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Abstract: The aim of this study is to examine the Darcy–Forchheimer flow = of H2O-based Al −
Al2O3/Cu− Al2O3 hybrid nanofluid past a heated stretchable plate including heat consumption/
generation and non-linear radiation impacts. The governing flow equations are formulated using the
Naiver–Stokes equation. These flow equations are re-framed by using the befitted transformations.
The MATLAB bvp4c scheme is utilized to compute the converted flow equations numerically. The
graphs, tables, and charts display the vicissitudes in the hybrid nanofluid velocity, hybrid nanofluid
temperature, skin friction coefficient, and local Nusselt number via relevant flow factors. It can be
seen that the hybrid nanofluid velocity decreased as the magnetic field parameter was increased. The
hybrid nanofluid temperature tended to rise as the heat absorption/generation, nanoparticle volume
friction, and nonlinear radiation parameters were increased. The surface drag force decreased when
the quantity of the magnetic parameter increased. The larger size of the radiation parameter led to
enrichment of the heat transmission gradient.

Keywords: hybrid nanofluid; magnetic field; non-linear radiation; stretchable plate; Darcy–Forchheimer
flow; heat consumption/generation

1. Introduction

Many scientists and engineers are attempting to improve the heat transmission effi-
ciency since it has an extensive variety of applications in the industrial sectors. Common
liquids, such as ethylene glycol, kerosene, water, oil, and polymer-based solutions are used
in the heat transmission processes. They have a poor heat transmission rate because of their
weaker heat conductivity. To solve this deficiency, experts from several disciplines have
attempted to increase the heat conductivity. One of the most effective ways to address this
problem is by dispersing nanoparticles across various base fluids. HNFs (hybrid nanoflu-
ids) are composed of two or more distinct kinds of nanoparticles in a base fluid. In addition,
the HNFs have a heat transmission rate that is much greater than that of general nanofluids,
see [1–3]. These HNFs may be used in a number of contexts, including in heat exchangers,
engine cooling, extrusion processes, micro-manufacturing, drug delivery, energy produc-
tion, etc. Ikram et al. [4] investigated the flow of H2O-based Ag− TiO2 hybrid nanofluid
in a microchannel. They demonstrated that HNF velocity tended to decrease as HNPVF
values increased. The MHD flow of H2O-based Al2O3−Cu HNF past a SS was explored by
Jawad et al. [5]. They found that the SFC was upgraded when the SVF of the nanoparticles
was developing. Devi and Devi [6] elucidated the flow of hydromagnetic Cu − Al2O3
HNF in water over a SS. They noticed that the larger HTG occurred in Cu− Al2O3 HNF
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compared to the Cu nanofluid. Shanmugapriya et al. [7] reported on the HMT analysis of
HCNT on a wedge with activation energy. They found that the nanoparticle concentration
diminished as the NPVF increased. Nayak et al. [8] investigated the slip flow of 3D MHD
HNF between parallel plates with entropy optimization. They discovered that the larger
Bejan number appeared in HNF compared to the mono nanofluid. The 3D flow of radiative
Cu− Al2O3 HNF on a shrinking plate was reported by Wahid et al. [9]. They ascertained
that the temperature profile improved when the Cu-NPVF improved. Venkateswarlu and
Satya Narayana [10] analyzed the MHD flow of H2O-based Cu− Al2O3 HNF through a
porous SS.

Fluid flow via porous medium is a phenomena that occurs in several contexts, in-
cluding petroleum production, fermentation processes, bio sensors, permeable bearings,
electronic boxes, cereal storage, combustion chambers, and casting solidification. A sig-
nificant amount of work has been done to simulate and study the flow of fluid into
porous spaces using Darcy’s law. However, this law is inadequate for larger-velocity
and high-porosity conditions. Most physical problems involve greater flow-velocity and
stronger-porosity conditions. Forchheimer [11] was able to circumvent this constraint by
including a quadratic velocity component in momentum expression. The DFF of HNF on a
rotating disk was explained by Haider et al. [12]. They noticed that the larger Forchheimer
number causes a reduction in SFC. The Marangoni connective flow of HNF with EG was
addresses by Khan et al. [13]. Gul et al. [14] scrutinized the DFF of HNF over a movable
thin needle. They noticed that the SFC boomed when the values of the porosity parameter
were increased. Alshehri and Shah [15] investigated the radiative DFF of HNF on a paral-
lel SS. They discovered that the larger Forchheimer number caused the increase of HNF
temperature. The DFF of HNF across a flat plate was presented by Alzahrani et al. [16].
Sajid et al. [17] discussed the DFF of Maxwell NF past an SS with activation energy. They
applied the MATLAB bvp4c solver to solve the governing flow expression numerically. The
DFF of non-Newtonian fluid over the Riga plate was inspected by Eswaramoorthi et al. [18].
They found that the fluid speed diminishes when booming the Forchheimer number and
porosity parameter.

The heat generation/imbibing processes play a major role in a wide variety of different
industrial operations. Some examples are air conditioning, nuclear power plants, boilers,
semiconductors, and many others. The impact of the HAG of a HNF over an SS was
investigated by Masood et al. [19]. They discovered that the heat generation parameter
increases the TBL thickness. The HAG on MHD flow of HNF over an SS was addressed
by Zainal et al. [20]. They observed that the HNFT raised when the quantity of HAG
parameter increased. The influence of heat production and absorption of an MHD HNF
flow past a SS was discussed by Nuwairan et al. [21]. They found that increasing the HAG
parameter quantity leads to improvements in the NFT. The rotating flow of H2O-based
Ag − Cu HNF with HAG was examined by Hayat et al. [22]. They noted that the TBL
thickens with a greater size of the HAG parameter. Chalavadi et al. [23] discussed the flow
of Carreau/Casson HNF past a moving needle with the HAG effect. They noticed that the
HNFT rises with a higher estimation of the HAG parameter. Qayyum et al. [24] discussed
the features of HAG of an MHD flow of HNF over an SS. They noticed that the HTG decays
when enhancing the HAG parameter. The HT analysis of mono and HNF flow between two
parallel plates with HAG was presented by Yaseen et al. [25]. The impact of HAG effects of
the flow of CNTs over a SS was analyzed by Zaki et al. [26]. Mishra et al. [27] described
the flow of H2O-based Ag nanofluid with HAG via a convergent/divergent channel. They
found that the HTG strengthens as the heat HAG parameter is improved. The flow of
an H2O-based Al2O3 − Cu HNF with heat absorption and generation was examined by
Zainal et al. [28]. Prabakaran et al. [29] developed a mathematical model for the flow of
water-based CNTs past an SS with heat consumption/generation. They noted that the
greater presence of the HAG parameter decayed the HTG.

The non-linear thermal radiative flow past a stretchable plate is essential in many
physical and engineering procedures, including in combustion chambers, atomic plants,
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aircraft, propulsion devices, power plants, furnace designs etc. Yusuf et al. [30] probed the
radiative flow of Cu− TiO2/H2O HNF on a SS with slip condition. They revealed that the
EG number quickens when the quantity of the radiation parameter is increased. The MHD
NF flow on a plate with radiation was examined by Mustafa et al. [31]. They found that the
larger temperature ratio parameter improves the thermal profile. The unsteady 3D MHD
flow of HNF with radiation was illustrated by Mabood et al. [32]. They demonstrated that
raising the radiation parameter leads to increase the NFT. Kumar et al. [33] explored the
radiative flow of Williamson fluid on an SS. They found that the HTG is reinforced when
the radiation parameter is improved. The numerical modeling of water-based Ag/Cu NF
with radiation was addressed by Qayyum et al. [34]. Patel and Singh [35] investigated the
influence of non-linear radiative flow of micropolar NF through a non-linear heated SS.
Lu et al. [36] scrutinized the MHD flow of Carreau NF over a SS with non-linear radiation.
They demonstrated that the TR parameter leads to fortifying the LNN. The influence of
non-linear radiative flow of WNF on a SS was probed by Danish Lu et al. [37]. They
discovered that by enhancing the radiation parameter causes to decay the local Sherwood
number. The MHD flow of Casson HNF past a SS with non-linear radiation was scrutinized
by Abbas et al. [38]. Their outcomes show that the temperature distribution escalates
with the higher values of the non-linear radiation parameter. Eswaramoorthi et al. [39]
investigated 3D radiative flow of CNTs over a Riga plate. They concluded that the Bejan
number heightens when improving the radiation parameter.

According to the aforementioned literature reviews, there is still a lack of research
on the flow of a H2O based Al − Al2O3/Cu− Al2O3 HNF past a stretchable plate with
convective heating, heat consumption/generation, and non-linear radiation effects. Our
research outcomes are used in many numerous technical and industrial applications, like
gas turbine rotors, crystal growing, drawing of films, lubrication processes, glider aircraft,
power generation, etc.

Finally, the main objective of our investigations is as follows:

• To deliberate the implications of the model’s design on the HNF flow through the
stretchable plate.

• How does the usage of HNF lead to affect the velocity and temperature of the fluid?
• How is the HNF temperature impacted by heat generation/absorption and non-

linear radiation?
• How is the heat transfer mechanism improved when convective heating conditions

are present?

2. Mathematical Formulation

The MHD DFF of H2O based Cu− Al/Al2O3 HNF past a stretchable plate is investi-
gated. Let u and v are the HNF velocity factors along the x and y axes. A stable magnetic
field of magnitude B0 is activated in the flow direction and resultant magnetic field is disre-
garded due to small size of Reynolds number. The outcomes of heat generation/absorption
and non-linear radiation are also taken into account. Moreover, the sheet and free stream
HNFT’s are denoted as Tw and T∞ < Tw, respectively. The physical schematic of the flow
model are displayed in Figure 1. The governing mathematical model can be defined as
follows based on the preceding assumptions, see Devi and Devi [6]:
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Figure 1. Schematic of the flow model.

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
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∂u
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= νhn f
∂2u
∂y2 −

νhn f

k1
u− cb√

k1
u2 −

σhn f

ρhn f
B2

0u (2)

u
∂T
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∂T
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khn f

(ρcp)hn f

∂2T
∂y2 +

16σ∗

3k∗(ρcp)hn f

∂

∂y

(
T3 ∂T

∂y

)
+

Q0

(ρcp)hn f
(T − T∞) (3)

The initial and boundary conditions are expressed as

u = Uw = cx, v = −Vw, T = Tw at y = 0

u→ 0, v→ 0, T → T∞ as y→ 0 (4)

Define the variables

u = cx f
′
(η), v = −√cv f f (η), η =

√
a

ν f
y, θ =

T − T∞

Tw − T∞
(5)

Implementing the aforementioned adjustments (5) in (2) and (3), we get the following
simplified equations:

1
A1 A2

f
′′′
(η) + f (η) f

′′
(η)− f

′2
(η)− Fr f

′2
(η)− λ f

′
(η)

1
A1 A2

− A1 A7M f
′
(η) = 0 (6)

A5

PrA3
θ
′′
(η) + f (η)θ′(η) +

4
3

Rd
PrA3

[
(Γ− 1)3

{
θ3(η)θ

′′
(η) + 3θ2(η)θ

′2
(η)

}
+ (Γ− 1)2

{
3θ2(η)θ

′′
(η)

+6θ(η)θ
′2
(η)

}
+ (Γ− 1)

{
3θ(η)θ

′′
(η) + 3θ

′2
(η)

}
+ θ′′(η)

]
+ Hgθ(η)

1
A3

= 0 (7)

The correlated boundary conditions are

f (0) = f w, f
′
(0) = 1, θ(0) = 1, f

′
(∞) = 0, θ(∞) = 0 (8)

where
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A1 = (1− φ1)
2.5(1− φ2)

2.5;

A2 = (1− φ2)

(
(1− φ1) + φ1

(
ρ1

ρ f

))
+ φ2

(
ρ2

ρ f

)
;

A3 = (1− φ2)

(
(1− φ1) + φ1

(
ρ1cp1

ρ f cp f

))
+ φ2

(
ρ2cp2

ρ f cp f

)
;

A4 = k f

( k1 + (z− 1)k f − (z− 1)φ1(k f − k1)

k1 + (z− 1)k f + φ1(k f − k1)

)
;

A5 =

( k1 + (z− 1)k f − (z− 1)φ1(k f − k1)

k1 + (z− 1)k f + φ1(k f − k1)

)(
k2 + (z− 1)A4 − (z− 1)φ2(A4 − k2)

k2 + (z− 1)A4 + φ2(A4 − k2)

)
;

A6 = σf

(
σ1 + 2σf − 2φ1(σf − σ1)

σ1 + 2σf + φ1(σf − σ1)

)
;

A7 =

(
σ2 + 2A6 − 2φ2(A6 − σ2)

s2 + 2A6 + φ2(A6 − σ2)

)(
σ1 + 2σf − 2φ1(σf − σ1)

σ1 + 2σf + φ1(σf − σ1)

)
;

The SFC and the LNN are defined as:

C f
√

Re =
f
′′
(0)

A1
;

Nu√
Re

= −
[

A5 +
4
3

Rd(1 + (Γ− 1)θ(0))3
]

θ′(0)

3. Numerical Solutions

The re-framed expressions (6) and (7) with the correlated boundary restraints (8) are
solved numerically by implement the MATLAB bvp4c approach. Initially the higher order
problem is transformed into a first order ODE form, see Prabakaran et al. [40]. In this
regard, we consider the followings:

f = s1, f
′
= s2, f

′′
= s3, f

′′′
= s

′
3, θ = s4, θ

′
= s5, θ

′′
= s

′
5.

s′1 = s2

s′2 = s3

s′3 = A1 A2

[
(s2)

2 − s1s3 + Fr(s2)
2 + Ms2 A1 A7 + λs2

1
A1 A2

]
s′4 = s5

s′5 =
−s1s5 − Hgs4

1
A3
− 4

3 Rd 1
A3

1
Pr ((Γ− 1)33(s4)

2(s5)
2 + (Γ− 1)26(s4)(s5)

2 + (Γ− 1)3(s5)
2)[

A5
A3

1
Pr +

1
A3

1
Pr

4
3 Rd

[
(Γ− 1)3(s4)3 + (Γ− 1)23(s4)2 + (Γ− 1)3(s4) + 1

]]
with the constraints are,

s1(0) = f w, s2(0) = 1, s4(0) = 1, s2(∞) = 0, s4(∞) = 0

To solve the above problem numerically, we use the MATLAB bvp4c method with
maximal residual error is 10−5 and size of the step is 0.05.

4. Results and Discussion

The primary goal of this section is to delivers the effect of various emerging flow
parameters on HNFV, HNFT, SFC and LNN. Table 1 exhibits the thermal properties of alu-
minum, copper, aluminum oxide, and water. Table 2 shows the mathematical expressions
of thermal properties of the HNF. The SFC of water based Cu− Al2O3 and Al − Al2O3
HNF for various values of M, f w, Fr, φ1, φ2 and λ was presented in Table 3. It is perceived
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that the SFC diminishes when raises the values of Fr, M, f w and λ and it improves when
strengthening the quantity of φ1 and φ2 for both HNFs. Table 4 presents the LNN for
distinct values of Γ, Rd, Hg, f w, Fr and φ2 for both HNFs. It is viewed that the HTR
raises when enriching the values of Rd, Γ, f w, and φ2 and the opposite effect attains for
the larger size of Hg and Fr for both HNFs. Table 5 exhibits the comparison of θ′(0) with
Rd = M = Hg = f w = 0 to Devi and Devi [6] for distinct values of Pr and are found in
agreeable accord.

Table 1. The thermal properties of H2O, Cu, Al and Al2O3.

Physical Properties Fluid Phase (H2O) Copper (Cu) Aluminum (Al) Aluminum Oxide (Al2O3)

ρ (kg/m3) 997.1 8933 2719 3970

cp (J/kgK) 4179 385 903 765

k (W/mk) 0.613 400 237 40

Table 2. Thermophysical properties of Hybrid nanofluid.

Properties Hybrid Nanofuid

Density ρhn f = (1 − φ2)[(1 − φ1)ρ f + φ1ρs1] + φ2(ρcp)s2

Heat Capacity (ρcp)hn f = (1 − φ2)[(1 − φ1)(ρcp) f + φ1(ρcp)s1] + φ2(ρcp)s2

Viscosity µhn f =
µ f

(1 − φ1)2.5((1 − φ2)2.5

Thermal conductivity khn f
kb f

=
ks2 + (n − 1)kb f − (n − 1)φ2(kb f − ks2)

ks2 + (n − 1)kb f + φ2(kb f − ks2)

where kb f
k f

=
ks1 + (n − 1)k f − (n − 1)φ1(k f − ks1)

ks1 + (n − 1)k f + φ1(k f − ks1)

Electrical conductivity σhn f
σb f

=
σs2 + 2σb f − 2φ2(σb f − σs2)

σs2 + 2σb f + φ2(σb f − σs2)

σb f
σf

=
σs1 + 2σb f − 2φ1(σb f − σs1)

σs1 + 2σb f + φ1(σ1 − σs1)

Table 3. The SFC for different values of M, f w, Fr, φ2, λ and φ1 for both HNFs.

SFC
M f w Fr φ2 λ φ1 Cu− Al2O3 Al− Al2O3

0 0.4 0.4 0.04 0.2 0.1 −1.041285 −0.828107
0.3 −1.131997 −0.898513
0.5 −1.187911 −0.942100
0.7 −1.240878 −0.983495
0.9 −1.291330 −1.023007

0.5 0 0.4 0.04 0.2 0.1 −1.025049 −0.839781
0.5 −1.232296 −0.969511
1 −1.475034 −1.117201

1.5 −1.748714 −1.281414
2 −2.047345 −1.460010

0.5 0.4 0 0.04 0.2 0.1 −1.121572 −0.889696
0.4 −1.187911 −0.942100
0.8 −1.250736 −0.991766
1.2 −1.310531 −1.039069
1.4 −1.339416 −1.061929
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Table 3. Cont.

SFC
M f w Fr φ2 λ φ1 Cu− Al2O3 Al− Al2O3

0.5 0.4 0.4 0.005 0.2 0.1 −1.234564 −1.017737
0.02 −1.217739 −0.986006
0.04 −1.187911 −0.942100
0.06 −1.151153 −0.896874
0.08 −1.108898 −0.850821

0.5 0.4 0.4 0.04 0.2 0.1 −1.187911 −0.942100
0.3 −1.211098 −0.970320
0.4 −1.233775 −0.997638
0.5 −1.255976 −1.024136
0.6 −1.277729 −1.049886

0.5 0.4 0.4 0.04 0.2 0.1 −1.187911 −0.942100
0.2 −0.823882 −0.580253
0.3 −0.530334 −0.340609
0.4 −0.313293 −0.189744
0.5 −0.166711 −0.099836

Table 4. The LNN for different values of Γ, Rd, Hg, f w, Fr, φ2 for both HNFs.

LNN
Γ Rd Hg f w Fr φ2 Cu− Al2O3 Al− Al2O3

0.2 0.6 −0.05 0.4 0.4 0.04 4.612967 3.718700
0.4 4.673327 3.756509
0.6 4.766403 3.815178
0.8 4.898593 3.898462
1 5.073613 4.008004

0.1 0 −0.05 0.4 0.4 0.04 4.482528 4.336498
2 4.816646 4.676659
4 5.090079 4.955152
6 5.329128 5.198584
8 5.545070 5.418359

0.1 0.6 −0.05 0.4 0.4 0.04 3.857127 3.705975
−0.03 3.819692 3.668231

0 3.762517 3.610602
0.03 3.704058 3.551706
0.04 3.704058 3.531735

0.1 0.6 −0.05 0 0.4 0.04 2.978466 2.966152
0.5 5.043729 4.860771
1 7.493146 7.097396

1.5 10.15220 9.527814
2 12.92796 12.07080

0.1 0.6 −0.05 0.4 0 0.04 4.602380 4.456895
0.4 4.592433 4.448303
0.8 4.583213 4.440315
1.2 4.574618 4.432844
1.4 4.570526 4.429281

0.1 0.6 −0.05 0.4 0.4 0.005 4.500213 4.353271
0.02 4.539167 4.393577
0.04 4.592433 4.448303
0.06 4.647299 4.504242
0.08 4.703862 4.561491
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Table 5. Comparison of −θ
′
(0) at different values of Pr with Rd = φ1 = φ2 = Hg = Γ = Fr = f w =

0, see Devi and Devi [6].

−θ
′
(0)

Pr Devi and Devi [6] Present Results

2.00 0.91135 0.911358
6.13 1.75968 1.759687
7.00 1.89540 1.895407
20.0 3.35390 3.353952

Figure 2a–d indicate the influence of Fr, f w, M, and φ2 on the HNFV profile. It is
believed that the HNFV slumps for the greater values of Fr, f w, and M and it aggravates
when exalting the values of φ2. Physically, the greater amount of magnetic field creates a
drag force called Lorentz force and this force affects the fluid motion. The repercussions of
f w, φ1, φ2 and Rd on HNF temperature profile are depicted in Figure 3a–d. It is noticed
that the temperature profile grows when enhancing the values of φ1, φ2 and Rd. In contrast,
it declines for heightening the values of f w. Physically, as the radiation parameter grows,
the HNF’s ability to transfer energy increases, resulting in the growth of the HNFT and
the expansion of the TBL. Figure 4a,b shows the impact of M, f w and Fr on SFC profile. It
is observed that the surface drag force suppresses when the values of M, f w and Fr rise.
Physically, the improves Lorentz force when it raises the magnetic field, which is affected
the movement of fluid flow and thus decreases the surface shear stress. Figure 5a,b depicts
the consequences of Rd, f w and Γ on LNN. It is noticed that the HTG improves when
enhancing values of Rd, f w and Γ.
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Figure 2. The impact of Fr (a), f w (b), M (c), φ2 (d) on f ′(η) for both HNFs.
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Figure 5. The impact of f w, Rd and Γ on LNN for both HNFs.

Figure 6a–d shows the destructing percentage of SFC for a distinct quantity of M, Fr, f w
and λ. In the case of magnetic effect(M), the maximum destructing percentage of SFC
is Cu − Al2O3 (8.01%), Al − Al2O3 (7.84%) and viscous fluid (7.72%) attains when M
changes from 0 to 0.3 and the minimum destructing percentage of SFC is Cu − Al2O3
(3.91%), Al − Al2O3 (3.80%) and viscous fluid (3.81%) attains when M change from 0.7
to 0.9. In the case of the suction parameter ( f w), the maximum destructing percentage
of SFC is Cu − Al2O3 (16.82%), Al − Al2O3 (13.38%) and viscous fluid (16.02%) attains
when f w changes from 0 to 0.5 and minimum destructing percentage of SFC is Cu− Al2O3
(14.59%), Al − Al2O3 (12.23%) and viscous fluid (14.08%) attains when f w changes from
1.5 to 2. In the case of Forchheimer number Fr, the maximum destructing percentage of
SFC is Cu− Al2O3 (5.58%), Al − Al2O3 (5.56%) and viscous fluid (5.64%) attains when Fr
changes from 0 to 0.4 and minimum destructing percentage of SFC is Cu− Al2O3(2.15%),
Al − Al2O3 (2.15%) and viscous fluid (2.18%) attains when Fr changes from 1.2 and 1.6.
In the case of the porosity parameter (λ), the maximum destructing percentage of SFC
is Cu− Al2O3 (1.92%), Al − Al2O3 (2.91%) and viscous fluid (2.14%) attains when modi-
fies λ from 0.2 to 0.3 and minimal destructing percentage of SFC is Cu− Al2O3 (1.70%),
Al − Al2O3 (2.45%) and viscous fluid (1.88%) attains when modifies Γ from 0.5 to 0.6.
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Figure 6. The destructing percentage of SFC for various values of M (a), f w (b), Fr (c), λ (d) for
both HNFs.
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Figure 7. Thedeclining/developing percentage of LNN for various values of Hg (a), f w (b), Rd (c),
Γ (d) for both HNFs.
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The declining/developing percentage of LNN on Hg, f w, Rd, and Γ are portrayed
in Figure 7a–d. In the case of heat generation/absorption(Hg), the greatest declining
percentage of LNN is Cu− Al2O3 (1.49%), Al − Al2O3 (1.57%), and viscous fluid (1.14%)
attains when Hg changes from −0.03 to 0, and the lowest declining percentage of LNN is
Cu− Al2O3 (0.53%), Al− Al2O3 (0.55%) and viscous fluid (0.40%) attains when Hg changes
from 0.02 to 0.03. In the case of suction( f w), the greatest developing percentage of LNN
is Cu− Al2O3 (69.34%), Al − Al2O3 (63.87%), and viscous fluid (129.14%) attains when
f w changes from 0 to 0.5 and the lowest developing percentage of LNN is Cu− Al2O3
(27.34%), Al − Al2O3 (26.69%) and viscous fluid (30.11%) attains when f w changes from
1.5 to 2. In the case of the radiation parameter(Rd), the greatest developing percentage of
LNN is Cu− Al2O3 (7.45%), Al− Al2O3 (7.84%) and viscous fluid (6.53%) attains when Rd
changes from 0 to 2 and the lowest developing percentage of LNN is Cu− Al2O3 (4.05%),
Al − Al2O3 (4.23%) and viscous fluid (2.58%) attains when Rd changes from 6 to 8. In
the case of the temperature ratio parameter (Γ), the greatest developing percentage of
LNN is Cu− Al2O3 (3.57%), Al − Al2O3 (2.81%) and viscous fluid (3.26%) attains when Γ
changes from 0.8 to 1 and the lowest developing percentage of LNN is Cu− Al2O3 (1.31%),
Al − Al2O3 (1.02%) and viscous fluid (1.26%) attains when Γ changes from 0.0 to 0.4.

5. Conclusions

The steady, 2D, non-linear radiative Darcy-Forchheirmer flow of H2O based hybrid
nanofluid past a stretchable plate with the presence of heat absorption/generation and
magnetic field was investigated. Two different mixture of hybrid nanofluid, namely
Cu − Al2O3 and Al − Al2O3 are taken into account. The governing flow models are
re-changed by implementing the suitable transformations and solved by using MATLAB
bvp4c code. Some remarkable observations of our findings are given below.

• The hybrid nanofluid velocity profile decrepitude’s for larger quantity of Fr (Forch-
heirmer), M (magnetic field parameter) and f w (suction/injection parameter).

• The larger values of Rd (radiation parameter) improve the hybrid nanofluid fluid
temperature.

• The hybrid nanofluid has a larger heat transfer rate than the ordinary fluid.
• The more presence Fr (Forchheirmer number), M (magnetic field parameter) and f w

(suction/injection parameter) causes to reduce the skin friction coefficient.
• The Rd (radiation parameter) and Γ (temperature ratio parameter) lead to enriching the

heat transfer rate.
• The Cu− Al2O3 hybrid nanofluid have higher heat transfer rate than the Al − Al2O3

hybrid nanofluid.
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Nomenclature

Symbols Description
x,y Cartesian coordinates (m)
θ dimensionless temperature
cb drag coefficient
Q0 heat consumption/generation coefficient (W m−3 K−1)

Nu√
Re

local Nusselt number

k1 permeability of porous medium
k∗ Rosseland absorption coefficient
C f
√

Re skin friction coefficient
Tw surface temperature (K)
τw surface shear stress
Uw, Vw surface stretching velocities (m2 s−1)
f w suction/injection parameter
cp specific heat capacity
T temperature of the fluid (K)
T∞ temperature away from the plate (K)
u,v velocity components

Fr
(
= xcb√

k∗1

)
Forchheimer number

Γ
(
= Tw

T∞

)
temperature ratio parameter

Hg
(
= Q

(ρcp)n f c

)
heat consumption/generation parameter

M
(
=

σB2
0

ρ f a

)
magnetic field parameter

λ
(
=

ν f
k∗c

)
porosity parameter

Pr
(
=

(µcp) f
k f

)
Prandtl number

Rd
(
= 4σT3

∞
k∗k f

)
Radiation parameter

Greek symbols
ρ density
ρn f density of nanofluid
ρhn f density of hybrid nanofluid
σ electrical conductivity
σn f electrical conductivity of nanofluid
σhn f electrical conductivity of hybrid nanofluid
ν kinematic viscosity
σ∗ Stefan-Boltzmann constant
µ viscosity
µn f viscosity of nanofluid
µhn f viscosity of hybrid nanofluid

Abbreviations

CNTs carbon nanotubes
DFF Darcy-Forchheimer flow
EG entropy generation
HAG heat absorption/generation
HMT heat mass transfer
HT heat transfer
HTG heat transfer gradient
HNF hybrid nanofluid
HCNT hybrid carbon nanotube
HNPVF hybrid nanoparticle volume fraction
LNN local Nusslet Number
MHD magneto-hydro-dynamics
NF nanofluid
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NFT nanofluid temperature
NFV nanofluid velocity
NLR non-linear radiation
NPVF nanoparticle volume fraction
SS stretching sheet/surface
SFC skin friction coefficient
SVF solid volume fraction
TBL thermal boundary layer
TR temperature ratio
WNF Williamson nanofluid
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