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Abstract: It is challenging to stably and rapidly achieve accurate absolute phase retrieval for iso-
lated objects with a single-shot pattern in fringe projection profilometry (FPP). In this context, a
single-shot multi-frequency absolute phase retrieval (SAPR-DL) method based on deep learning
is proposed, which only needs to capture one fringe image to obtain the full-field precise absolute
phase. Specifically, a low-frequency deformed fringe image is loaded into the trained one-to-two deep
learning framework (DLFT) to predict unit-frequency and high-frequency deformed fringe images.
Then, three fringe images with different frequencies are loaded into the trained deep learning phase
retrieval framework (DLPR) to calculate the corresponding absolute phase. The experimental results
prove that the proposed SAPR-DL method can obtain the three-dimensional (3D) shape measurement
of multiple complex objects by collecting a single-shot fringe image, showing great prospects in
advancing scientific and engineering applications.

Keywords: fringe projection profilometry; deep learning; phase retrieval

1. Introduction

As an important research direction in the field of computer vision, 3D reconstruc-
tion technology plays an important role which has extensive application value. Common
3D reconstruction techniques include multi-view stereo [1], time of flight [2], structured
light [3] and shape from shading and photometric stereo [4–6]. The structured light method
is widely used in the actual visual measurement system because of its simple calculation,
high measurement accuracy and non-contact characteristics. Fringe projection profilometry
(FPP) has become one of the most promising optical 3D measurement techniques due to its
simple hardware structure, flexible implementation and high precision. To achieve 3D mea-
surement in high-speed scenarios, it is usually necessary to improve measurement efficiency
by reducing the number of images required for each measurement. The most ideal way is
to obtain 3D data from a single-shot image. The Fourier transform (FT) method [7–10] is the
most popular single-shot fringe analysis method which uses a band-pass filter to extract the
phase information contained in the frequency domain. Unfortunately, spectral aliasing can
introduce large phase errors in discontinuous and isolated regions. Hence, researchers have
designed a variety of special fringe composite methods [11,12] by spatial frequency reuse
strategies [13–15], expecting to achieve high-precision 3D measurement. However, spectral
aliasing still occurs, which leads to lower phase quality around discontinuities and isolated
regions. Therefore, these methods are not applicable to high-precision 3D measurement.

In recent years, many researchers have applied deep learning methods to high-
precision phase retrieval of single-shot fringe images; however, only wrapped phase
is obtained [16–18]. The wrapped phase needs to be unwrapped before 3D shape mea-
surement. The most commonly used phase unwrapping method is the temporal phase
unwrapping (TPU) algorithm [19], which requires multiple fringe patterns to obtain the
absolute phase but with lower measurement efficiency. Furthermore, some researchers
have combined deep learning with composite fringe projection, expecting higher accuracy
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and more robust phase retrieval and 3D reconstruction from a single composite fringe
pattern. Li et al. proposed composite fringe projection deep learning profilometry [20,21],
reconstructed the 3D shape information of target objects by constructing a convolutional
neural network and analyzed single-shot spatial frequency multiplexed fringe patterns.
However, a proper composite fringe image needs to be designed in advance. Qian et al.
proposed a single-shot geometry constraint and phase unwrapping method based on deep
learning [22] which can meet the requirements of single-shot projection but requires two
cameras, thus leading to higher hardware cost. Moreover, researchers established the
mapping relationship between fringe image and absolute depth information by an end-
to-end approach and extracted 3D information of objects from a single-shot image [23–25].
Unfortunately, it is difficult for the proposed method to obtain high-precision measurement
results in practical applications due to its inability to avoid fringe ambiguity.

In this paper, we propose a single-shot multi-frequency absolute phase retrieval
(SAPR-DL) method based on deep learning. A one-to-two deep learning framework
(DLFT) is designed and trained to convert one low-frequency fringe image into one unit-
frequency fringe image and one high-frequency fringe image. Furthermore, we design
and train another deep learning phase retrieval framework (DLPR) to achieve the absolute
phase retrieval of objects from three fringe images (unit-frequency, low-frequency and high-
frequency). Our DLPR network replaces the cumbersome steps involved in the traditional
phase retrieval method, such as wrapped phase extraction and phase unwrapping. Only
one fringe image needs to be captured to achieve high-quality absolute phase retrieval of
discontinuous and isolated objects.

2. Methods
2.1. Principle of Single-Shot Multi-Frequency Absolute Phase Retrieval Method Based on
Deep Learning

The ultimate goal of FPP technology is to retrieve 3D data from a single-shot image.
Inspired by the recent successes of deep learning technology in FPP, we consider obtaining
the absolute phase from a single-shot fringe image by deep neural networks. However,
the reliability of deep learning largely depends on the original input information, and
deep learning network is not always reliable in the case of ambiguous input. Therefore,
in order to eliminate the phase singularity robustly, it is of great importance to design an
explicit input pattern. Specifically referring to the traditional temporal phase unwrapping
(TPU) algorithm, three groups of phase-shifted fringe patterns with different frequencies
are projected. Among them, three fringe patterns with different frequencies are selected as
the input of the DLPR network, and the absolute phase calculated by the traditional TPU
algorithm is used as the ground truth for training the DLPR network. The three deformed
fringe images collected by CCD can be expressed as:

Ic
u(xc, yc) = A(xc, yc) + B(xc, yc) cos(2π f c

uxc) (1)

Ic
l (xc, yc) = A(xc, yc) + B(xc, yc) cos(2π f c

l xc) (2)

Ic
h(xc, yc) = A(xc, yc) + B(xc, yc) cos(2π f c

h xc) (3)

where (xc, yc) are the coordinates of captured image; A(xc, yc) is average intensity; B(xc, yc)
is the intensity modulation. f c

u, f c
l , f c

h are the carrier frequencies of unit-frequency, low-
frequency and high-frequency fringe images, respectively.

We combined three fringe images of different frequencies to calculate the absolute
phase through the DLPR network. To achieve the goal of retrieving 3D data from single-
shot image, we designed a DLFT network model. The DLFT network achieved one-to-two
fringe images transformation and converted the captured low-frequency fringe images into
unit-frequency and high-frequency ones to ensure that the inputs of the DLPR network are
not ambiguous. The acquired low-frequency fringe is used as the input for training the
DLFT network, and unit-frequency and high-frequency fringes are used as the ground truth
for training the DLFT network. Once the DLFT model is trained, it is only necessary to input
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one low-frequency fringe image into the trained DLFT model to obtain the other two fringe
images of different frequencies. It is worth mentioning that the output data of the DLFT
model also serve as the input data of the DFPR model. To describe the implementation steps
of this method more concisely in the following text, we named it the SAPR-DL method.
The implementation process of SAPR-DL method is shown in Figure 1. In Section 2.2, we
will describe in detail the data set construction process required for training DLFT and
DLPR models.

Figure 1. The implementation process of the proposed SAPR-DL method.

2.2. Training Data Set

Data-driven deep learning methods use a large quantity of training data to train the
model so that its predicted output can be infinitely close to ground truth. To train the DLFT
model, we need to collect three kinds of frequency fringe images to build corresponding
data sets, among which deformed unit-frequency and high-frequency fringe images are
used as the ground truths of the DLFT network, and low-frequency ones are used as the
input data of the DLFT network. In addition, we also need high-quality and unambiguous
absolute phase (ground truth) of the object to train the DLPR network.

To be specific, we used N-step phase-shift profilometry (PSP) for wrapped phase
retrieval. As we all know, PSP can achieve high-precision pixel-by-pixel phase measurement
without being affected by ambient light. In this paper, standard N-step phase-shift fringe
patterns are used, and the intensity of projected fringe patterns can be expressed as:

Ip
n (xp, yp) = ap + bp cos(2π f pxp − 2πn/N), n = 0, 1, . . . N − 1 (4)

where Ip
n (xp, yp) is the fringe patterns to be projected; (xp, yp) are the coordinates of

projector pixel. n is the phase shift index; ap is background; bp is amplitude. f p is fringe
frequency; f p = F

W , F is the total number of fringe periods; W is the horizontal resolution
of the projection pattern. These fringe patterns are sequentially projected onto the object
surface, and deformed fringe patterns captured by the camera can be expressed as:

Ic
n(xc, yc) = A(xc, yc) + B(xc, yc) cos[ϕ(xc, yc)− 2πn/N], n = 0, 1, . . . N − 1 (5)

where ϕ(xc, yc) is the phase distribution of the object to be measured. According to the
least square algorithm, the wrapped phase ϕ(xc, yc) can be obtained as [26]:

ϕ(xc, yc) = tan−1

N−1
∑
0

Ic
n(xc, yc) sin(2πn/N)

N−1
∑
0

Ic
n(xc, yc) cos(2πn/N)

(6)

To obtain high-precision phase distribution, the standard 16 step phase-shift fringe
patterns with an offset of 2π/16 are used; that is, N = 16. Due to the truncation property of
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arctan function, the obtained phase ϕ(xc, yc) is wrapped in the (−π, π]. The relationship
between ϕ(xc, yc) and absolute phase Φ(xc, yc) is expressed as:

Φ(xc, yc) = ϕ(xc, yc) + 2πk(xc, yc) (7)

where Φ(xc, yc) is the absolute phase; ϕ(xc, yc) is the wrapped phase calculated from
Equation (6); k(xc, yc) is the integer phase order. To obtain continuous phase distribution,
we use the multi-frequency temporary phase unwrapping (MF-TPU) algorithm [27] to
unwrap the wrapped phase ϕ(xc, yc). The multi-frequency temporary phase unwrap-
ping algorithm uses two additional phase maps of different fringe frequencies to unwrap
the phase. ϕu(xc, yc), ϕl(xc, yc) and ϕh(xc, yc) are wrapped phases corresponding to the
unit-frequency, low-frequency and high-frequency, respectively. kl(xc, yc) and kh(xc, yc)
represent the fringe orders of the low-frequency and high-frequency. They can be deter-
mined as:  kl(xc, yc)= Round

[
(Tl /Tu)Φu(xc ,yc)−ϕl(xc ,yc)

2π

]
kh(xc, yc)= Round

[
(Th/Tl)Φl(xc ,yc)−ϕh(xc ,yc)

2π

] (8)

where Round [] is the rounding function to obtain the nearest integer value. The total
number of the periods of the fringes are Tu, Tl and Th for the unit-frequency, low-frequency
and high-frequency fringe patterns, respectively. Φu(xc, yc) is the unwrapped phase of
the unit-frequency fringe image. Φl(xc, yc) is the absolute phase of low-frequency fringe
image. The absolute phase of high-frequency fringe image Φh(xc, yc) can be obtained using
Equation (7) and is used for the final 3D shape reconstruction. In this paper, the total
numbers of projected fringe periods are Tu = 1, Tl = 6 and Th = 50, respectively.

To obtain enough data for network training, we constructed a monocular-structured
light lighting system consisting of a projector (model: TI LightCrafter4500) and an 8-bit
industrial camera (model: acA1920-40gm, Basler) with a lens with a focal length of 8 mm.
The projector has a resolution of 912 × 1140 and a projection pattern rate of 120 Hz with
8-bit. To make the system as small as possible, the angle between the projector and the
camera is set to 15◦, and the distance between object and the imaging system is set to about
30 cm. The horizontal resolution of projector is W = 912; the total numbers of projected
fringe periods are Tu = 1, Tl = 6 and Th = 50; the fringe periods are Fu = W/Tu, Fl = W/Tl and
Fh = W/Th, respectively. In our experiment, we collected the data including 680 different
gypsum models scenarios, where 20 simple and complex objects were randomly combined.

2.3. Network Architecture

The structure of DLFT/DLPR network is illustrated in Figure 2. As can be seen from
the figure, the DLFT/DLPR network consists of a U-shaped structure [28] and a residual
structure [29]. The left part of the U-shaped structure uses the encoder structure of repeated
convolution + down-sampling to extract features, and the right part uses the decoder
structure of repeated deconvolution + up-sampling to reconstruct images. As far as the
encoder path is concerned, each encoder layer consists of the following operations: two
3×3 convolutions, batch normalization (BN) [30] and rectified linear unit (ReLU) [31], a
residual structure remaining blocks and max pooling. In addition, each decoder layer in
the decoder path includes up-sampling, cascading with corresponding clipped feature
mapping in the encoder path via skip connection, two 3 × 3 convolutions (followed by BN
and ReLU) and the residual block between the two convolutions. The residual structure
is shown in Figure 3. The residual structure establishes a shortcut between input and
output to avoid the disappearance of gradient caused by increased depth in the deep neural
network, thus ensuring the local details of the output results. The input layer of the DLFT
is high-frequency fringe image, and the output layer are one unit-frequency fringe image
and one low-frequency fringe image, that is, N = 1, M = 2. The input layer of the DLPR
network contains unit-frequency, low-frequency and high-frequency fringe images, and
the output layer is one absolute phase map; that is, N = 3, M = 1.
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Figure 2. Architecture of the designed DLFT/DLPR network.

Figure 3. Architecture of the residual structure. The x represents the input data.

2.4. Network Training

Our DLPR and DLFT networks were trained on the PyTorch platform using a work-
station equipped with a Core Intel(R) Xeon(R) Silver 4214R CPU (2.4 GHz), 32 GB of RAM
and 1 × NVIDIA GeForceGTX-3090Ti GPU. We randomly divided the data into 80% (544),
10% (68) and 10% (68) as training, validation and test data sets, respectively. In addition, the
image size was clipped to 640 × 896 px2 in order to successfully input the captured image
into the network. The DLPR network employed an Adam optimization [32] with a learning
rate of 0.001, which was reduced to 10% after every 300 iterations. The SSIM + Sobel loss, a
loss metric proposed by Ref. [33], was used as the cost function in the experiment. MAE
(L1) loss function was adopted in DLFT network, which was different from the DLPR
network. Our DLFT network employed an Adam optimization with a learning rate of
0.001, which was reduced to 10% after every 200 iterations. In the training process, Xavier
initialization [34] was adopted to initialize the network weights. After iterations of no
more than 1500 epochs, we obtained the optimal model. More importantly, fringe images
were normalized before being loaded into the network to simplify model learning. All
the objects used in the testing process did not appear in the training stage. The CUDNN
library [35] was used to optimize parallel execution in the whole training process.

3. Experiments and Results
3.1. Generation of Fringe Images by DLFT Network

To verify the performance of the proposed SAPR-DL method, we tested four scenarios
that had never been seen in the network. These scenarios include a single object with a
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continuous surface and a combination of multiple objects with isolated surfaces. We con-
ducted a series of contrast experiments to explain why the low-frequency fringe image was
selected as the input of DLFT network instead of unit-frequency or high-frequency fringe
images. To more accurately quantify the difference between the fringe image generated by
the DLFT network and the ground truth, we calculated the structure similarity (SSIM) [36],
an index to measure the similarity between two images, which is a number between 0 and
1. The closer the SSIM index is to 1, the higher the similarity between the SSIM index and
the corresponding ground truth. The SSIM is calculated by

SSIM(I, G) =
(2µIµG + c1)(2σIG + c2)(

µ2
I + µ2

G + c1
)(

σ2
I + σ2

G + c2
) (9)

where I is the fringe image generated by the DLFT network, and G is the ground truth. µI is
the mean of the image I; µG is the mean of the ground truth G; σI and σG are the variances
of I and G, respectively. σIG is the covariance of I and G, and c1, c2 are two constants used
to stabilize the calculation.

The fringe images with different frequencies were input into the DLFT network in turn.
The SSIM index of the other two fringe images generated are shown in Table 1. It can be
seen from Table 1 that the SSIM index output by the network was relatively low when the
fringe image of unit-frequency was used as the input of the DLFT network. For example,
the SSIM index of the high-frequency fringe image generated in scenario 3 was only 0.932.
The SSIM index of the generated image was greater than 0.950, whether a low-frequency or
high-frequency fringe image was used as the input of DLFT network. However, the SSIM
index of the fringe images generated in three different cases is highly similar. In order to
select the input fringe image reasonably, we use the trained DLPR model to test the above
three different cases on the whole test set, with phase errors of 0.68 rad, 0.20 rad and 1.38
rad, respectively. We find that the phase error is the smallest when the low-frequency fringe
image is used as the input of DLFT network. The possible reason for this is that maintaining
the integrity of a low-frequency fringe image is more important in phase calculation. In the
later experiment, we use the low-frequency fringe image as the input of DLFT network.

Table 1. Structure similarity indexes of fringe images generation with different frequencies. U rep-
resents the unit-frequency fringe; L represents the low-frequency fringe; H represents the high-
frequency fringe.

SSIM
U (input) L (Input) H (Input)

L H U H U L

Scenario 1 0.984 0.970 0.979 0.982 0.979 0.985
Scenario 2 0.987 0.974 0.952 0.989 0.950 0.988
Scenario 3 0.976 0.932 0.972 0.973 0.971 0.975
Scenario 4 0.972 0.970 0.984 0.984 0.983 0.972

To more intuitively illustrate the performance of fringe images generated by DLFT
network, the fringe transformation results of the above four scenarios are shown in Figure 4.
Figure 4a–d are the inputs of DLFT network, which are low-frequency fringe images.
Figure 4e–h are the unit frequency fringe images as ground truths, and Figure 4i–l are the
unit-frequency fringe images generated by DLFT network. Figure 4m–p are high-frequency
fringe images as ground truths, and Figure 4q–t are high-frequency fringe images generated
by DLFT network. According to the above results, the unit-frequency and high-frequency
fringe images generated by DLFT network were very similar to their corresponding ground
truths. The experimental results indicated that only one low-frequency fringe image needed
to be captured to generate one unit-frequency fringe image and one high-frequency fringe
image through DLFT network. Based on the above method, the multi-frequency fringe
information required for absolute phase calculation can be supplemented.
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Figure 4. Fringe images generation result based on DLFT network. (a–d) Captured low-frequency
fringe images. (e–h) Ground truths (unit-frequency). (i–l) Unit-frequency fringe images generated by
DLFT network. (m–p) Ground truths (high-frequency). (q–t) High-frequency fringe images generated
by DLFT network.

3.2. Extracting Absolute Phase by DLPR Network

The two fringe images generated by DLFT network (one unit-frequency fringe image
and one high-frequency fringe image) and the captured one low-frequency fringe image
were input into the trained DLPR network to obtain the absolute phase map of the object.
To describe this process more concisely, we named it the SAPR-DL method. In order to
display the performance of SAPR-DL method more intuitively, the calculated absolute
phases of the above four scenarios are shown in Figure 5. Figure 5a–d are the captured
low-frequency fringe images. The phase calculated by using the 16-step phase-shifting
and multi-frequency temporal phase unwrapping algorithm (MF-TPU) as the ground truth
phase maps is shown in Figure 5e–h. Figure 5i–l show the absolute phase calculation results
of our SAPR-DL method. Figure 5m–p are absolute phase error maps corresponding to the
whole measurement area.

Scenarios 1 and 2 are objects with continuous surfaces. It should be noted that they
never appeared in the training data set. Figure 5e,f,i,j show the ground truth phase maps
and absolute phase of the SAPR-DL method, respectively. It can be seen from the results that
the absolute phase calculated by SAPR-DL method was very similar to the corresponding
ground truth, making it difficult to distinguish the difference between them with the naked
eye. To show the difference more intuitively, Figure 5m,n show the phase error maps
of scenarios 1 and 2. As can be seen from the distribution of the phase error maps, the
error was mainly concentrated at the edge of the object. We also tested the ability of the
SAPR-DL method by reconstructing discontinuous objects. As shown in scenarios 3 and 4,
two geometric objects were placed together to form scenarios with isolated surface objects.
Figure 5g,h,k,l show the ground truth phase maps and absolute phase of the SAPR-DL
method, respectively. It can be seen from the absolute phase error distribution maps in
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Figure 5o,p that the absolute phase was correctly calculated, and only slight phase error
emerged at the edge of the object. In order to further quantify the phase error, we calculated
the mean absolute error (MAE) of the absolute phase of the above four scenarios, as shown
in Table 2. The MAE errors of the phase error of scenarios 1, 2, 3 and 4 were 0.11 rad,
0.08 rad, 0.15 rad and 0.13 rad, respectively. It can be seen from Table 2 that the proposed
SAPR-DL method was capable of retrieving the accurate absolute phase of discontinuous
objects with only one low-frequency fringe image.

Figure 5. Absolute phase retrieval results based on the proposed SAPR-DL method. (a–d) The
captured low-frequency fringe images. (e–h) Absolute phase maps (ground truths). (i–l) Absolute
phase maps (SAPR-DL). (m–p) The absolute phase error maps of the proposed SAPR-DL method.

Table 2. Quantitative comparison of the proposed SAPR-DL method and Fringe-Depth method in
terms of RMSE of depth map.

RMSE (mm) Scenario 1 Scenario 2 Scenario 3 Scenario 4

SAPR-DL 0.77 0.43 0.88 0.78

Fringe-Depth 1.47 1.02 0.95 1.42

To show the measurement results of our method more intuitively, we calibrated the
projector–camera system using a stereo vision model [37]. Then, 3D shape reconstruction
was completed by using absolute phase combined with system calibration parameters. We
mapped the point cloud to the z coordinate axis to obtain its depth map. To illustrate the
advantages of our SAPR-DL method, we compared our SAPR-DL method with the Fringe-
Depth method [24] proposed by Nguyen et al., who used an end-to-end depth neural
network to input a single frequency fringe pattern and directly output corresponding depth
map. The measurement results of the four scenarios are shown in Figure 6. Figure 6a–d are
objects to be measured. Figure 6e–p are ground truth depth maps, the depth maps of the
Fringe-Depth method, and the depth maps of the proposed SAPR-DL method, respectively.
To clearly display the results, the depth maps of each scenario and corresponding ground
truth were displayed in pseudo color, and different depth values were determined by
color. In order to evaluate the difference between the reconstructed depth maps and the
corresponding ground truth depth maps, we calculated the depth error distribution maps
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of four scenarios, respectively. Figure 6q–x show the depth error distribution of the Fringe-
Depth method and the proposed SAPR-DL method, respectively. It can be seen from
Figure 6 that the precision of the Fringe-Depth method was poor and that single frequency
fringe image was not able to cope with phase ambiguity/depth ambiguity. The depth error
of our SAPR-DL method was far less than that of the Fringe-Depth method, and it can
be seen from the error distribution map that the error of our SAPR-DL method mainly
occurred at the edge of the object. Notably, Scenario 1 in Figure 6, the flaw in the corner
of the mouth is due to the calculation error of the dark fringe area caused by the shooting
angle when the traditional algorithm is used to calculate the ground truth. This cannot be
completely avoided when calculating ground truth by real experimental data [38].

Figure 6. 3D reconstruction results based on the proposed SAPR-DL method and Fringe-Depth
method. (a–d) Reconstructed objects. (e–h) Depth maps (ground truths). (i–l) Depth maps (Fringe-
Depth method). (m–p) Depth maps (SAPR-DL method). (q–t) Depth error maps (Fringe-Depth
method). (u–x) Depth error maps (SAPR-DL method).

Table 2 lists the depth map RMSE of the proposed SAPR-DL method and the Fringe-
Depth method. As far as SAPR-DL method is concerned, the RMSE of depth maps of
scenarios 1 to 4 are 0.77, 0.43, 0.88 and 0.78, respectively. As far as the Fringe-Depth method
is concerned, the RMSE of the depth maps of scenarios 1 to 4 were 1.47, 1.02, 0.95 and 1.42,
respectively. Figure 7 shows the depth distribution of an arbitrary line in the four scenarios.
The depth distributions of the 590th row in scenario 1, the 450th row in scenario 2, the 159th
row in scenario 3 and the 251st row in scenario 4 are plotted in Figure 7a–d. The green,
blue and red lines, respectively, represent the depth distribution curve of the ground truth,
the proposed SAPR-DL method and the Fringe-Depth method. The black solid line box
in Figure 7 is an enlarged display of black dotted line box. From the results in Figure 7,
we can see that blue and green lines overlap very well, and the red line has a large offset.
Compared with the Fringe-Depth method, the proposed SAPR-DL method exhibited higher
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reconstruction accuracy. The experimental results suggested that the proposed SAPR-DL
method could reconstruct precise 3D shape with only one fringe image even in the case of
discontinuous object.

Figure 7. Depth distributions. (a) The depth distributions of the 590th row for scenario 1. (b) The
depth distributions of the 450th row for scenario 2. (c) The depth distributions of the 159th row for
scenario 3. (d) The depth distributions of the 251st row for scenario 4.

4. Discussions
4.1. Acquisition of Training Data

The SAPR-DL method we proposed adopts a supervised learning training, which
requires a large number of labeled data for training. Although the simulation is one of the
important means of making training data sets, the simulation data often deviate from the
real data and are subject to limited preset parameters, so it is not completely equal to the
real data. Using simulated data sets to train the network will lead to a sharp decline in the
performance of the network when faced with real experimental data. In order to make our
SAPR-DL method more robust in practical applications, we create a “quasi-experimental”
data set by collecting experimental raw data and then use traditional state-of-the-art
algorithms to obtain the corresponding ground truth. Unfortunately, the ground truth
obtained through experimental data inevitably has errors. Theoretically speaking, the
accuracy of our SAPR-DL method can only be infinitely close to the traditional algorithm
used for ground truth production. In future research, on the one hand, we can further
improve the accuracy of traditional algorithms and obtain higher-quality ground truth;
on the other hand, we can design better network models to reduce the error between our
result and ground truth.

4.2. Visualization of Feature Maps

To interpret the proposed DLFT network as a deeper level, we visualized the feature
maps abstracted from the first four layers of the coding path of the DLFT network. The
visualization result of Scenario 4 is shown in Figure 8. As is shown in Figure 8, the
features of the first and second layers focus mainly on the background and boundary of
the target area. The features of the third and fourth layers focus mainly on the distribution
of fringe information. The experimental results show that the proposed model separates
the background and target region well and makes a good response to the distribution of
fringe information.
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Figure 8. Feature maps of different coding layers based DLFT network.

4.3. The Influence of the Number of Fringe Images on the Measurement Results

In this section we explain why it is necessary to use three fringe images with differ-
ent frequencies as input to the DLPR model. From the perspective of traditional optical
phase calculation, it is more stable and reliable to use as many fringe patterns as possible
for phase calculation. In order to verify the influence of different numbers of fringe pat-
terns on the accuracy of phase calculation, we discussed four different cases: unit/low
frequency, unit/high frequency, low/high frequency and unit/low/high frequency, respec-
tively. Figure 9a is a reconstructed object. Figure 9b is the depth map (ground truth), and
mboxfigfig:micromachines-2180660-f009c–f are the corresponding depth maps of unit/low
frequency, unit/high frequency, low/high frequency and unit/low/high frequency, respec-
tively. Figure 9g–j are the depth error maps of unit/low frequency, unit/high frequency,
low/high frequency and unit/low/high frequency, and the RMSE of depth maps are
1.33, 23.80, 0.82 and 0.64, respectively. It can be seen from the figure that the result of
using three frequency fringe images is the best performance because it provides more
fringe information.
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Figure 9. 3D reconstruction results of different number of fringe images. (a) Reconstructed object
(scenario 1). (b) Depth map (ground truth). (c) Depth map (unit/low frequency). (d) Depth map
(unit/high frequency). (e) Depth map (low/high frequency). (f) Depth map (unit/low/high fre-
quency). (g) Depth error map (unit/low frequency). (h) Depth error map (unit/high frequency).
(i) Depth error map ((low/high frequency). (j) Depth error map (unit/low/high frequency).

4.4. Experimental Results Comparison of Different Network Architectures

To explore the performance of different network structures in our proposed method,
we compared the experimental results of the DeepLabv3+ structure and the Gan-based
structure. The corresponding experimental results are shown in Figure 10. Figure 10a
is captured low-frequency fringe images. Figure 10b is ground truths of unit-frequency
fringe images. Figure 10c is unit-frequency fringe images generated by the Gan-based
network. Figure 10d is unit-frequency fringe images generated by the DeepLabv3+ network.
Figure 10e is ground truths of high-frequency fringe images. Figure 10f is high-frequency
fringe images generated by the Gan-based network. Figure 10g is high-frequency fringe
images generated by the DeepLabv3+ network. According to the SSIM index in Table 3,
Gan-based performance is the worst, and the SSIM index of high-frequency fringe image
in Scenario 2 is only 0.525. As far as the DeepLabv3+ structure is concerned, the SSIM
indexes of Scenarios 1, 3 and 4 are above 0.951; the SSIM indexes of the generated low
frequency and high frequency fringe images are 0.881 and 0.551 in Scenario 2, respectively.
The experimental results show that DeepLabv3+ structure is not stable enough in the
generation of fringe images.

Table 3. Comparison of different network architectures.

SSIM (L/H) Scenario 1 Scenario 2 Scenario 3 Scenario 4

Gan-based 0.923/0.907 0.706/0.525 0.850/0.782 0.911/0.878
DeepLabv3+ 0.973/0.970 0.881/0.551 0.962/0.951 0.978/0.970

DLFT 0.979/0.982 0.952/0.989 0.972/0.973 0.984/0.984
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Figure 10. Fringe images generated by different network architectures. (a) Captured low-frequency
fringe images. (b) Ground truths (unit-frequency). (c) Unit-frequency fringe images generated by
the Gan-based network. (d) Unit-frequency fringe images generated by the DeepLabv3+ network.
(e) Ground truths (high-frequency). (f) High-frequency fringe images generated by the Gan-based
network. (g) High-frequency fringe images generated by the DeepLabv3+ network.

5. Conclusions

In summary, a single-shot multi-frequency absolute phase retrieval method based
on deep learning (SAPR-DL) was proposed in this paper, which can retrieve the absolute
3D information of complex scenarios with large surface discontinuities or isolated objects
under the condition of projecting single-shot fringe pattern. By inputting the captured
one low-frequency fringe image into the DLFT network, the other two fringe images (unit-
frequency and high-frequency) required to determine the reliable absolute phase can be
transformed. The absolute phase can be obtained by inputting three fringe images with
different frequencies into the trained DLPR network. The experimental results show that
our SAPR-DL method only needs to collect one fringe image and can precisely measure
the 3D shape of discontinuous or isolated objects, providing a new idea for rapid 3D
shape measurement.
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