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Abstract: The open-cathode forced-convection proton exchange membrane fuel cell has emerged as
a viable option for portable energy sources. The forced-convection open-cathode mode, however,
makes the cell’s performance sensitive to changes in the cathode channel and fan parameters. In
this study, small fuel cell stacks with varying cathode channel depths, widths, and width–rib ratios
were assembled, and the effects of different cathode channel parameters and fan duty ratios on cell
performance were investigated. The experimental results show that changing the cathode channel
parameters has a significant impact on oxidant supply. When the channel width is increased, the cell
performance increases first, then decreases. The cell performance decreases as the channel width–
rib ratio increases. The performance of the cell improves as the cathode channel depth increases.
Furthermore, the experimental results show that decreasing the duty ratio of the fan and using
moderate heating improves cell performance.

Keywords: forced-convection OC-PEMFC stacks; Cathode channel parameter; fan duty ratio

1. Introduction

The proton exchange membrane fuel cell (PEMFC) is a device that uses a chemical
reaction to convert the chemical energy of hydrogen and oxygen directly into electricity. It is
used in the automotive industry, and stationary and portable power generation fields due
to its high efficiency, low operating temperature, and zero emissions [1–3]. Among many
fuel cell systems, the open-cathode forced-convection proton exchange membrane fuel cell
(OC-PEMFC) has received significant attention as a potential portable energy source for
some small-scale power supply needs, such as an unmanned aerial vehicle, a small off-grid
power supply, and so on, due to its simple structure and low parasitic power. In contrast
to the closed-cathode PEMFC, the OC-PEMFC lacks complex air supply devices such as
compressors and humidifiers, which reduce the fuel cell system’s volume and mass while
increasing its energy density. OC-PEMFCs are classified into two types based on their air
supply mode: self-breathing and forced-convection types [4]. Due to the natural convection
of air into the cathode channel, the performance of self-breathing OC-PEMFC is inferior to
that of closed-cathode cells. In forced-convection OC-PEMFC, the air is fed through a fan into
the cathode which consumes negligible parasitic power when compared to a closed-cathode
type. However, compared to the closed-cathode type, the cell’s performance is sensitive to
cathode air supply conditions such as airflow and flow rate, which are heavily dependent on
the cathode channel and fan parameters. Therefore, it is critical to investigate the effect of
cathode channel and fan parameters on the performance of forced-convection OC-PEMFCs.

Several studies on the cathode channel parameter design of the OC-PEMFC have been
conducted in recent years. Sasmito et al. [5] investigated and developed a mathematical
model of an open-cathode PEMFC with an oxidant and cooling fan. According to the
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findings, there is a strong correlation between the height of the cathode flow field and stack
performance. Sasmito et al. also use the Taguchi method to improve cell performance [6].
Kim et al. [7] investigated the effects of cathode channel size on cell performance and
discovered that decreasing the cathode channel size improved cell performance at normal
operating temperatures. At a low operating temperature and fan voltage, however, flooding
limited the reduction in cathode channel size. Qiu et al. [8] proposed a three-dimensional
air-cooled fuel cell model and examined the effect of cathode channel design. When the
rib–channel ratio was set to 1.0, the channel width was reduced and the cell’s performance
improved. Considering the influence of contact resistance when the rib–channel ratio
was small, a rib–channel ratio within a reasonable range of around 3.0 was preferred for
improved performance. Zhao et al. [9] investigated cathode channel design. When the
bipolar plate thickness was 2 mm, the results indicated that the design channel size of
1.1 mm width, 1.3 mm depth, 1:0.7 width/landing, and 5◦ bending angle was the most
optimal. Zhao et al. [10] investigated the effect of length–width ratio on cell performance.
The findings indicate that the length–width ratio has a significant impact on cell perfor-
mance. Furthermore, increasing the length–width ratio from 4.14 to 22.4 resulted in a 7%
improvement in cell performance due to increased heat and mass transfer capabilities.
Moreover, numerous novel cathode channel designs were tested. Thomas et al. [11] present
a novel cathode channel design that provides uniform temperature and flow distribution.
Baik et al. [12,13] developed a new separator in the rib region with a multi-hole structure,
which improves cell performance at higher current densities. Lee et al. [14] developed a
novel cathode channel to improve water retention under conditions of excess dry air supply.
Wang et al. [15] investigated the effects of different cathode flow fields on cell operating
conditions (parallel, pin-type, and metal foam). The result showed that the cell with the
metal foam flow field outperformed the other flow fields in the baseline conditions.

The influence of fans, in addition to cathode channel parameters, is a concern. San-
tarosa et al. [16] investigated the effect of fan voltage on cell performance. The experimental
results showed that when the fan voltage was set to 5 V, the performance of the stack
appeared to be optimal. Fan type (single fan or fans in series), fuel cell length, and separate
air coolant channels were discovered by Sasmito et al. [5,17] to have a significant impact on
the operating point and resulting stack performance. Pei et al. [18] investigated the effect
of air flow rate and temperature on cell performance. The experimental results indicated
that as the airflow rate increased, so did the cell’s performance. When the air flow rate
exceeded 44.7 L/min or the temperature rose above 65◦, performance decreased. Meyer
et al. [19] used an electro-thermal map to investigate the effect of parasitic fan power on the
net output power of a short fuel cell stack system. Ling et al. [20] investigated the effects of
two cathode air supply modes (blow or draw air). The latter resulted in more uniform air
velocities entering the stack and a 16% increase in cell performance. De las Heras et al. [21]
conducted a comprehensive investigation of air-cooled proton exchange membrane fuel
cells, paying special attention to the oxidant/cooling subsystem configuration. The exper-
imental results indicated that the oxidant/cooling subsystem could condition the stack
operation, and it was critical to control the stoichiometric rate values between the manufac-
turer’s required data to avoid stack degradation. Zeng et al. [22] discovered that the effect
of fan speed on operating parameters varied depending on the load. Variable fan speed
control must adapt to changes in fuel cell load and consider cell temperature, stack voltage,
voltage uniformity, and parasitic power. Using a commercially available open-cathode
PEM fuel cell system, Le et al. [23] investigated the effect of fan speed on cell performance
and energy efficiency. The results indicated that the fan speed should be kept as low as
possible to reduce auxiliary power consumption. Meanwhile, heating stack is effective to
speed up the chemical reaction. Zhao et al. [24] investigated the air velocity distribution,
polarization curve, single-cell voltage distribution, and temperature distribution of an
open-cathode fuel cell stack equipped with a blower, blowing spoiler, and drawing air feed
system. The results showed that using the spoiler improved stack performance by 7.3% by
addressing the issue of air velocity in the middle of the stack. Drawing an air feed system
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improved heat dissipation capacity and temperature distribution uniformity, increasing cell
performance by 7.9%. To optimise the distance between the fan and the stack, this could
improve the full development of turbulence and the rate of heat transfer.

There are many studies about the design of cathode channel parameters and fan
selection in forced-convection OC-PEMFC. However, previous research on the design of
cathode channel parameters has concentrated on simulation and single-cell experiments,
and on fan selection has concentrated on single-cell and stack temperature, performance,
and voltage. There have been few relevant experimental studies on the effect of cathode
channel parameters on the stack and the effect of fan duty ratio on the stack electrochemical
impedance spectroscopy (EIS). Compared with the single cell experiment and numerical
simulation, the actual situation of the stack is more complicated. In this study, the per-
formance characteristics of a small OC-PEMFC are investigated by varying the cathode
channel parameters. Polarization curves, EIS, and surface temperature distribution were
also investigated. Furthermore, the relationship between the fan duty ratio and stack
performance, EIS, and surface temperature distribution is studied.

2. Experimental Section
2.1. Experimental Setup

In this study, multiple 10-cell forced-convection OC-PEMFCs were designed and
tested. A commercially coated catalyst membrane (M820.15, Gore, Newark, DE, USA)
with an active area of 3.5 mm × 1.5 mm was used. The platinum loading was 0.1 and
0.3 mg/cm2 on the anode and cathode, respectively. GDL 280 and GDL 340 gas diffusion
layers were used in the anode and cathode (CeTech Co., Ltd., Taiwan, China), respectively.
To improve water retention, thicker carbon paper was used in the cathode. Computer
numerical control technology was used to manufacture the self-designed graphite bipolar
plate. The bipolar plate exhibited a thickness of 3 mm. Figure 1 depicts the stack design
used in this study. As shown in Figure 1c, the anode and cathode channels are straight
and perpendicular to each other. The width of the channel was set to 1 mm. The width of
the channel, however, varied from 0.8 to 1.4 mm, and the width–rib ratio varied from 1:0.8
to 1:1.2. The processing parameters of the bipolar plate are shown in Table 1. The current
collectors were gold-plated printed circuit boards. The end plate was developed from a
10 mm Bakelite plate. The sealing groove was sealed by filling it with liquid silicon sealant.
The stack was secured with four M3 bolts.

Table 1. The processing parameters of the bipolar plate.

Parameter Value

Depth Anode: 0.4 mm; Cathode: 1, 1.5, 2 mm
Width Anode: 1 mm; Cathode: 0.8, 1, 1.2, 1.4 mm

Width–rib ratio Anode: 1:2; Cathode: 1:0.8, 1:1, 1:1.2
Bipolar plate length 53 mm
Bipolar plate width 21 mm

The schematic diagram of the experiment is shown in Figure 2. The PEM fuel cell
anode was fed dry 99.99% H2 from an H2 generator (LCH-500, LICHEN, Shanghai, China).
A reducing valve was used to control the pressure of the hydrogen. To control and detect
H2 flow, a mass flow controller was used (HORIBA Z714AGX, HORIBA, Kyoto, Japan). A
12 V fan controller was used to control an axial flow fan (RB0412H12B-6, Bomin Technology,
Guangdong, China) by adjusting the Pulse width modulation (PWM) duty ratio to provide
cooling and oxidant, maintain stack temperature, and avoid membrane dehydration. Data
was recorded, and the hydrogen input was controlled using a computer. The polarization
curve was tested with a DC electronic load (IT8812, ITECH Electronic Co., Ltd., Nan-
jing, Jiangsu, China). To achieve EIS, an electrochemical workstation (PARSTAT 3000 A,
Princeton Applied Research, Berwyn, PA, USA) was used. A thermal imager was used to
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measure the surface temperature distribution (H21, Hikmicro Sensing Technology Co., Ltd.,
Hangzhou, Zhejiang, China).
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2.2. Test Conditions

At the same operating temperature and humidity, the performance of a forced-
convection OC-PEMFC was tested with different cathode channel parameters and fan
duty ratios. All experiments were performed at ambient temperature and humidity levels.
The ambient temperature was approximately 20–24 ◦C and the humidity was 40–50%. The
anode H2 temperature was set to ambient, and the hydrogen pressure was set to 50 kpa.
The hydrogen was supplied in a dead-end mode, with a solenoid valve for water removal
opening every 16 s for 0.2 s. On the cathode, an axial flow fan was installed. The rated
voltage and current of the fan were 12 V and 1.1 A, respectively. The fan duty ratio was
varied from 80 to 40% to investigate the influence of fan cooling and air supply capacity on
cell performance. Table 2 lists the specifics of various experimental schemes.
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Table 2. The details of different experimental schemes.

Case Depth/Width/Width–Rib Ratio/Fan Duty Ratio Annotations

1 1/1/1:0.8/80%
Different Depth2 1.5/1/1:0.8/80%

3 2/1/1:0.8/80%
4 2/0.8/1:0.8/80%

Different Width5 2/1.2/1:0.8/80%
6 2/1.4/1:0.8/80%
7 2/1/1:1/80%

Different Width–rib ratio8 2/1/1:1.2/80%
9 2/1/1:0.8/40% Different Fan Duty Ratio
10 2/1/1:0.8/60%

For optimal performance, the membrane electrode assembly (MEA) must be activated
prior to performance testing. During the active process, the load current ranged from 0.25
to 1 A with 0.25 A per point, and from 1 to 3 A with 0.5 A per point. Each load current
was sustained for 3 min. The activation procedure was repeated until the performance
was stable.

The galvanostatic mode was used to perform the EIS test, which measured ohmic and
total polarization resistance. The EIS of the cell was tested at 0.76 A/cm2 current density
(4 A load current). In the EIS test, the frequency ranged from 0.1 Hz to 20 kHz, and the
amplitude of the AC was set to 5% of the load current. At 3, 4, and 5 A load currents, the
surface temperature distribution was measured to evaluate cell performance. The EIS and
surface temperature distribution test conditions were consistent with the cell performance
test conditions.

3. Results and Discussion
3.1. Influence of Cathode Channel Width Variation

First, the cell performance of forced-convection OC-PEMFCs with cathode channel
widths ranging from 0.8 to 1.4 mm and channel depth 2 mm was evaluated. The fan
duty ratio was set to 80%, and the width–rib ratio was set to 1:0.8. Meanwhile, temper-
ature distribution was tested at current densities of 3, 4, and 5 A. EIS was also tested at
0.76 A/cm2.

Figure 3a depicts polarization curves of various widths. It was discovered that the
variation in cell performance with changing channel width was different at various current
densities. The cell with a cathode channel of 1 mm produced exceptional results, and the
cell with a channel width of 1.4 mm produced the worst results. When the current density
was less than 0.19 A/cm2, the cathode channel width exhibited a negligible effect on cell
performance. The cell performance was similar with cathode channel widths of 1 and
1.2 mm. When the current density was greater than 0.19 A/cm2, the cell’s performance
first increased and then decreased as the cathode channel width increased. The cell with a
channel width of 1 mm outperformed the cell with a channel width of 0.8 mm. The cell
performance with a 0.8 mm channel width was lower than with a 1.2 mm channel width
but higher than with a 1.4 mm cathode channel width. When the cathode channel width
changed from 1 to 1.4 mm, the oxygen concentration in the membrane decreased due to a
decrease in oxygen concentration in the rib region of the large-width channel. However,
when airflow was relatively high, the oxygen concentration under the rib of a small-width
channel could meet the reaction demand. The increase in the width of the channel from 0.8
to 1 mm reduced the pressure drop, improved oxygen mass transfer, and improved cell
performance. Therefore, the effect of channel width on cell performance was complex.
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Figure 3b depicts ohmic resistance and total polarization resistance at 0.76 A/cm2 for
various cathode widths. The difference in ohmic resistance was only a few milliohms, and
values were approximately 100 mΩ. This indicates that changing the cathode channel width
has negligible effect on ohmic resistance at the same width–rib ratio. Ohmic resistance
consists primarily of contact resistance, membrane resistance, gas diffusion layer resistance,
bipolar plate resistance, and so on. Contact resistance is primarily determined by the
contact area. The greater the contact area, the smaller the opening ratio. The opening ratios
of channel widths of 0.8, 1, 1.2, and 1.4 mm were 54.9, 51.4, 54.9, and 56.0%, respectively.
The contact resistance was the same. In this set of experiments, the MEA parameters
remained constant. These findings also suggest that the membrane resistance is the same
as the water content of the membrane. Furthermore, the total polarization resistance
value first decreased and then increased with increasing channel width due to the effect of
oxygen mass transfer, which is consistent with the variation law of cell performance with a
changing channel width at 0.76 A/cm2.

Figure 4 shows the temperature distribution of cells of varying widths at 3, 4, and
5 A, respectively. Table 3 summarises the variation in the average temperature and the
difference between the hottest and average temperature of different cathode channel widths
with different currents. The temperature of the cell was determined by the cell’s waste
heat and heat dissipation capacity. The average temperature increased with increasing
load current at various cathode channel widths. The average temperature was the lowest
in a cell with a channel width of 1 mm and the highest in a cell with a channel width
of 1.4 mm. These results showed that the cell with a cathode channel width of 1 mm
performed better in terms of heat dissipation. The size of the temperature difference can
reflect the uniformity of the temperature distribution. When the current was 3 A, the
temperature difference between cells of varying widths was less than 2 ◦C. As the load
current and cathode channel width increased, so did the temperature difference. The
greatest temperature difference was observed when the cell with a 1.4 mm cathode channel
width was operated at 5 A. According to the findings, temperature distribution uniformity
decreased as load current and cathode channel width increased. However, as the cathode
channel width increased, the temperature difference variation decreased, and the difference
in temperature distribution uniformity was small. Overall, the cell with a 1 mm cathode
channel width was the most optimal of the cathode channel widths tested.
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Table 3. Average temperature and temperature difference for different widths.

Variable Current (A)
Width (mm)

0.8 1 1.2 1.4

Average temperature
(◦C)

3 30.1 28.6 30.2 31.1
4 32.7 31.6 33.7 34.5
5 36.4 34.7 35.2 38.9

Temperature difference
(◦C)

3 1 1.3 1.5 1.9
4 1.4 1.7 2.2 2.6
5 1.8 2.3 2.4 3.5
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3.2. Influence of Cathode Channel Width–Rib Ratio Variation

When the channel depth was set to 2 mm and the channel width was set to 1 mm, the
cell performance was tested with the cathode channel width–rib ratio changing from 1:0.8
to 1:1.2. The fan duty ratio was set to 80%. Meanwhile, temperature distribution and EIS
were tested.

The polarization curves of the cell with different width–rib ratios are shown in
Figure 5a, and the effect of the cathode channel width–rib ratio variation on cell per-
formance is revealed. At different current densities, the cell performance decreased when
the width–rib ratio was changed from 1:0.8 to 1:1. The reason for this was that as the
width–rib ratio increased, the oxygen concentration in the membrane decreased due to a
decrease in oxygen concentration in the rib region. However, when the width–rib ratio
was changed from 1:1 to 1:1.2, the performance variation law changed depending on the
current density. When the current density was less than 0.57 A/cm2, the cell performance
with a channel width–rib ratio of 1:1.2 was greater than that with a ratio of 1:1. This could
be due to the relatively lower ohmic resistance of the cell with a 1:1.2 channel width–rib
ratio when the oxygen supply was sufficient at a current density less than 0.57 A/cm2.
When the current density exceeded 0.57 A/cm2, the cell’s performance with a channel
width–rib ratio of 1:1.2 was worse than that of 1:1. When the current density was greater
than 0.57 A/cm2, the oxygen concentration in the membrane decreased due to a decrease
in oxygen concentration in the rib region and an increase in the width–rib ratio, which was
the primary influencing factor for cell performance. When the current density exceeded
0.95 A/cm2, the cell’s performance with a channel width–rib ratio of 1:1.2 was significantly
degraded due to non-uniform oxygen distribution.
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0.76 A/cm2.

Figure 5b shows the ohmic resistance and total polarization resistance at 0.76 A/cm2

for various cathode width–rib ratios. Different width–rib ratios exhibited the same ohmic
resistance. According to the previous analysis, ohmic resistance was highly dependent
on contact resistance variation. The changing trend of contact resistance was inversely
proportional to the changing trend of the opening ratio. The opening ratios for the cells
with width–rib ratios of 1:0.8, 1:1, and 1:1.2 were 51.4, 48.6, and 45.7%, respectively. When
the contact area changed, the ohmic resistance value changed by only a few milliohms.
The performance variation due to ohmic resistance variation was minimal. Otherwise, it
can also be seen that the total polarization resistance increases with an increasing width–
rib ratio, indicating a decrease in cathode oxygen mass transfer, which corresponds to a
decrease in cell performance at 0.76 A/cm2.

Figure 6 shows the surface temperature distribution of the different width–rib ratios
of the cell at 3, 4, and 5 A, respectively. Table 4 depicts the variation in the average
temperature and the difference between the hottest and average temperatures for various
cathode channel widths and currents. The average temperature of the cell with a 1:1width–
rib ratio was 1.4 ◦C when the load current was 3 A. The average temperature of the cell was
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the lowest with a 1:0.8 ratio. When the load current was 4 A, the average temperature of the
cell was at its minimum and maximum, 1:0.8 and 1:1, respectively. However, at 5 A load
current, the average temperature of cells with a 1:0.8 and 1:1.2 ratio was at a minimum and
maximum, respectively. The cell with a cathode channel width–rib ratio of 1:0.8 performed
better in terms of heat dissipation. When the current was 3 A, the temperature difference
between different width–rib ratios was the same. The difference increased with the width–
rib ratio when the current was in the range of 4 and 5 A. The temperature distribution was
relatively uniform in the cell, with a cathode channel width–rib ratio of 1:0.8.
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Table 4. Average temperature and temperature difference with different width–rib ratios.

Variable Current (A)
Width–Rib Ratio

1:0.8 1:1 1:1.2

Average temperature
(◦C)

3 28.6 31.0 30.7
4 31.6 34.3 32.3
5 34.7 37.9 38.5

Temperature difference
(◦C)

3 1.3 1.4 1.4
4 1.7 2.0 2.2
5 2.3 2.6 2.8
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3.3. Influence of Cathode Channel Depth Variation

Then, forced-convection OC-PEMFCs with cathode channel depths of 1, 1.5, and 2 mm
were tested for cell performance, EIS, and surface temperature distribution. The fan duty
ratio was set to 80%, and the cathode channel width and the width–rib ratio of the cell were
set to 1 mm and 1:0.8, respectively.

The variation in cell performance with cathode channel depth is shown in Figure 7a.
When the current density was less than 0.19 A/cm2, the effect of cathode channel depth on
cell performance was reduced because there was enough hydrogen and oxygen. When the
current density was greater than 0.19 A/cm2, the cell’s performance gradually improved as
the depth was increased. This could be attributed to a more uniform distribution of oxidants
as the cathode pressure drop decreases with increasing cathode channel depth, causing the
performance of all parts of the cell to be similar. The cell with 1 mm cathode channel depth
performed the worst and exhibited a severe oxidant deficiency when compared to cells
with 1.5 and 2 mm cathode channel depth.
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Figure 7b depicts the EIS at 0.76 A/cm2. It is possible to observe that the ohmic
resistance values changed slightly as the cathode channel depth increased. Because only the
depth of the cathode channel was changed, the contact resistance, bipolar plate resistance,
and gas diffusion layer resistance remained unchanged. Furthermore, the total polarization
resistance of the cell with a cathode channel depth of 2 mm was the lowest, followed by
1.5 and 1 mm, owing to the variation in distribution of oxidants as the cathode channel
depth changed.

The surface temperature distribution of different cathode channel depths at 3, 4,
and 5 A is shown in Figure 8. Table 5 shows the variation in the average temperature
and the difference between the hottest and average temperatures of different cathode
channel widths with different load currents. The temperature of the cell surface was
discovered to decrease as the load current increased. At different load currents, the cell
average temperature was the highest and lowest for cells with 1 and 2 mm cathode channel
depths, respectively. The average temperatures were 28.6, 31.6, and 34.7 ◦C when the
cell with a 2 mm cathode channel depth was operated at 3, 4, and 5 A load current,
respectively. When the cell with a 1 mm cathode channel depth was operated at 3, 4,
and 5 A, the average temperatures were 35.3, 39.6, and 44.3 ◦C, respectively. The cell
average temperature difference between a 2 and 1 mm cathode channel depth was 6.7,
8.0, and 9.6 ◦C, respectively. The cell with a 1 mm cathode channel depth exhibited a
lower heat dissipation potential. Furthermore, at different load currents, the temperature
differences between the cells with 1.5 and 2 mm cathode channel depths were nearly
identical. However, the temperature differences in the cell with a 1 mm cathode channel
depth were greater than in the other cathode channel depth conditions. When the load
current was 5 A, the temperature differences reached 3.4 ◦C. As the depth decreased,
the temperature distribution became less uniform. When the temperature difference and
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average temperature under different depth conditions are compared, the cell with a 2 mm
cathode channel depth performs better in terms of heat dissipation.
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Table 5. Average temperature and temperature difference at different depths.

Variable Current (A)
Depth (mm)

1 1.5 2

Average temperature
(◦C)

3 35.3 32.1 28.6
4 39.6 35.2 31.6
5 44.3 38.8 34.7

Temperature difference
(◦C)

3 1.8 1.3 1.3
4 2.2 1.8 1.7
5 3.4 2.1 2.3

3.4. Influence of Fan Duty Ratio Variation

Furthermore, cells with fan duty ratios of 80, 60, and 40% were tested. The width of
the cell cathode channel was 1 mm, the depth was 2 mm, and the width–rib ratio was 1:0.8.
The EIS and the distribution of surface temperature were also tested.

Figure 9a depicts the performance curves of cells with varying fan duty ratios. When
the current density was less than 0.19 A/cm2, the effect of the fan duty ratio on cell
performance was minimal. When the current density was greater than 0.19 A/cm2, the
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cell’s performance decreased as the duty ratio increased. The cause of this performance
change could be related to the cooling and air supply functions of the fan. Fans with duty
ratio 40%, 60% and 80% can provide enough cooling to maintain the proper temperature
and provide enough oxidant to complete the chemical reaction. However, fans with a
low duty ratio have poor heat dissipation capabilities. The relatively high temperature
accelerated chemical reactions and improved cell performance. In addition, with the
increase in the fan duty ratio, membrane drying caused by a large flow rate may also be
one of the factors causing the deterioration of stack performance.
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At 0.76 A/cm2, the ohmic and total polarization resistance are shown in Figure 9b.
When the current density was 0.76 A/cm2, fans with different duty ratios could provide
enough oxidant to complete the chemical reaction. It was observed that the ohmic resistance
varied insignificantly. This shows that the loss of ohmic polarization caused by the change
in airflow rate is not the main factor for the performance change. This may be because the
designed stack has strong water generation capacity under high current conditions, and
the change in air flow rate has little effect on the membrane water content. In addition, the
total polarization resistance increased as the fan duty ratio increased, which is contrary to
the fact that the oxidant supply decreased as the fan duty ratio decreased. The reason for
this phenomenon may be that with the increase in duty ratio, the heat dissipation capacity
is enhanced, the temperature of the cell decreases, the water flooding of the cell increases,
the oxygen mass transfer is reduced, and the concentration polarization loss is increased.

Figure 10 depicts the surface temperature distribution of cells with different duty
ratios at 3, 4, and 5 A. Table 6 depicts the variation in the average temperatures and the
difference between the hottest and average temperatures of various cathode channel widths
with varying load currents. The average temperature increased with the fan duty ratio
decrease at different load currents, which was due to the fan heat dissipation capability
decreasing with the fan duty ratio decrease. The average temperature reached 43.7 ◦C when
the cell with a fan duty ratio of 40% was operated at a 5 A load current. Furthermore, at
different load currents, the temperature difference increased as the fan duty ratio decreased.
This appears to indicate that a high duty ratio can improve temperature distribution
homogeneity, but it reduces the average temperature of the cell, which is unfavourable for
the chemical reaction and water removal.

According to the cell performance curve and temperature distribution, the fan speed
is inversely proportional to the cell performance when the oxidiser supply is satisfied. The
smaller the duty ratio, the better the oxygen supply–demand balance and heat dissipation,
and there is an appropriate temperature rise that is beneficial for cell performance. The
temperature variation caused by the fan duty ratio is an important factor affecting the
stack performance.
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Table 6. Average temperature and temperature difference at different depths.

Variable Current (A)
Fan Duty Ratio

40% 60% 80%

Average temperature
(◦C)

3 34.3 30.6 28.6
4 37.2 34.3 31.6
5 43.7 37.8 34.7

Temperature difference
(◦C)

3 1.8 1.5 1.3
4 2.2 1.9 1.7
5 3.2 2.6 2.3

4. Conclusions

In this study, multiple forced-convection OC-PEMFC stacks with 10 cells were assem-
bled and tested. Polarization curves, EIS, and surface temperature distribution were used
to examine the effect of the cathode channel width, depth, width–rib ratio, and fan duty
ratio on cell performance under ambient conditions. Therefore, the following conclusions
can be drawn:

1. The effect of increasing cathode channel width on cell performance is complicated.
When the width–rib ratio is 1:0.8, the influence of the changing cathode channel width
on the cell varies depending on the load current. When the load current is less than
0.19 A/cm2, the cathode channel exhibits negligible effects on cell performance. When
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the load current exceeds 0.19 A/cm2, the influence of a pressure drop on oxidant
supply and the influence of non-uniform oxidant concentration distribution caused
by rib width changes take different precedence under different cathode channel
widths. When the cathode channel width increases from 0.8 to 1 mm, the cell’s
performance improves due to pressure drop reduction and oxygen mass transfer
enhancement. When the cathode channel width increases from 1 to 1.4 mm, cell
performance decreases due to the influence of non-uniform oxidant concentration
distribution caused by rib width changes.

2. The influence of the cathode channel width–rib ratio increase on cell performance
is negative when the current density is greater than 0.57 A/cm2 at a 1 mm cathode
channel width, due to the increase in the trend of uneven distribution of oxidant
concentration caused by the increase in the width–rib ratio. When the current density
was less than 0.57 A/cm2, the cell performance with a width–rib ratio of 1:1.2 was
better than the cell performance with a width–rib ratio of 1:1 because the cell with a
width–rib ratio of 1:1.2 exhibited a lower ohmic resistance.

3. The increase in the cathode channel depth has a positive effect on cell performance.
Because of the influence of the pressure drop on oxidant supply, cell performance
gradually increases with increasing cathode channel depth.

4. The cell’s performance improves as the duty ratio of the fan decreases, owing to the
increase in cell temperature increasing the chemical reaction rate.

The choice of the cathode channel parameters and fan duty ratio is crucial for stack
design. Changes in these parameters have different effects on the stack under different
operating conditions, as demonstrated by experimental analysis. According to the demand,
the stack design should be reasonably adjusted. Future research directions include ensuring
the output performance, reducing the quality, and maintaining a balance between output
performance and output voltage, temperature, and load current.
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