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Abstract: Idiopathic toe walking (ITW) is a gait deviation characterized by forefoot contact with the
ground and excessive ankle plantarflexion over the entire gait cycle observed in otherwise-typical
developing children. The clinical evaluation of ITW is usually performed using optoelectronic
systems analyzing the sagittal component of ankle kinematics and kinetics. However, in standardized
laboratory contexts, these children can adopt a typical walking pattern instead of a toe walk, thus
hindering the laboratory-based clinical evaluation. With these premises, measuring gait in a more
ecological environment may be crucial in this population. As a first step towards adopting wearable
clinical protocols embedding magneto-inertial sensors and pressure insoles, this study analyzed the
performance of three algorithms for gait events identification based on shank and/or foot sensors.
Foot strike and foot off were estimated from gait measurements taken from children with ITW
walking barefoot and while wearing a foot orthosis. Although no single algorithm stands out as
best from all perspectives, preferable algorithms were devised for event identification, temporal
parameters estimate and heel and forefoot rocker identification, depending on the barefoot/shoed
condition. Errors more often led to an erroneous characterization of the heel rocker, especially in
shoed condition. The ITW gait specificity may cause errors in the identification of the foot strike
which, in turn, influences the characterization of the heel rocker and, therefore, of the pathologic
ITW behavior.

Keywords: ITW; MIMU; MEMS; ankle; pediatric gait

1. Introduction

Toe walking is a condition characterized by forefoot contact with the ground, normally
present in the first developmental stage of walking [1]. It is also a common feature of certain
pathologies (e.g., autism spectrum disorders, cerebral palsy) [2]. The diagnosis of idiopathic
toe walking (ITW) is made by exclusion; the condition is defined as the presence of toe
walking in healthy children older than three years of age with unknown causes. ITW tends
to resolve naturally with time [2–4]; nevertheless, it has been hypothesized that it could
lead to Achilles tendon shortening or other health issues (e.g., psychological discomfort
for the children and their parents) if left untreated [5,6]. The need for a treatment and the
selection of an optimal one should be based on an objective evaluation of the condition.
In the scientific literature, the gait of children with ITW has been quantitatively described
either in terms of number of strides with a toe walking pattern or in terms of the severity
of ITW. The former classification distinguishes between typical or toe strides based on
the vertical and forward acceleration of the foot [7]. The latter distinguishes between
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three severity levels based on both kinematics and kinetics features of the ankle joint [8].
Kinematics and kinetics data are obtained through instrumented gait analysis performed
with optoelectronic systems and force platforms [8]. ITW severity classification is based
on the characterization of three features: the ankle plantarflexion pattern at the beginning
of the gait cycle (i.e., presence or absence of a heel rocker) [9] (Figure 1); the dorsiflexion
pattern during the stance phase (i.e., timing of the forefoot rocker) [9] (Figure 1); the
ankle kinetic profile (i.e., a predominant plantarflexion moment in the first part of the
stance phase).
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Figure 1. Graphical representation of the heel, ankle, and forefoot rockers within the stance phase
(0–60% of the gait cycle). The heel rocker corresponds to the plantarflexion movement of the ankle at
the beginning of the stance phase. The ankle rocker corresponds to the dorsiflexion movement during
the most part of the stance phase. The forefoot rocker corresponds to the plantarflexion movement at
the end of the stance phase.

Although there are no clear and univocal guidelines for ITW treatment [10], thera-
peutical approaches focusing on the increase of ankle dorsiflexion excursion are clinically
adopted. Treatments change according to the condition severity and child’s age [11].
According to the severity of the case, therapies range from surgery to non-invasive ap-
proaches [12]. Among these, there is the use of foot orthoses which limit ITW behaviour.
They introduce mechanical constraints which induce the child to adopt a more physio-
logical gait [13–15]. Treatment efficacy may be objectively quantified using optoelectronic
systems, thus helping physicians in the process of choosing and tailoring it [16]. However,
clinicians often report that children with ITW, if felt under examination, may adopt a
physiological heel-to-toe gait pattern during gait analysis [17], thus compromising the test.
Although a lab-based acquisition offers higher accuracy, a more ecological environment
could help overcome this issue.

Ecological gait assessment can be facilitated by wearable measurement systems
(WMSs) for estimating ankle mechanics. Thanks to the development of MEMS technol-
ogy, Magneto-Inertial Measurement Units (MIMUs), composed of three mono- or tri-axial
accelerometer, gyroscope, and magnetometer, allow the measurement of lower limb joint
kinematics; pressure sensors, providing the force orthogonal to the sensor surface, can
be used to estimate joint kinetics. WMSs have been widely used in many clinical con-
texts [18,19], allowing ambulatory gait analysis as well as a child’s gait monitoring during
daily activities. Furthermore, they could be easily integrated with foot orthoses used for
ITW treatment. When limiting the analysis to the kinematic component, the proximal
and distal body segments orientation can be obtained from MIMU sensors through sensor
fusion [20]. At the same time, their rigid transformation onto appropriate anatomical
coordinate systems must be defined through anatomical calibration [21,22]. This kinematics
estimation requires selecting:
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(i) The foot modelling approach, which influences the potential of gait analysis to
highlight deviations specific of ITW behaviour. Modelling the foot as a multisegment
rigid body and tracking the talocrural behaviour from the rearfoot seems a preferable
approach [23];

(ii) The anatomical calibration procedure. The relevant accuracy and reliability, vali-
dated in healthy individuals [21,24,25], should be tested in this population, and the most
accurate and reliable should be chosen;

(iii) The anatomical coordinate systems (ACS) defined to obtain foot and shank orientation.
ACSs should match the anatomical description commonly used in clinical settings [26] while
granting for an adequate operator repeatability and operator and instrumental reliability.

The determination of gait events delimiting the gait cycle (stride segmentation) is
complementary but not secondary to the joint kinematics assessment. The identification of
foot strike (FS) is critical since the severity classification of ITW relies on assessing ankle
angular excursion at specific time instants or intervals of the gait cycle—GC—delimited
by two subsequent FSs and then normalized to 100 points. Precisely: (i) the heel rocker
(i.e., first rocker) is defined as an angle at FS greater than −5 deg, with a down going
pattern in the first 12% GC; (ii) a premature forefoot rocker (i.e., third rocker) is defined
as a peak dorsiflexion angle being present in the first 30% GC. Given the rapid change
of the ankle angular excursion that occurs at the beginning of the GC (during loading
response), even an error of a few samples could lead to an incorrect estimation of the
ankle angle at FS and thus to a wrong identification of the presence/absence of the first
rocker. Several MIMU-based algorithms for gait events detection have been validated
in different clinical populations [27–29]. The reported studies were mainly based on
foot and/or shank sensors [27–29] in line with the setup required to estimate ankle joint
kinematics. Although most studies hypothesized that the proposed methods would work
on pathological gait, less than one third were validated on such data [27] and only two
considered a pediatric population presenting toe walking [30,31]. To date, no studies
focusing on gait events identification using a wearable system in children with ITW are
present in the scientific literature.

The main purpose of this study is to evaluate the accuracy and precision of a selection
of MIMU-based algorithms for foot strike estimation in children with ITW. Secondarily,
the influence of the relevant errors on ITW severity classification [8] is evaluated. The
algorithms were selected from the literature: two shank-based algorithms, chosen with
the hypothesis that they could be less affected by a nontypical movement of the foot;
one foot-based algorithm, chosen for its robustness in identifying both heel and forefoot
contacts regardless of the foot movement pattern. The algorithms were tested on children
with ITW walking either barefoot or while wearing a foot orthosis and tested with both
marker-based stereophotogrammetry and MIMUs.

2. Materials and Methods
2.1. Participants

Six children with ITW (4F, 2M; age 6.7 ± 2.2 y.o., stature 1.20 ± 0.12 m, body mass
24 ± 6 kg) were enrolled after an informed consent was signed by their parents. The study
was approved by the institutional review board (University of Rome “Foro Italico”, Rome,
Italy, CAR130/2022). Participants were included in the study after being diagnosed with
ITW; thus, children with any pathologies that may cause toe walking and children younger
than 3 years of age were excluded. The diagnosis of ITW and the prescription of a foot
orthosis (Antiequinus Dynamic Orthosis—A.Dyn.O®, ITOP Officine Ortopediche, Italy;
Figure 2C,D) were made by physiatrists of the Bambino Gesù Hospital in Rome. Physiatrists
did not report limitation of ankle passive range of motion in any child considered in
the study.
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Figure 2. Markers and MIMU sensors positioning. Only a subset of the depicted markers was used
in this study to implement the Plug-in-gait protocol. The MIMU sensor positioned on the pelvis was
not used to perform any of the analysis reported here. (A,B): Front and rear views of the barefoot
condition; (C,D): Front and rear views of the shoed condition.

2.2. Experimental Procedure

Children underwent instrumented gait analysis walking at self-selected speed in a
barefoot condition and while wearing the foot orthosis. Two operators, which engaged the
children with games comprising the walking task, were positioned at the extremities of the
walkway to avoid normalization of the gait pattern [17].

A seven infrared camera motion capture system (MTx, Vicon, Oxford, UK, sampling
rate: 100 samples/s) was used to measure gait kinematics and to segment the gait cycle.
A total of 14 markers were placed on the child for static and dynamic trials according to
the Plug-in Gait lower-body model [32] (Figure 2). The textile design of the shoe used in
combination with the orthosis allowed for palpation of anatomical landmarks, except for
the one on the heel. This marker was identified as the most posterior point of the posterior
profile of the shoe.

A set of four MIMUs (OPAL, APDM wearable technologies, Portland, USA, accelerometer,
and gyroscope full scale ranges: ±6 g, ±1500 deg/s, sampling rate: 128 samples/s) was also
worn by the participants on shank and foot (Figure 2) to segment the gait cycle. They were
selected among those available in the laboratory following the checklist by Hughes at al. [33]:

(i) Sensors’ mass and dimensions were small enough to minimise its influence (encum-
brance) on the child’s movement;

(ii) Sensors were positioned to be in line with the articles presenting the MIMU-based
algorithms. Precisely, shanks MIMUs were fixed on the lateral inferior portion of the
segments compatibly with the marker-set and the foot orthosis used (Figure 2). Feet
MIMUs were positioned on the dorsum of the foot (or over the shoes). To limit their
wobbling and to avoid introducing movement artefacts due to fixing devices crossing the
joint, MIMUs were fixed using bi-adhesive tape. Moreover, straps were used to prevent
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sensor fall in case of tape detachment. Sensor placement fixation was checked regularly
during testing;

(iii) Sampling frequency was appropriate for the measured movement and outcome
parameters (according to the Nyquist–Shannon sampling theorem and frequency analysis
performed by Wu et al. [34]);

(iv) Sensor capacity (e.g., linear acceleration full-scale range) was appropriate to
capture the true biomechanics of the movement of the distal segments (e.g., no clipping of
the signal).

2.3. Data Analysis
2.3.1. Lab-Based Gait Events Identification

Foot strikes and foot offs (FO) were identified using stereophotogrammetric markers’
kinematic data. For FS, the algorithm proposed by Ghoussayni et al. [35] was used as
described by Visscher et al. [36]. In their work [36], the authors examined the effect of using
different markers to detect FSs in children walking normally, with foot flat, and on their
toes. The authors found that the markers positioned on the heel (HEE) allowed for the best
detection of a heel contact. Conversely, the markers placed on the second metatarsal head
(TOE) were the best to detect forefoot contact. In the population enrolled in the current
study, the contact type may change from stride to stride; therefore, the selection of the
marker to be used (HEE or TOE) was based on the FS type (heel or forefoot, see Figure 3). To
discriminate between heel and forefoot contact, the height difference (Zdiff) of the vertical
component of the two markers was considered:

Zdiff(k) = HEEz(k) − TOEz(k), (1)
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Figure 3. Top (A,B): Forward velocity of HEE (continuous thick black line) and TOE (dashed thick
black line) for two trials representative of heel (left) and toe strike (right); horizontal thin continuous
black line: th1. The white circles and black squares correspond to when the forward velocities of HEE
and TOE fall below th1, respectively. Bottom (C,D): Difference of HEE and TOE vertical components
(thick continuous grey line); horizontal thin dot−dashed grey line: th2. Depending on the value of
this difference (below or above th2) a heel or toe FS was identified. For heel FS when HEE and TOE
forward velocity fell below th1 (panel A), the difference between HEE and TOE vertical components
was less than th2 (panel C); the HEE marker (white circles in panel A) was chosen as reference to
identify FS. For toe FS when HEE and TOE forward velocity fell below th1 (panel B), the difference
between HEE and TOE vertical components was greater than th2 (panel D); thus, the TOE marker
(black squares in panel B) was chosen as reference to identify FS.
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A threshold (th2) was set as the average height difference during a static trial:

th2 = ΣN
i=1 Zdiff(i)/N (2)

over the N samples recorded during this trial.
During the walking trials, a threshold (th1) of 500 mm/s was set for forward velocity

(VF) of HEE and TOE to detect a FS as the time sample k for which the following conditions
were both satisfied:

VF(k) < th1 and VF(k − 1) > th1, (3)

where k and k − 1 are the current and previous time sample, respectively.
A heel or forefoot strike were, therefore, identified when the following conditions

were satisfied:
heel FS:

VF(k) < th1 and VF (k − 1) > th1 and Zdiff(k) < th2 (4)

forefoot FS:
VF (k) < th1 and VF (k − 1) > th1 and Zdiff(k) > th2 (5)

Regarding FOs identification, the method proposed and validated by O’Connor et al. [37]
was used; as in this work, no marker was placed on the hallux, which is the best position
identified to estimate foot off by Visscher et al. [36]. Marker kinematic data were low-pass
filtered using a different Butterworth filter for each gait-identified event (FS: 2nd order,
cut-off frequency = 2 Hz [35]; FO: 4th order, cut-off frequency = 7 Hz [37]).

2.3.2. MIMU-Based Gait Events Identification

Three MIMU-based algorithms were used to detect gait events (FSs and FOs) and to
test whether it was better for this population to use a MIMU placed on the shank [38,39]
or on the foot [34]. The two shank-based algorithms, named TRO [38] and SAL [39], were
implemented as described in the original works. The foot-based algorithm proposed by
Wu et al. [34] (thereinafter referred to as WUM), was slightly modified. This method, as
several others in the literature [40], relies on the identification of local maxima of the foot’s
medial-lateral angular velocity. However, when using it on current barefoot data, results
were not reliable due to inconsistent medial-lateral angular velocity maximal excursion
during gait strides. To limit this inconsistency, we relied only on the local minima, as
they roughly correspond to the mid-swing phase of the gait cycle (Figure 4). First, local
minima of the foot-mounted IMU angular velocity ω were identified as those time samples
k satisfying the following condition:

ω(k) < ω(k − 1) and ω(k) < ω(k + 1) and ω(k) < std(ω) (6)

where k, k − 1, and k+1 are the current, previous, and subsequent sample, and std (ω) is
the standard deviation of the signal. Furthermore, a minimal time interval of 0.5 s was
required to identify two consecutive local minima. Once the local minima were identified
(Figure 4), the sample of FS occurrence (kFS) was identified as the first sample k, occurring
after the local minima, satisfying the following conditions:

ω(kFS) · ω(kFS − 1) < 0 and ω(kFS) > ω(kFS − 1) (7)
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Figure 4. Medial-lateral angular velocity of the foot-mounted IMU for a linear gait representative
of the population (continuous line); the circles are the local minima with a magnitude bigger than
the signal standard deviation (below dashed line); FSs (crosses) are identified as the first ascending
zero-crossing time sample after each of the local minima, roughly coinciding with the mid-swing
phase of the gait cycle; FOs (squares) are the local maxima preceding the mid−swing local minima
and bigger than the signal standard deviation (above dashed line).

In a similar way, the sample of FO (kFO) was detected as the first sample k correspond-
ing to a local maximum and occurring before the considered local minimum.

ω(kFO − 1) < ω(kFO) and ω(kFO + 1) < ω(kFO) and ω(kFO) > std(ω) (8)

Prior to each recording session, MIMUs were recalibrated and signals bias removed
following the procedure described by Bergamini et al. [41]. To implement TRO and SAL
algorithms, MIMUs signals were filtered using a low-pass filter (7th order Butterworth;
cut-off frequency = 6.5 Hz). To implement the WUM algorithm, the instant of zero-crossing
was identified on raw data; data were low-pass filtered (2nd order Butterworth; cut-off
frequency = 5 Hz) to find local minima and maxima.

2.4. Characterization of Heel and Forefoot Rockers

Heel and forefoot rockers were characterized according to the definitions given in
the ITW severity classification [8]. With the aim of excluding the errors related to MIMUs
orientation estimation, ankle kinematics was obtained from marker data. Ankle kinematics
was filtered using a low-pass filter (4th order Butterworth; cut-off frequency = 6 Hz). This
marker-based kinematics was segmented into gait cycles according to FSs identified with
MIMUs and used to characterize the abovementioned rockers. Reference gait temporal
parameters (stride, stance and swing duration) were computed from lab-based gait events.
MIMU-based gait events were used to obtain the same temporal parameters for comparison.

2.5. Statistical Analysis

Gait events identified with the three MIMU-based algorithms and gait temporal
parameters were compared with reference data identified using the markers kinematic
data. Algorithms’ accuracy and precision were quantified, respectively, in terms of bias
and 95% limits of agreements (LoAs) calculated performing Bland–Altman analyses (lab-
based parameters—MIMU-based parameters) [42]. The impact of the errors in FS and FO
identification on the characterization of heel and forefoot rockers was evaluated through
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the identification of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). Successively, we calculated:

true positive rate (TPR)
TPR = TP/(TP + FN) (9)

true negative rate (TNR)
TNR = TN/(TN + FP) (10)

false positive ratio (FPR)
FPR = FP/(FP + TN) (11)

false negative ratio (FNR)
FNR = FN/(FN + TP) (12)

The choice of the algorithms was driven by the criterion of having the highest TPR
and TNR and the lowest FPR and FNR.

3. Results

Results for all the algorithms in both conditions are summarized in Figure 5.
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Figure 5. Biases of WUM (black circle), TRO (white square), and SAL (grey diamond) with limits
of agreements (horizontal black lines) for gait events identification and gait temporal parameters:
(A) barefoot condition (left) and (B) shoed condition (right). To optimize stance/swing estimation,
mixed solutions were also tested. The combination improving results is reported (biases are repre-
sented as black triangles) for stance and swing duration in a shoed condition. These were estimated
identifying FSs with WUM and FOs with SAL.

In the barefoot condition, the most accurate and precise algorithms for FSs identifica-
tion were WUM (bias: 21 ms) and SAL (LoAs: 22 ms), respectively. For FOs identification,
SAL was the most accurate and precise algorithm (bias: −3 ms; LoAs: 28 ms). For all the gait
temporal parameters estimation, the most precise algorithm was SAL (LoAs: 21 ms, 33 ms,
36 ms for stride, stance, and swing duration, respectively). The most accurate algorithm
for stride duration estimation was WUM, with null bias. For stance and swing duration
estimation, the most accurate algorithm was TRO (bias: −1 ms and 2 ms, respectively).

In the shoed condition, FSs were most accurately and precisely estimated with WUM
(bias: 14 ms; LoAs: 32 ms). For FOs identification, the most accurate and precise were SAL
(bias: 2 ms) and WUM (LoAs: 23 ms), respectively. For all the gait temporal parameters,
WUM was the most accurate and precise algorithm (bias: null, −51 ms, 50 ms; LoAs: 24 ms,
44 ms, 42 ms for stride, stance, and swing duration, respectively). Given the high biases
for stance and swing duration estimation, WUM and SAL were used in combination, the
former for FSs identification and the latter for FOs identification. With this combination the
results for both stance and swing duration estimation improved (bias: −11 ms, 11 ms for
stance and swing duration, respectively).
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The characterization of the heel and forefoot rockers are graphically represented in
terms of true and false positive and negative rates (Figure 6). For the first rocker in the
barefoot condition, WUM was the algorithm with the highest TPR (96%) and the lowest
FNR (2%), while SAL was the algorithm with the highest TNR (100%) and the lowest FPR
(0%). Concerning the characterization of the forefoot rocker in a barefoot condition, the best
algorithm was WUM with TPR, TNR, FPR, and FNR of 91%, 98%, 2%, and 9%, respectively.
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Figure 6. Characterization of heel rocker during barefoot (A) and shoed (C) walking and early
forefoot rocker during barefoot (B) and shoed (D) walking, based on the FSs identified with the three
algorithms. In the graphs, black, white, and grey bars represent WUM, TRO, and SAL, respectively.

In the shoed condition, for both heel and forefoot rockers characterization, the highest
TPR (97%) and TNR (100%) were achieved using WUM and SAL, respectively, while the
lowest FPR (0%) and FNR (3%) were achieved using SAL and WUM, respectively.

4. Discussion

This study compared the performance of three MIMU-based algorithms in identifying
gait events in children with ITW walking barefoot and while wearing a foot orthosis.
Although no single algorithm emerges as the best one from all perspectives, a selection of
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preferable algorithms for event identification, temporal parameters estimation and ITW
classification was devised, depending on the barefoot/shoed condition.

Concerning gait events identification, FSs and FOs were best identified by different
algorithms: FSs identification had the smallest bias when performed with the WUM
algorithm, while FOs were identified more accurately via SAL algorithm. Regarding gait
temporal parameters, when calculating stride duration, only the bias of FSs identification
affects the duration, with errors similar for all algorithms and conditions (about 2 ms). On
the contrary, stance and swing duration are affected by the combination of the biases of FSs
and FOs identification. In a barefoot condition, TRO tends to identify both FSs and FOs
with similar delayed biases, while the other algorithms have different biases for FSs and
FOs. Consequently, stance and swing duration have the smallest bias when using the TRO
algorithm (−0.6 and 2.4 ms, compared to WUM −9 and 9 ms, and to SAL, 44 and −42 ms,
respectively). Nevertheless, complementing bias information with the LoA values (±120
and ±45 ms for TRO and WUM, respectively) WUM appears to be the best algorithm to
estimate gait temporal parameters in a barefoot condition. In the shoed condition, all the
algorithms presented average biases of FSs and FOs that differs within each other in terms
of magnitude and/or sign. Therefore, the biases for stance and swing duration were higher
compared to barefoot walking. These biases can be reduced by combining two algorithms
with similar biases of FSs and FOs identification. The best combination uses WUM for FSs
and SAL for FOs (Figure 5B), resulting also in the best LoA (43 ms for stance and swing
phases duration).

Regarding the identification of foot rockers, the forefoot rocker was almost always cor-
rectly identified, both when normal (2 FP) and when anticipated (1–4 FN). Conversely, none
of the analyzed algorithms performed clearly better than the other for the characterization
of the heel rocker. This is not surprising since even a small error in the identification of the
initial contact can lead to a misidentification of the presence of a heel rocker (e.g., the WUM
average biases of 21 ms and 14 ms represent the 2% and 1.4% of the mean stride duration
and correspond to a 15% and 44% FPR in the barefoot and shoed condition, respectively).
A heel rocker is present if the planta-dorsiflexion angle is over −5 deg at FS. Indeed, even a
slightly anticipated or delayed FS (the highest bias being 5 samples for SAL in the shoed
condition) can cause an important difference in the estimation of this angle at foot strike. In
children with ITW, the plantar-flexion movement can occur either in the terminal swing
phase or during the loading response phase, leading to toe or heel strikes, respectively. For
a toe strike, the identification of an FS prior to the real event could lead to identifying a
nonexistent heel rocker. For a heel strike, the identification of an FS after the real event
could lead to denying a real heel rocker. The WUM algorithm overestimated the presence
of a heel rocker, while underestimating its absence in both conditions. On the contrary, TRO
and SAL underestimated the presence of the heel rocker, still underestimating its absence.
Overestimating the presence of heel strikes is to be avoided at a diagnosis stage, whereas it
is important to early identify a child as a toe walker. Conversely, underestimating it could
lead to considering an effective rehabilitation intervention as not effective. Clinicians could
choose if dealing with a higher false positive or negative rate for heel rocker identifica-
tion according to the clinical need; alternatively, the evaluation could be performed with
different algorithms and be integrated with a video analysis in case of a discrepancy.

The study must be interpreted considering the following limitations. First, to increase
the number of identified gait events, reference data was obtained from marker trajectories
and not using force platforms. The accuracy of the marker-based approach has been
assessed in the order of 1 and 6 ms for children with a toe walking and a typical walking
pattern, respectively. Such discrepancies are unlikely to affect the results of this study since
differences between marker-based and MIMU-based events were in the range 14–21 ms.
Second, the analysis of how an anticipated or delayed identification of FSs would influence
the characterization of the heel and forefoot rocker must be interpreted with caution. In
the current study, to set apart the errors entailed in estimating ankle kinematics with
MIMUs [24] from those relative to gait event identification, ankle kinematics was estimated
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using an optoelectronic system. Therefore, the characterization of the heel and forefoot
rocker may change when using MIMUs to estimate the ankle kinematics.

Future studies shall develop a wearable measurement system to perform instrumented
gait analysis in an ecological environment. A step forward from the segmentation of the
gait cycle to the assessment of ankle kinematics using MIMUs is required. Such a system
would be capable of correctly revealing the typical walking patterns of this population that
may be hindered using lab-based optical motion capture. Lastly, wearable systems could
inform clinicians on the severity of the condition by monitoring its development, hence,
proving the efficacy of eventual treatments if prescribed.

5. Conclusions

The present study found that among the analyzed algorithms, WUM shall be used
every time only FSs are used in the analysis (FS identification and stride duration), while
SAL is indicated for FOs identification and for computing stance and swing duration.
Although relatively small compared to the whole gait cycle duration, the errors induced by
the MIMU-based algorithms for foot strike estimation led to an erroneous characterization
of the heel rocker, especially in the shoed condition. Nevertheless, the WUM algorithm al-
lowed a promising characterization of heel and forefoot rockers, provided that its tendency
to overestimate the presence of heel rockers is taken in due account.
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