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Abstract: Optofluidics seamlessly combines optics and microfluidics together to construct novel
devices for microsystems, providing flexible reconfigurability and high compatibility. By taking
advantage of mature electronic fabrication techniques and flexible regulation of microfluidics, electri-
cally actuated optofluidics has achieved fantastic optical functions. Generally, the optical function
is achieved by electrically modulating the interfaces or movements of microdroplets inside a small
chamber. The high refractive index difference (~0.5) at the interfaces between liquid/air or liq-
uid/liquid makes unprecedented optical tunability a reality. They are suitable for optical imaging
devices, such as microscope and portable electronic. This paper will review the working principle
and recent development of electrical optofluidic devices by electrowetting and dielectrophoresis,
including optical lens/microscope, beam steering and in-plane light manipulation. Some methods to
improve the lens performance are reviewed. In addition, the applications of electrical microfluidics
are also discussed. In order to stimulate the development of electrically controlled liquid lens, two
novel designs derived from electrowetting and dielectrophoresis are introduced in this paper.
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1. Introduction

Optofluidics seamlessly combines optics and microfluidics together to develop novel
systems for micro-optics applications [1–7]. By using liquid as the optical medium, it
enables the flexible regulation of optical properties and integration with other disciplines,
such as biological and medical. Compared with its solid counterpart, optofluidics has some
unique characteristics [8–11], such as wide tunability, better compatibility, small size and
low cost, etc. By now, optofluidic lasers [12], tunable waveguides [13,14], reconfigurable
optofluidic lenses [15] and electronic paper display [16] have been demonstrated by optoflu-
idics. Among them, the optical lenses and displays deal with light paths for imaging, where
the focal length tunability is a key factor that determining its working performance. As the
solid lens has constant refractive index (RI) and fixed optical properties, the optical focusing
and imaging characteristics are modulated only by physical movement in a conventional
optical system. The mechanical component significantly constrains the development of in-
tegrated micro system, while in optofluidics, the optical properties can be easily modulated
by either changing the lens shape or tuning the refractive index of the liquid. The most
straightforward way to change light propagation is tuning the curvature of the refractive
interface, which is impossible in a solid medium, while in microfluidics, the interface
between immiscible liquids can be easily tuned by pressure control [17], chamber geometry
modification [18], or electrical force [19], etc. In addition, the smooth fluidic interface per-
fectly meets the requirement of optical roughness without significant scattering. By taking
advantages of mature electronic fabrication techniques and high compatability with other
electronic devices, the electrical modulation is the most promising method for academic
and commercial applications. According to the focusing tuning mechanism, electrically
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optofluidic lenses can be classified as direct electrical actuation, electro-mechanical and
electro-thermal coupling. Electro-mechanical actuation usually requires a high voltage of
over several hundred volts and the electro-thermal lens has a long response time of several
seconds. In terms of the physical properties, the optical medium includes liquid, liquid
crystal and elastomer. The liquid crystal lens is polarization dependent, and the elastomer
lens has a drawback of high voltage ~1000 volts, while the direct electrical actuation has
a better trade-off between voltage requirement (10~100 V) and response speed (~100 ms).
In addition, the polarization independent liquid makes it suitable for most of the optical
applications. Electrowetting and dielectrophoresis are two key direct electrical actuation
methods in optofluidics, where the droplets are precisely manipulated by voltage. In
terms of applications, they can be classified as lens, prism and electronic paper, etc. Some
commercial electrowetting lenses have found applications in digital cameras or cell phones.
Attaching an adaptive liquid lens to a microscope system would increase the depth of field
and allows to electrically refocus over a large range of distances. The ability to refocus
quickly and precisely leads to many applications such as scanning, package sorting and
security. There are some reviews about the electrical optofluidics. Xu gave a comprehen-
sive review of dielectrophoretic optofluidic devices [20]. Fan reported the mechanism of
microfluidic droplet manipulations using electrowetting and dielectrophoresis [21]. Chen
discussed the recent development of electrically tunable lenses based on the applications
for robotics and AI [22]. However, a review about the mechanism of electrical optofluidic
lens and its applications on optical imaging and in-plane light manipulation is still required.
This review focuses on the electrical optofluidic lens, including the mechanism of electrical
droplet manipulation, reconfigurable optical lens, applications on optical imaging and
in-plane light manipulation. Specifically, we only discuss the electrical (electrowetting and
dielectrophoresis) actuated liquid lens based on the interfacial refraction, where the fluidic
interface is electrically modified.

This article has five sections. The first gives an introduction of optofluidics. Then,
electrowetting lens is presented in Section 2, where the application and performance of the
lens are discussed. Section 3 is about the dielectrophoretic lens, including the mechanism
of dielectrophoresis and out-of-plane/in-plane lenses. Followed by two new electrical
lenses derived from electrowetting and dielectrophoresis in Section 4. The last part is a
brief conclusion.

2. Electrowetting Liquid Lens
2.1. The principle of Electrowetting

Electrowetting describes the modification of wetting characteristics of a solid surface
(usually a hydrophobic one) by applying an external voltage. At first, it is defined as “the
change in solid–electrolyte contact angle due to an applied potential difference between the
solid and the electrolyte”. To enhance this effect, a dielectric layer is introduced in between
the conductive liquid and electrode substrate, which is named electrowetting-on-dielectrics
(EWOD), as shown in Figure 1. In addition, gravity effects are neglected in microscale
droplets, where the surface tension dominates. In Figure 1a, the initial contact angle θ1
is determined by the interfacial energy between surrounding liquid, polar liquid and the
substrate. It is defined by the Young equation [23]:

cos θ1 =
γSV − γSL

γLV
(1)

where γSL,γSV ,γLV are the interfacial surface energies of the solid–polar liquid, solid–liquid
medium and polar liquid–liquid medium interfaces, respectively. When an external voltage
is applied between the polar liquid and the substrate, the fluidic contact angle will be
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changed due to the modification of surface tension, see Figure 1b. The relationship between
the contact angle and the applied voltage can be described by [23]:

cos θ2 =
γSV − γSL

γLV
+

ε

2γLVd
V2 (2)

where ε is the dielectric constant of the insulating film, d is the thickness of the film, and V
is the applied voltage. As shown in Figure 1, the shape of the micro droplet can be easily
tuned by EWOD. Such a fluidic curvature modification provides the basic mechanism for
an optofluidic lens.
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Figure 1. Working principle of electrowetting on dielectrics, (a) Small liquid droplet placed on a
planar substrate forms a spherical cap due to the influence of surface tension; (b) The contact angle is
modified by external voltage.

2.2. Electrowetting Lens and Its Focal Length Tunablity

Electrowetting liquid lens is the most matured electrically adaptive lens, where the
focusing properties is reconfigured by tuning surface tension as well as the fluidic curvature
of droplet. The simplest one is a plano-convex structure, which focuses the light using a
droplet siting on a plane. An early review reported the basic principle and characteristics of
electrowetting lens [23]. S. Kuiper et al. proposed a variable-focus liquid lens for miniature
cameras using electrowetting [19]. Figure 2 depicts the cross section of the lens. Two
immiscible liquids with different refractive indices are filled into a cylindrical container.
If the densities of the two liquids are equal, the initial shape of the meniscus is a perfect
sphere, which is insensitive to the perturbations and gravitation. To apply an electric field
on the side, the cylindrical glass is coated with a transparent electrode (indium tin oxide:
ITO), which is then covered by an insulating film. When a voltage is applied between the
conductive liquid and the side electrode, there will be an electric field across the insulating
layer, see Figure 2b. According to the electrowetting effect, the reduction of the interfacial
tension between the conductive fluid and the insulating layer leads to the change of the
contact angle between them. Figure 2c shows fluidic interfaces under 0 V, 100 V and 120 V,
respectively. The droplet curvature shape changes from convex (convergent lens) to planar,
and then to concave (divergent lens). To demonstrate its imaging property, a miniature
camera based on the electrowetting lens was developed for imaging. Figure 3b,c show the
pictures taken using the liquid lens focused at 50 cm and 2 cm, respectively. For comparison,
a similar image was also captured by a fixed-focus lens, see Figure 3a. It is noticed that the
camera maintains the good resolution with the liquid lens focusing at 50 cm and 2 cm, and
no decrease in performance appeared after over one million switches and experiencing 103
times the Earth’s gravitational constant. This kind of miniature liquid lens camera may
find potential applications in mobile electronics and integrated imaging systems.

As shown in Figure 3, the tunable focal length of the electrowetting lens makes it able
to capture objects located at different positions. The focal length tunability is determined
by the interfacial curvature and the refractive index difference at the interface. The focusing
scheme of a plano-convex lens structure is shown in Figure 4. The focal length f is a
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function of the diameter of the droplet, contact angle at the substrate and the refractive
index difference at the interface. It is described by:

f =
D

2 sin θ(n1 − n2)
(3)
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Figure 2. Variable liquid lens actuated by electrowetting [19]. (a) Schematic cross section view of
the structure. (b) When an external voltage is applied between the conductive liquid and the wall,
an electric field is exerted on the insulating layer. The contact angle θ changes according to the
electrowetting effect. (c) Experimental results under 0 V, 100 V and 120 V, respectively.
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Figure 3. Optical imaging performance [19]. (a) Image using a fixed-focus lens. (b) Image with liquid
lens focused at 50 cm and (c) Image with liquid lens focused at 2 cm.

In a specific liquid lens, its focal length is tuned by modified the contact angle using the
electrowetting effect by external voltage. For example, Krogmann achieved a tunable focal
length from 2.3 millimeter to infinite by a voltage of 0~45 V [24]. In this case, the curvature
can only be tuned from planar to convex (or positive), which works as a focusing lens.
A fluidic interface enables tuning form convex to concave will offer a wide tunable focal
length from positive to negative. Li et al proposed an electrowetting lens that continuously
varies from positive to negative by using a liquid piston [25], as shown in Figure 5. The
structure consists of a piston chamber and a lens chamber, see Figure 5a. In the initial state
of Figure 5b, the light goes through the liquid without focusing. Then, a voltage U1 is
applied to the upper electrode of piston chamber, driving the liquid flow along counter-
clockwise to form a convex lens for focusing, see Figure 5c. When the external voltage is
applied to the lower electrode pair, a concave lens appears in Figure 5d. As the refractive
index of the Liquid 1 is greater than that of Liquid 2, a positive lens or a negative lens is
formed when a voltage is applied to the upper or lower electrodes. In this case, the shortest
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negative and positive focal length are around –18 mm and +18 mm, respectively. This is
another way to introduce a dielectric film that can sustain a higher voltage, which switches
the interface from convex to concave. For instance, the droplet is switched from convex
to concave by electrowetting in Figure 2a,b, and Li et al proposed an adaptive lens with
the focal length tuning from 15 mm to infinite (~115 V), and then to -28 mm (145 V) [26].
Although the design shown in Figure 5 provides an effective way to tune the focal length
from positive to negative, the requirement of anther liquid chamber increases the size of
the lens. In addition, the requirement of one more electrical driver also makes the structure
more complex, while the design in Figure 2 has only one liquid chamber and one electrical
driver. This simple structure is more suitable for integrated systems, and thus has been
widely used in electrowetting lenses.
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2.3. Imaging Application of Electrowetting Lens

The basic and most important application of lens is imaging, where the refocusing
is often used to capture the image of an object. In conventional system, the focusing is
usually realized by mechanical movement of lenses, which requires a motor or other types
of mechanical drivers. With the development of adaptive lens, it is easy to refocus the
imaging system by simply changing the focal length of a liquid lens. This section will give
some examples to describe its applications in zooming and microscopy.

An optical zooming system is an optical configuration that can modify the imaging
magnification without changing the positions of the object and image, which has been
widely used in consumer electronic, telescope, microscopy, and so on [27]. As it requires a
tunable focal length and a fixed image plane at the same time, at least two lens groups are
used for zooming and focusing. In conventional optical system, the adjustment is achieved
by the mechanical movement of solid lenses, making it difficult for a miniature system.
The development of the adaptive liquid lens brings the possibility to realize the zooming
system without moving parts. The simplest way is to just replace some solid lenses by an
adaptive lens, taking the advantages of both solid and liquid lenses. Li et al proposed a
zoom microscope objective that could achieve electrically continuous zoom change and
correct the aberration at the same time [28]. It consists of three electrowetting liquid lenses
and two glass lenses. The liquid lenses provide tunable focal length by an electrowetting
effect. In this case, three liquid lenses have the ability to tune the focal power as well as the
aberrations. The two glass lenses are used to further increase the focal power and decrease
the aberrations, especially the chromatic aberration. The experimental comparison of the
optical performance between the proposed objective and a commercial objective (×10)
is shown in Figure 6. The observed pixels are captured by the same microscope using
these two objectives, respectively. From the results, it is noticed that the imaging quality of
the proposed objective is as good as the that of the commercial one, while the proposed
objective gets a clearer pixel array (see Figure 6c) because of its dynamic optimizing. It
demonstrates the continuous zooming range (~7.8× to ~13.2×) and aberration correction
at any wavelength. This work showed the potential imaging application of adaptive lens.
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However, a single conventional electrowetting lens could not be used as a zoom
system because its back focal distance changes while tuning the focal length. Therefore,
the lens structure should be changed. To realize an optical zooming system by only one
adaptive lens, Li et al proposed an electrowetting lens with a movable fluidic interface [29],
as shown in Figure 7. The lens has an annular chamber and a central chamber, with the
conductive liquid filled in the bottom, as depicted by Figure 7a. Two electrodes are used
to control the position and curvature of the lens, respectively. The actuation process is
depicted by Figure 7b. When a voltage U1 is used to modify the contact angle at the annular
chamber, it induces a capillary pressure to push the silicon oil down, thereby displacing the
liquid–liquid interface. Then, another voltage U2 is applied to tune the lens shape as well as
its focal length. As the position and focal length of the lens can be tuned independently, it
can function as a zoom lens. In Figure 7c, the desired zooming function is demonstrated by
well tuning the object and image distance using U1 and U2, respectively. The experimental
displaceable distance of around 8.3 mm and a zooming ratio of 1.3× are demonstrated in
this work [29]. Although a zooming system of single lens has been achieved by tuning the
lens position and curvature at the same time, the zoom ratio is only 1.3× due to the limited
optical power of one lens, and the single lens is unable to obtain an aberration-corrected
image, while by combining the adaptive liquid lens with a solid lens, large zooming ranges
(~7.8× to ~13.2×) and great images have been achieved [28]. Its dynamic tunability also
increase the fabrication tolerance and decrease the fabrication cost, making it more suitable
for practical application.
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Some other designs of zooming system by the mix of solid–liquid lenses and liquid
lens only, and application cases can be found in Cheng’s review article [27].

Optical axial scanning is an essential process to obtain a 3D profile of biological
specimens, which requires the refocusing of the microscope. Li et al proposed a movable
electrowetting lens for axial scanning microscopy without mechanical movement [30].
The schematic design is shown in Figure 8, which consists of three liquid layers and four
external voltages. The yellow silicon oil layer is sandwiched by two conductive liquid layers
to form two liquid–liquid (L–L) interfaces, see Figure 8a. As shown in Figure 8b, when
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two external voltages U1 and U3 are applied to the device, the conductive liquid layers
pull the two L–L interfaces outwards because of electrowetting effect, and the focal length
of the liquid lenses is tuned by applying voltages U2 and U4, see Figure 8c. Furthermore,
the working principle is displayed in Figure 8d, where the proposed electrowetting lens is
used to refocus to specimens A and B located at variable distance along the axial direction.
It demonstrates a scanning distance over 1 mm with uniform magnification and great
imaging quality.
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Another EWOD liquid lens set with the tunability of focal length and aperture was
first reported by Lee [31]. The schematic design is shown in Figure 9, which consists of a
lens unit and an iris unit. When a voltage is applied to modify the curvature as well as the
focal length of the lens, the blurred image becomes clear, see Figure 9a,b. Then another
voltage drives the opaque liquid shift inward radially, reducing the aperture diameter of
the lens set, as shown in Figure 9c. It is suitable for high performance miniature cameras in
mobile devices.
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Some other optical functions, such as prisms and lens arrays, have also been demon-
strated by electrowetting. For instance, an optical switch based on an electrowetting prism
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was demonstrated [32]. It provides a large extinction ratio of 47 dB with speeds up to
300 Hz. Another focus-tunable integral imaging system based on an electrowetting lens
array is demonstrated by Kim et al [33].

2.4. Methods to Enhance the Electrowetting Lens’ Performance

There are some key factors determined the performance of the electrowetting lens,
which will be discussed in this section. As for the adaptive lens, the driving mechanism
is the first issue need to be settled. In the case of EWOD, the driving voltage, power
consumption and response speed should be taken into consideration.

The EWOD structure is similar to a capacitance, where the energy consumption is
resulted from leakage currents, reducing the power dissipation to a very low level. A low
power consumption liquid lens was demonstrated by Watson et al [34]. In this work, high-
quality parylene AF-4 dielectric layers and large dodecyl sulfate ions are used to reduce
the driving voltage to 15 V and a recorded low power consumption to tens of microwatts.
This will greatly reduce the requirement of power drive in miniature system. There is
also an alternative liquid lens system, based on the interface between two immiscible
electrolytic solutions (ITIES), which is similar with EWOD. In such a structure, ultra-low
driven voltage of ~1 V was achieved [35]. Apart from the variable focal length, some other
optical properties were also studied to improve the performance of electrowetting lens. To
study the astigmatism, Kopp proposed a tubular astigmatism-tunable fluidic lens, which
demonstrated back focal length can be tuned by 5 mm and 0◦ and 45◦ astigmatism by 3 µm
through application of voltages in the range of 50 Vrms [36]. An electrowetting lens with
large aperture and focal length tunability was proposed by Song et al [37]. In this study, a
triple liquid lens is used to analyze the relations among the focal length, optical aberration
and aperture, achieving a root-mean-square wavefront aberration of less than 1/4 waves.
Response speed is another key parameter of an adaptive lens. The response time depends
on the lens aperture, surface tension and liquid properties (such as density and viscosity).
The value is usually within the range of 10 to 100 ms. Supekar proposed an effective way to
enhanced response speed of electrowetting lenses with shaped input voltage functions [38].
By combining two exponential driving voltages, they achieved a 29% enhancement when
compared to the fastest response obtained using single-exponential driving voltage. Later,
in Zhao’s study, it is found that the response time is strongly dependent upon the interfacial
surface tension and less dominated by the viscosities [39]. In this study, a shaping driving
voltage is used to realize a response time of 22 ms, which is one order-of-magnitude faster
response in overdamped lenses.

3. Dielectrophoresis-Actuated Lenses and Applications
3.1. Working Principle of Dielectrophoresis

In a neutral particle, the positive core is surrounded by a negative electron cloud. If the
particle is placed in a uniform electric field, the nucleus and the electrons will be separated
and pushed away in two opposite directions. As a result, the particle is polarized and
a dipole moment is induced. The electrostatic force of the positive charge and negative
charge is equal but with opposite direction, resulting in force balance inside the particle.
The induced dipole moment is P = Qd, where d is the distance between Q and −Q. The
polarized particle will be realigned parallel to the external electric field. If the electric
field is nonuniform, the balance state will be broken. When a particle is placed in an
inhomogeneous electric field, charge +Q and −Q experience a different electric field. Then,
the net force of the dielectric particle can be expressed as [20]:

→
f e = Q

[→
E(r + d)−

→
E(r)

]
(4)

It is noticed that the force is linear with the gradient of the electric field. It demonstrates
that a nonuniform electric field exerts a net force on the dielectric particle. For a bulky
object, the polarization force density is used to describe the force intensity. For example, in
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a homogeneous particle, the dipole density is Np. As a result, the dipole moment density is
P = Np·p. Thus, the electric force density can be written as:

→
F =

→
P · ∇

→
E (5)

where
→
F is called Kelvin polarization force density and ∇

→
E is the gradient of electric field.

For a liner dielectric material, the polarization density is [20]:

→
P = ε0χe

→
E = ε0(εr − 1)

→
E (6)

where χe is the susceptibility of the material; ε0 and εr are the permittivity of free space and
the dielectric material, respectively. When the dielectric material is placed in a medium
with a dielectric constant of εm, the Kelvin polarization force density can be rewritten
as [20]:

→
F =

1
2

ε0(εd − εm)∇
(→

E ·
→
E
)

(7)

Then, the force exerted on a bulk dielectric object with volume V can be calculated
using integration over the whole volume. The above equations describe the Kelvin force of
a dielectric particle surrounding by a medium with a dielectric constant of εm. It is noticed
that the force depends on the dielectric constant difference as well as the electric field
gradient. In addition, the direction of the force is determined by whether the permittivity
of the dielectric material is higher or smaller than that of the surrounding medium.

The phenomenon of the liquid DEP is: dielectric liquid (with higher permittivity) in
a non-uniform electric field tends to collect in regions of high electric field intensity [40].
As shown in Figure 10a, DEP force pulls the droplet to the strong electric field. It can also
repel the bubble within the liquid from a strong electric field due to the lower permittivity
of the bubble; see Figure 10b. In a strong electric field, the free surfaces of the liquid are
approximately parallel to the electric field, as shown in Figure 10c. Unlike the electrowetting,
the DEP exerts a net force on the fluidic interface.
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Fluidic DEP force has been widely used in microfluidic manipulation [41]. Through
the electric field induced dielectrophoretic force, the fluidic interface can be dynamically
manipulated, resulting in reconfigurable optofluidic devices [20]. Recently, a variety of
dielectrophoresis-actuated optofluidic devices, such as liquid lens [42], optical waveg-
uide [43], beam steering [44] and grating [45] have been demonstrated. In terms of the
relation between the light and device substrate, optofluidic devices can be divided into out-
of-plane and in-plane devices. The former deals with light propagating along the direction
perpendicular to the device substrate, which is similar to conventional lens. It can be used
to provide tunable focal length in an optical imaging system, while the in-plane device
manipulates light propagating along the substrate, which is used for beam manipulation in
the microfluidic network.

3.2. Dielectrophoresis-Actuated Out-Of-Plane Lens

In the case of an out-of-plane lens, DEP force is used to deform the geometry of a
droplet, thereby tuning its focal length. It has some similar properties with an electrowetting
lens. For example, they both contain two immiscible liquids and are actuated by external
voltages, but the two liquids of DEP lens are insulating, and the electrode structures are
more flexible.

A typical DEP lens with two planar electrodes is shown in Figure 11 [46]. The top and
bottom parallel electrodes are used to apply a voltage to generate an electric field across
the interface between liquid-1 and liquid-2. As the two liquids with different dielectric
constants, a nonuniform electric filed is generated across the droplet. Thus, the droplet is
reshaped by the voltage to induce tunable focal length. This is the simplest structure of
DEP liquid lens.
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Figure 11. DEP lens with top and bottom electrode [46]. Side view of the lens, the lens is formed by
the yellow liquid and surrounded by a blue liquid.

The electrodes of DEP lens can also be placed in the same substrate. Cheng et al
demonstrated a dielectrically actuated liquid lens using the DEP [47]. Two immiscible
liquids with equal density and different dielectric constants are filled into a PMMA (poly-
methyl methacrylate) container (Figure 12). Specific concentric electrodes are coated on the
bottom glass to apply a nonuniform electric filed on the liquids. As the voltage is turned on,
the DEP force drives the liquid with higher permittivity to the strong electric field, thereby
deforming the liquid interface and its focal length. While the applied voltage varies from
0 V to 200 V, the focal length is changed from 34 mm to 12 mm. It also demonstrates the
focal length tunability by capturing an object placed 50 mm away. Similar DEP-driven
liquid lenses have also been demonstrated using liquid crystal [48]. More examples of the
DEP-actuated optofluidic devices can be found in Xu’s review [20].
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Figure 12. Schematic of dielectric-actuated liquid lens [47]. Under the DEP force, the liquid with
higher permittivity shrinks and forces the droplet to a new curvature indicated by the dashed line.

Benefits from the flexible design of DEP electrode, it enables some adaptive functions
that have never been achieved in electrowetting. Wang proposed a method for flexible
lens array fabrication using DEP force [49]. As shown in Figure 13a, the concentric circular
electrodes are fabricated on the planar substrate for the PEMS droplets manipulation. When
variable voltages are applied to the electrodes, it generates a nonuniform electric field for
the droplets’ shape modification. Then the curing PDMS lens array is peeled off from
the substrate, see Figure 13b. It provides a flexible method to fabricate a lens array with
different focal lengths.
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The out-of-plane DEP lens has a similar structure to that of electrowetting lens, where
the beam is perpendicular to the lens droplet placed on the substrate. As the light passes
through the electrodes, only a transparent electrode can be used. The planar electrode
structure also provides an easy way to fabricate adaptive lens array. However, its focal
length range is limited by the plano-convex lens structure. For instance, the contact angle
(θ) of the droplet in Figure 11 is unable to vary from positive to negative. When the lens
liquid has a higher refractive index than that of the surrounding liquid, only focusing lenses
can be realized, while the electrowetting lens of Figure 2 demonstrates the tunable range of
focal length from negative to infinite and then to positive.

3.3. Dielectrophoresis Actuated Devices for in-Plane Applications

Different from the electrowetting effect, DEP exerts a net force on the fluidic interface
to change droplet’s geometry, which enables the application of different types of electrodes
in the DEP devices. This section will discuss the DEP actuated in-plane optofluidic device,
which is easier for integration of lab-on-a-chip applications.

A reconfigurable liquid core/liquid cladding waveguide was demonstrated using
DEP [43]. Two liquids with different refractive indices are sandwiched by two parallel
plates, on which ITO electrodes are coated. By applying a voltage across the plates, the
liquid core (with higher RI and higher permittivity) is pumped into the liquid cladding,
forming an optical waveguide (ncore = 1.4341, εcore = 39; ncladding = 1.401, εcladding = 2.5).
Both static and moving optical waveguides have been demonstrated in this platform using
the DEP driven virtual microchannel. In this case, core liquid is attracted toward the
region of strong electric field by the DEP force. This dynamic modulated in-plane optical
waveguide is suitable for optical connection and switching in lab-on-a-chip system.

There is another type of liquid lens named in-plane lens, which deals with the light
travels along the chip [50]. It promises easier integration with other on chip elements. We
reported the first in-plane optofluidic lens by continuously tuning a silicone oil-air interface
from concave to convex using the DEP effect [51]. As shown in Figure 14a, it consists of
a pair of planar electrodes on top and bottom substrates. When the voltage is applied to
the top and bottom electrodes, a DEP force is generated across the liquid–air interface. The
in-plane focal length is electrically tuned from about −1 mm to infinite and then from
infinite to around +1 mm with the driving voltage of 0 ~ 260 V. The working states under
0 V, 180 V, 220 V and 260 V have been displayed in Figure 14b. It can be seen that well
focusing has been achieved. In comparison with electrowetting lens, the in-plane DEP lens
is easier to get a wide tunable range covering both negative and positive.
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By using an isolated droplet to replace the liquid stream inside a rectangle microflu-
idic channel, a liquid lens with two air–liquid interfaces is developed [52], as shown in
Figure 15a. This two-interface structure further increases the focal length tunable range
to 0.5 ~ infinite. As the two top electrodes can be controlled individually, several lensing
states, such as double concave (0 V-0 V), double convex (250 V-250 V), planar (175 V-175 V),
concave–convex (0V-175 V) and plano–convex (225 V-262 V), have been demonstrated in
this work, see Figure 15b. The continuous switching between theses working states in a
single droplet greatly enhances the optical performance of lens.
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Spherical aberration is an important parameter in determining the imaging perfor-
mance of an optical system. In a solid lens, the aberration is a long-standing problem of
fixed focal lenses and a complicated lens set is usually required to compensate for the aber-
ration. In the miniature microfluidic chip, the aberration compensation by a mobile element
is not acceptable. The previous spherical optofluidic lenses based on the regulation of global
curvature are unable to remedy the aberration. To solve this problem, an in-plane lens with
the ability to control the local curvature is proposed [53]. As shown in Figure 16a, the lens
geometry is divided into digital slides for local curvature regulation. The movement of
each slide is actuated by the DEP force using two planar electrode arrays, see Figure 16b.
The two electrode arrays are used to modify the geometry and the focal length of the liquid
lens. The digital strip enables the local curvature regulation for aberration compensation.
Its aberration is only 1/24 of that in conventional spherical lens, see the simulated and
experimental results in Figure 16c,d. It provides a new method for aberration free liquid
lens design by using local curvature manipulation.



Micromachines 2023, 14, 319 15 of 19

Micromachines 2023, 14, x FOR PEER REVIEW 15 of 19 
 

 

aberration. In the miniature microfluidic chip, the aberration compensation by a mobile 
element is not acceptable. The previous spherical optofluidic lenses based on the regula-
tion of global curvature are unable to remedy the aberration. To solve this problem, an in-
plane lens with the ability to control the local curvature is proposed [53]. As shown in 
Figure 16a, the lens geometry is divided into digital slides for local curvature regulation. 
The movement of each slide is actuated by the DEP force using two planar electrode ar-
rays, see Figure 16b. The two electrode arrays are used to modify the geometry and the 
focal length of the liquid lens. The digital strip enables the local curvature regulation for 
aberration compensation. Its aberration is only 1/24 of that in conventional spherical lens, 
see the simulated and experimental results in Figure 16c and d. It provides a new method 
for aberration free liquid lens design by using local curvature manipulation.   

 
Figure 16. Aberration-free aspherical in-plane tunable liquid lenses by DEP force [53]. (a) Schematic 
design. (b) Device design. (c) Simulated comparison between spherical and aspherical lenses. (d) 
Experimental comparison between the spherical and aspherical lenses. 

These in-plane devices deal with light propagating along the microfluidic chamber, 
making them more suitable for lab-on-a-chip systems. The reconfigurable optical wave-
guide can be used for wave guiding in the chip, and the in-plane lens enables the wide 
range tuning from positive to negative, as well as the switching between different lensing 
states. In addition, the digital electrode design demonstrates a novel method for the aber-
ration regulation within a single lens. 

4. Novel Designs for Electrical Liquid Lens 
Here, two other types of electrically lenses derived from conventional electrowetting 

and dielectrophoretic lenses are introduced. The propose of this part is to expand the 
scope of electrical liquid lenses and provide ideas for new designs of electrical liquid 
lenses. 

Conventional adaptive liquid lens suffers from substantial spherical aberration that 
compromises its imaging quality. To solve this problem, Mishra et al introduced a novel 
concept of liquid micro-lenses with superior optical performance that allows for 

Figure 16. Aberration-free aspherical in-plane tunable liquid lenses by DEP force [53]. (a) Schematic
design. (b) Device design. (c) Simulated comparison between spherical and aspherical lenses.
(d) Experimental comparison between the spherical and aspherical lenses.

These in-plane devices deal with light propagating along the microfluidic chamber,
making them more suitable for lab-on-a-chip systems. The reconfigurable optical waveg-
uide can be used for wave guiding in the chip, and the in-plane lens enables the wide range
tuning from positive to negative, as well as the switching between different lensing states.
In addition, the digital electrode design demonstrates a novel method for the aberration
regulation within a single lens.

4. Novel Designs for Electrical Liquid Lens

Here, two other types of electrically lenses derived from conventional electrowetting
and dielectrophoretic lenses are introduced. The propose of this part is to expand the scope
of electrical liquid lenses and provide ideas for new designs of electrical liquid lenses.

Conventional adaptive liquid lens suffers from substantial spherical aberration that
compromises its imaging quality. To solve this problem, Mishra et al introduced a novel
concept of liquid micro-lenses with superior optical performance that allows for simul-
taneous and independent tuning of both focal length and aberration [54]. As shown in
Figure 17A, it consists of three parallel glass plates held by spacers. The space between the
two lower plates is filled with water, the one between the upper plates is oil-filled. The
oil–water interface is pinned to the edge of the aperture (left inset of a). At zero voltage, the
oil–water interface assumes a spherical shape with a curvature determined by hydrostatic
pressure, resulting in positive spherical aberration, as shown in Figure 17B. To suppress
spherical aberration, the local curvature of the oil–water interface must decrease with
increasing distance from the optical axis. When the voltage is applied to the device, it
pulls the oil–water interface upward until the electric force is balanced by Laplace pressure.
As the distance between the oil–water interface and the top electrode is smaller on the
optical axis than elsewhere, E decreases with increasing distance from the optical axis. The
curvature of the lens decreases along with it, as required for an aspherical lens. Therefore,
an aspherical lens can be achieved by fine tuning the pressure and applied voltage, see
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Figure 17B. An aspherical lens with variable focal length can be achieved by tuning the
pressure and voltage. This work proposes to use hydrostatic pressure to eliminate the
aberration of an electrical out-of-plane lens. The perfect aspherical lens demonstrates great
imaging quality, which is very important for practical application.
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Figure 17. Schematic of tunable lens actuated by hydrostatic pressures and electric fields [54]. (A) The
curvature of oil (yellow)–water (blue) interface in the central aperture is regulated by a hydrostatic
head and a voltage U applied between the aperture plate and top electrode. Inset: detail of aperture
design for contact line pinning. Top inset: photograph of the actual device. (B) Interface profiles of a
perfect aspherical lens with zero LSA (top) and of a spherical lens at zero voltage (bottom) along with
optical images of a square grid demonstrating the suppression of aberrations.

In the previous liquid lens, the focal length is tuned by applying external voltage,
where an electrical driver is required. Recently, a triboelectric nanogenerator (TENG)-based
adaptive lens without the requirement of external voltage is proposed by Fang et al [55]. As
shown in Figure 18, it consists of a TENG and a varifocal liquid lens. The TENG is able to
convert the tiny mechanical energy into electricity with high voltage and low current, which
can be used to drive the capacitive DEP lens. In this work, the focal length is modulated by
external mechanical sliding, which generates a dielectrophoretic force by the TENG through
the transfer of triboelectric charges in the electrodes. When the mechanical stimulus moves
the sliding triboelectric layer, charges accumulating in the electrodes would generate a
DEP force to drive the fluidic curvature from biconcave to planar and then to biconvex,
tuning the focal length. Figure 18b displays the molecule structure of the optical medium
polyphenylmethylsiloxane. To increase the surface area and enhance the TENG effect, the
surface of the device is etched by inductively coupled plasma, see Figure 18c. A photograph
of the experimental device is shown in Figure 18d. To demonstrate the lensing function, the
relationship between the focal length and the sliding distance of TENG was investigated.
While the sliding distance increases from 0 to 90 mm, the focal length is tuned from –6 mm
to infinite. With a further increase of the distance to 180 mm, the beam is focused to 7 mm.
It demonstrates a wide range of focal length adjustment without requiring external drive
power. This novel liquid lens may find some applications in lab-on-a-chip systems.
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5. Conclusions

Adaptive liquid lenses enable wide range tunability of focal length without mechanical
movement, and have attracted intensive attention. Among them, the electrical liquid lenses
have many merits, such as easy integration, low cost and no requirement of continuous
liquid supply or external pumping. In addition, some the electrical lenses have been
commercialized. In this paper, we have reviewed the two most widely used electrical lenses:
electrowetting lens and dielectrophoretic lens. The driving mechanisms and working
principles of these two types of lenses have been discussed. The electrowetting lens is
suitable to replace solid lenses in conventional imaging systems, providing tunable focal
length and zooming ratio. Some classical cases of zoom system and microscopy imaging
using electrowetting lenses are discussed. In terms of dielectrophoretic lens, the flexible
design of electrode makes it suitable for micro-lens array and in-plane light manipulation.
Some recently developed in-plane electrical lenses are introduced. Some key parameters,
such as power consumption, response time and aberration, have also been discussed.
The electrowetting lens has a wide range tunable focal length from positive to negative.
However, the out-of-plane dielectrophoretic lens only works in the plano-convex state.
Both of them have a low power consumption and the same voltage range of 10~100 volts.
However, the electrowetting lens has a response time of 10 to 100 milliseconds, which
is about an order faster than that of dielectrophoretic lens. Therefore, the wide focusing
range and rapid response make electrowetting lens have more potential in imaging systems.
The dielectrophoretic lenses are suitable for lab-on-a-chip application and promise higher
scalability. At last, two examples of new adaptive lens design are presented to expand the
scope of the electrical lens.
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