) to
maintain the heat of the connection status stored in each entry. Every time we initiate a
query request to the L2 Table, we will adjust the entry where the hit connection is located
to the highest heat. Therefore, we can also judge the access frequency of the connection
through the change of the heat of the connection. When new connection data arrives,
the new connection information can be replaced by the connection state with the lowest
popularity through the table entry replacement unit (Table Replace). If the cold connection
is not closed, the connection status needs to be written back to the L3 Table, waiting for the
next access. This method can realize dynamic access to large-scale long-session connections.
This method is also applicable to the data sending path.

RX_decap

L2 Table(BRAM)

req resp

fast path

RX
Processing

Core

update

slow path

hit

miss

L3 Table(DDR)

Hot
Mgr

Table
Replace

write

read

input

output

L1

Figure 4. Schematic diagram of state table hot update.

4. Performance Evaluation

We have discussed in detail about scalability and flexibility in the previous chapters.
In this section we will conduct experiments to evaluate the throughput performance of this
scheme design. We deploy TOE on an FPGA SmartNIC model XILINX Zynq UltraScale+
ZU19EG, as shown in Figure 5. The SmartNIC is installed on a Dell R740 server. In addition
to the MIG IP core used to control the DDR4 peripheral pins,the core function modules of
this program are completely designed with Verilog hardware description language, and the
working clock is 250 MHz. In performance evaluation, we generate test data through a TCP
packet generation logic (pkt_gen) deployed on FPGA. And according to the connection
mode shown in Figure 6, the loopback path formed by two TOE models was used for
performance test. Because the RX path does not require the off-chip buffer to store data, it
has higher transmission efficiency. Therefore, we first test the data receiving performance
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of TOE by bypassing the buffer. Then the DDR data buffer is connected to test the data
forwarding performance of the TOE system.

Figure 5. TCP Offload Engine (TOE) on FPGA chip.

The specific test process is as follows: First, pkt_gen sends a connection establishment
request to TOE0. TOE0 generates a random sequence number for the connection request and
constructs a SYN packet including a pesudo header. Then set the corresponding connection
state to SYN_SENT according to the four-tuple information. After TOE1 receives the SYN
packet, it first checks whether the target port is in the listening state. After that, the state
storage space is also allocated for the new connection, and the connection state is updated
to SYN_RECD. Then reply the second handshake signal SYN_ACK to TOE0. After the RX
processing core in TOE0 checks the received data packet, it replies with the third handshake
data packet. Through the three-way handshake, the connection between the two parties
is established. Afterwards, pkt_gen generates test packets to each connection according
to the parameterized configuration. The statistical module provides a dynamic record
of transmission performance, and can be presented in a graphical interface through the
Integrated Logic Analyzer (ILA) provided by the vivado tool.

TOE0 TOE1

pkt_gen

recv

statistic

data

ack

sent

Figure 6. Diagram of test signal transmission.

Figure 7a and Figure 7b respectively record the transmit and receive performance of the
TOE of this solution. It can be seen from the results in the figure that, without the limitation
of the optical port module, this solution can provide the transmission performance of
receiving 100 Gbps and sending more than 85 Gbps for the connections that completely
uses the BRAM storage state. Due to the use of the state management mechanism of the
three-level cache, this solution can provide the same transmission performance no matter
it is tested on a single connection or 128 connections. For the cold connection test, we
completely shield the hit signal of the L2 Table, which makes each lookup operation need
to read and write the connection state from the DDR. We poll the test packets on 1000 TCP
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connections. Since the L2 Table only supports the storage of 128 connection states, it is
necessary to write a connection state from BRAM back to DDR for each data transmission,
and write the new connection state to BRAM. From the results shown in the figure, it can
be seen that, if the connection status is queried from DDR every time, this solution can
provide 85 Gbps of RX and 61 Gbps of TX throughput performance for 8192 Bytes packets.
This test provides the lower limit of TOE transmission performance. The proposed method
also verifies the feasibility of dynamically updating the connection information between
BRAM and DDR according to the connection heat. For a 16 G DDR space, 256 KBytes are
used to build L3 Table, and the rest space is used to build send buffer, which is enough
to support the state storage of 250,000 TCP connections. This approach can even provide
tens of millions of levels of hyperscale connection state management without considering
the data buffer overhead. The figure also shows the throughput performance of the Linux
kernel stack using the FPGA chip as a NIC. We use the iperf tool to test. When the number
of iperf threads reached 16, the throughput performance reached the maximum, but this
was far inferior to the experimental results of this scheme. And, the solution is completely
implemented by hardware, which can perform end-to-end data transfer of multiple session
connections without CPU involvement, so the design has a low system cost.
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Figure 7. Transmission performance diagram.

In addition, we further compare the design and the existing TOE solutions that support
hardware connection state management. It can be seen from the Table 1, compared with
the scheme of other literature, this solution can support more TCP session connections and
has better scalability. And our work is also applicable to high bandwidth applications.

Table 1. Comparison of the TOE of this design with previous work.

Design Number of Connections Supported

Reference [17] 64
Reference [18] 1
Reference [21] 1
Reference [22] few
Reference [23] few
Reference [24] 20,480
Reference [25] thousands
Reference [26] 10,000
Reference [29] 32,000
Reference [30] 1000

Our work 250,000

In terms of resource utilization, this design provides 8 BRAMs (0.81%), 7952 LUTs
(1.52%), and 256 KBytes of DDR space (0.02‰) for the storage of 200K connection states.
Compared with the method of completely using expensive BRAM for state storage, this
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design is a more resource-friendly solution, which provides the possibility for large-scale
session connection management.

5. Conclusions

In this paper, we introduce a highly concurrent TCP session connection management
mechanism deployed on a programmable acceleration device FPGA. The design provides
hardware-based TCP session connection establishment and unloading functions, and
allows orderly transmission of data packets through sequence number verification. For
high concurrent access, the multi-level cache management mechanism provided by this
solution allows the states of hundreds to hundreds of thousands of TCP session connections
to be maintained simultaneously on a single network node. We use a small amount of
on-chip storage resources to achieve efficient access to the state of 128 TCP connections,
and provide a throughput performance of 100 Gbps on the receiving side and over 85 Gbps
on the sending side. In addition, we can also store a larger-scale TCP connection state in
an off-chip storage unit with a large size, and replace the connection information between
BRAM and DDR according to the frequency of connection access. This design is beneficial
to implement arge-scale, end-to-end data communication in virtualized cloud data centers.
Future work includes further optimization of TOE, for example, providing processing logic
for timer events, enabling out-of-order packets to be reordered, and hardware solutions
to various congestion problems faced in the actual Internet. These features will facilitate
highly reliable end-to-end data communication.

Author Contributions: Conceptualization, K.W. and Z.G.; Methodology, K.W. and Z.G.; software,
K.W and Y.G.; Validation, K.W., Y.G. and Z.G.; formal analysis, K.W; Investigation, K.W and Y.G.;
Data curation, K.W.; writing—original draft preparation, K.W; writing—review and editing, K.W.
and Z.G; visualization, K.W. and Z.G.; supervision, Z.G.; project administration, Z.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded by Strategic Leadership Project of Chinese Academy of Sciences:
SEANET Technology Standardization Research System Development (Project No. XDC02070100).
This work was also funded by IACAS Frontier Exploration Project (Project No. QYTS202006).

Data Availability Statement: All the necessary data are included in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Niemiec, G.S.; Batista, L.M.; Schaeffer-Filho, A.E.; Nazar, G.L. A survey on fpga support for the feasible execution of virtualized

network functions. IEEE Commun. Surv. Tutorials 2019, 22, 504–525.
2. Bondan, L.; Wauter, T.; Volckaert, B.; De Turck, F.; Granville, L.Z. Nfv anomaly detection: Case study through a security module.

IEEE Commun. Mag. 2022, 60, 18–24.
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