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Abstract: Recently, supplying healthcare services with wearable devices has been investigated. To
realize this for true wireless stereo (TWS), which has limited resources (e.g. space, power consump-
tion, and area), implementing multiple functions with one sensor simultaneously is required. The
Photoplethysmography (PPG) sensor is a representative healthcare sensor that measures repeated
data according to the heart rate. However, since the PPG data are biological, they are influenced by
motion artifact and subject characteristics. Hence, noise reduction is needed for PPG data. In this
paper, we propose the distance estimation algorithm for PPG signals of TWS. For distance estimation,
we designed a waveform adjustment (WA) filter that minimizes noise while maintaining the rela-
tionship between before and after data, a lightweight deep learning model called MobileNet, and a
PPG monitoring testbed. The number of criteria for distance estimation was set to three. In order to
verify the proposed algorithm, we compared several metrics with other filters and AI models. The
highest accuracy, precision, recall, and f1 score of the proposed algorithm were 92.5%, 92.6%, 92.8%,
and 0.927, respectively, when the signal length was 15. Experimental results of other algorithms
showed higher metrics than the proposed algorithm in some cases, but the proposed model showed
the fastest inference time.

Keywords: true wireless stereo (TWS); photoplethysmography (PPG); distance estimation; waveform
adjustment (WA); noise reduction; embedded system

1. Introduction

Wearable devices have garnered an increasingly significant attention owing to their
various applications [1,2]. Among them, smart watches provide healthcare services, such
as measuring body composition and heart rate, by employing electrocardiography (ECG),
bioelectrical impedance analysis (BIA), and photoplethysmography (PPG) sensors [3,4]. In
contrast, true wireless stereo (TWS) does not provide healthcare service yet although heart
rate and oxygen saturation is feasible to measure at the arterial blood of the outer ear. To
provide the healthcare services with TWS, there is a need to mount a new biosensor but it
is difficult as TWS allows only small areas. Therefore, there is a need to provide multiple
functions simultaneously with one sensor.

PPG sensors are widely employed in wearable devices [5,6]. PPG sensors emit infrared
rays to the skin and measure the amount of blood flow by determining the amount of rays
absorbed in red blood cells. Because the PPG data are affected by heart rate due to this
operation method, PPG sensors provide healthcare services such as heart rate measurement,
breathing rate estimation, atrial fibrillation, and blood pressure measurement [7–10]. In
addition, since heart rate has specific patterns, applying the deep learning for pattern
recognition on PPG signal was researched [11,12]. The atrial fibrillation detection with the
hybrid model of convolutional neural network (CNN) and recurrent neural network (RNN)
achieved accuracy of over 99% [13]. The DeepCNAP model for heart rate measurement
using PPG signals was presented [14]. A deep learning model for robust PPG wave
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detection was proposed in [5]. The best performing model was a CNN-long short-term
memory (LSTM) algorithm with a PPG synchro-squeezed Fourier transform (SSFT) and
the accuracy, precision, and recall were 0.894, 0.923, and 0.914, respectively.

The PPG data are also influenced by the subject’s skin characteristic and motion artifact;
these factors make raw data produce noise [6,15,16]. In order to reduce the noise of signal, a
motion reduction technique for respiratory rate was proposed [17]. The proposed technique
reduced motion interference by removing similar spectra with an accelerometer sensor and
an adaptive filter. By applying the technique to the raw PPG data, a clear spectrum was
produced. Similarly, extracting heart rate and respiration rate values from raw PPG data
with a three-axis accelerometer for motion reference was studied [18]. This study proposed
an adaptive notch-filtration architecture, which comprises the adaptive moving average
filter, the adaptive notch filter, and the extraction for physiological parameters. With the
proposed filter, the filtered PPG signals for the calculation of the heart rate and respiratory
rate were similar to measurements from commercial devices for the IEEE-SPC dataset and
the in-house dataset. For the noise reduction, the enhanced empirical wavelet transform
algorithm was proposed [19]. This algorithm employs a fast Fourier transform and the
order statistical filter. Compared with other conventional methods, the proposed method
shows the best accuracy.

On the one hand, in addition to studies that employ the raw PPG data [7], studies
that reduce the instability of the raw PPG data by applying several filters have been con-
ducted [20–26]. Multi-mode particle filtering methods that demonstrate the performance
improvement of an average error of less than 2 BPM compared to single-mode particle fil-
tering and advanced methods with approximately 47 PPG recordings were introduced [23].
Two cutting-edge pulse detection algorithms on actual raw PPG data were studied [24].
This work demonstrated the effect of preprocessing pulse peak positions and the perfor-
mance of peak detection algorithm was analyzed on 21,806 pulse data [25]. Meanwhile,
a study on the data compression method with stochastic modeling for power efficiency
was performed [26]. The method that models the single cardiac period of PPG waveform
applying two sets of Gaussian functions on the forward and backward wave of PPG pulse
outperformed conventional delta-modulation-based methods.

In this paper, we propose a distance estimation algorithm between the user and the
sensor based on a waveform adjustment (WA) filter for the PPG data of TWS. By mounting
the PPG sensor on TWS, various healthcare services were implemented with one sensor.
However, because of the size limitation of the TWS, the existing sensor has to be removed
when the PPG sensor is built into the TWS. Accordingly, the PPG sensor is responsible for
the function that was implemented with the removed sensor. Figure 1 shows the working
principle of the PPG sensor mounted on TWS. As the PPG data output the amplitude
value, the data are different according to the distances between user and sensor. The
existing distance estimation function of the wearable device is replaced by utilizing this
characteristic of the PPG data. We designed a PPG monitoring testbed for collecting analog
PPG signals and a signal processing logic for distance estimation. Owing to the instability
of the PPG signal, the distance estimation logic includes the filter for noise reduction. We
developed our PPG dataset according to the three criteria for distance estimation. The
dataset was trained on various machine learning models, and we analyzed the performance
of each model according to the inference result. The highest accuracy was 92.5% with the
proposed model when the signal length was 15.

The contributions of this paper are as follows. To the best of our knowledge, it is the
first work that proposes distance estimation with a PPG sensor. In order to provide health-
care services by mounting PPG sensors on the TWS, we designed a distance estimation
algorithm to increase the area efficiency of the TWS by replacing a sensor for existing dis-
tance estimation to the PPG sensor. Digital filter IP and an analog-to-digital converter (ADC)
controller were designed with Verilog HDL and implemented on field-programmable gate
array (FPGA).
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Figure 1. Mechanism of PPG sensor according to the distances between user and the sensor.

The remainder of this paper is organized as follows. In Section 2, we introduce the
system architecture of the distance estimation for the PPG sensor, which includes the
function for waveform adjustment and MobileNet, which is a lightweight deep-learning
model. Section 3 presents the flow of the proposed algorithm. Section 4 explains the
implementation of the proposed algorithm and analyzes the results. Finally, a discussion is
provided in Section 5.

2. System Architecture

Figure 2 presents the block diagram of the distance estimation system for the PPG
sensor. The proposed system comprises the PPG signal monitoring testbed with hardware
implementation and estimation logic is realized using a software.

Figure 2. Block diagram of the proposed system.
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2.1. PPG Monitoring Testbed

The PPG monitoring testbed includes an analog front-end for receiving the analog PPG
signal, ADC controller, digital filter IP, extendable instruction set computer (EISC) processor,
and a serial interface for data transmission [27]. The analog front-end contains an amplifier
for the PPG sensor and an ADC for converting the analog signals to digital data. The storage
module stores the parameters, input signals, output signals, and delayed samples. The
EISC processor is the main core of the testbed, which is a 32-bit embedded processor with a
three-stage pipeline and Harvard architecture. Because the low-power operation and area
efficiency are important for the TWS, a floating point unit is not included in the processor.
Accordingly, the testbed requires a signal processing unit for the analog PPG signal. There
are two digital filter types: finite impulse response (FIR) and infinite impulse response
(IIR) filters. The characteristic of the FIR filter is the absence of a regression component.
Hence, a large amount of resources is significantly required as the order of the FIR filter
increases. However, the IIR filter does not require substantial resources because the formula
in which the values of the input and output signals are recursively applied is repetitive.
For the power efficiency of the proposed system, we adopted the IIR filter. The parameter,
input, output, and delayed samples of the IIR filter are stored in the storage module. The
main processor converts the analog PPG signal to the digital PPG signal by controlling the
registers of the ADC controller and transmitting them to the estimation logic.

2.2. Signal Processing Logic

Deep learning extracts appropriate features by stacking layers and updating the weight
of the kernel (filter). In particular, because the process of extracting features implicates the
spatial information on data with windows corresponding to the kernel sizes, it is important
to maintain the spatial information of data by implicating the relationship between the
elements of input data [28].

One-dimensional PPG signal data, which exist sequentially based on the time axis,
have feature information related to pulse patterns from spatial information of the front and
rear data according to signals that change by blood flow. However, when measuring the dis-
tance from the body surface with the PPG sensor, the amplitude sections of the PPG signals
differ because the physical structure is different for each experimental group. In addition,
various factors, such as light refraction or scattering due to the space created between
the PPG sensor and the body surface in a specific distance section, distort the raw signal.
Owing to such signal distortion, it is difficult to comprehensively extract only features
related to the pulse pattern of a PPG signal, which is a bio-signal. Therefore, by keeping a
pulse pattern that implies spatial information and scaling to the estimated amplitude range
according to the specific distance section, the difference in the amplitude intervals triggered
by the characteristics of the bio-structure is discarded. The signal processing logic, which
estimates the distance, comprises a WA filter for waveform correction and MobileNet for
training and inference.

2.2.1. Influence Differential Distribution (IDD) Function

In the inference process, there is no information on the estimated amplitude range.
Therefore, we determine the maximum amplitude with 99% confidence interval in the
signals collected at a certain time and adjust the estimated maximum amplitude within
the range of the estimated amplitude over a certain distance section using the function
we designed. The IDD function adjusts the position of a sample point via the influence
of reference points in a one-dimensional space. This influence depends on the distance
between each reference point and sample point, and becomes stronger as the distance
decreases, similar to the gravity between objects. The function repositions the sample
points in the appropriate range by exerting influence, which depends on the distance from
a sample point.

The IDD function is expressed by the influence equation I(x) for the variable x repre-
senting the sample point. Equation (1) represents the influence equation and the constant r
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represents the reference point of influence. The equation is expressed as having a positive
value by squaring the distance between reference point r and sample point x; log is taken to
scale the value since the range of variation of the actual input amplitude value is large. In
addition, the result of influence equation decreases rapidly as the difference in the distances
increases by using the exponential function. Equation (2) expresses Equation (1) as the
inverse of the distance. According to the equation, if variable x is the same as constant r, the
result of the influence goes to infinity. This feature allows all other influences to be ignored
at the reference point. Figure 3a presents a graph illustrating each influence function of the
three reference points.

I(x) = e− log2(r−x)2
(1)

I(x) = (
1

(r− x)2 )
1

ln 2 (2)

Figure 3. (a) Influence of the three reference points (b) Adjustment of sample points according to
IDD function.

Equation (3) elucidates the influence coefficient (IC) normalized to a value between 0
and 1 for the influence of each reference at a specific point when multiple references exist.
Equation (4) defines the maximum IC at that point. In addition, the maximum influence
changes at the midpoint of the two close reference points, which is called “the dominant
change point” in Figure 3a.

ICi =
Ii

∑(Ii)
(3)

ICmax = max(ICi) (4)

The estimated adjustment point (EAP) is expressed by multiplying each reference
point by the IC ratio and adding all of them, as shown in Equation (5). However, this
adjustment equation has a problem in that the sample point is dragged to the reference
point rapidly when the sample point is closer to the maximum influence. Therefore, we
calculated the improved adjustment point using the maximum IC.

EAP = ∑(ICi × ri) (5)

To solve the problem of strong attraction to the reference point, the improved adjust-
ment point is computed using Equation (6), which adds the EAP and sample point x as a
specific ratio of the maximum IC. We named this equation the IDD function. Figure 3b,
an example of the three reference points, verifies that the slope around each reference
point decreases significantly and a value close to the reference point emerges around the
reference point. Hence, the position of a sample point is readjusted appropriately around
the reference point by the influence of each differentially distributed reference point.

IDD(x) = ICmax × EAP + (1− ICmax)× x (6)
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2.2.2. WA Filter

The WA filter comprises a reference peak detector, maximum amplitude adjuster, and
pulse scaler. The reference peak detector extracts the sign change points on the PPG signals
of a certain period (=signal length) by ascertaining whether multiplying the results of
consecutive sampling points is less than zero. This block regards a gap between a sign
change point and the sign change point that follows it as a half cycle, as shown in Figure 4a.
In addition, the maximum value of the half cycle is determined as a peak. In the next
step, the reference peak is set as the 99% confidence interval for each peak distribution
multiplied by the root of the total number of peaks, as illustrated in Figure 4b. The value n
in Equation (7) represents the total number of peaks.

re f erence_peak = (2.58× σ√
n
)× (
√

n) (7)

Figure 4. (a) Half-cycle detections of the PPG signal; (b) Distribution of the reference peaks; (c) Ad-
justed reference point; (d) Results of the scaled PPG signal.

The maximum amplitude adjuster fine tunes the reference peak using the IDD function.
Because the reference peaks differ depending on the distance between the user and the
sensor, we set the expected reference peak corresponding to the 95% confidence interval
in the training data for three criteria for distance estimation. Finally, the reference peak is
adjusted by applying the expected reference point for each distance to the IDD function,
which is described in Figure 4c. Pulse scaler is a block that filters the PPG signal last before
training or inferencing the AI model. Figure 4d demonstrates that each pulse is scaled at
the ratio of the previous peak to the adjusted peak.

2.2.3. MobileNet

MobileNet is a lightweight-focused model that employs depthwise separable con-
volution to apply deep learning in low-capacity memory environments, such as mobile
phones and embedded systems [29]. Depthwise separable convolution is a form in which
pointwise convolution is combined after depthwise convolution, as illustrated in Figure 5a.
Depthwise convolution has an independent 3 × 3 kernel for each input channel, thereby
creating a feature map equal to the number of input channels; the pointwise convolution
then calculates the cross-channel correlation by applying 1 × 1 convolution to all feature
maps created in depthwise convolution. Unlike a network with a general convolution
architecture, this architecture reduces the number of parameters. Based on these features,
we increased the channel by conducting depthwise separable convolution on a single
dimension to enable training and inference on a single-channel PPG signal, and altered the
size of the kernel used for depthwise convolution to 3 × 1, as shown in Figure 5b.
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Figure 5. (a) Original architecture of MobileNet; (b) Modified MobileNet architecture for the PPG signal.

3. Algorithm Flow

Figure 6 presents the proposed algorithm, which is divided into training and inference
for MobileNet. The training procedure is presented as follows. First, the raw PPG signal
is measured in real-time and the sample points are stored after IIR filtering. For the WA
filter, as certain cycles of the PPG data are required, the previous process is repeated until a
sufficient length of data is accumulated. When the primary data collection is completed,
the waveform is normalized using a WA filter. In addition, because the minimum length
of the filtered data is required for MobileNet, the process is performed several times.
After securing sufficient data, MobileNet computes the optimum weight value, which is
called training. The inference process is the same up to the data collection for MobileNet.
Subsequently, the distances between the user and the sensor are estimated for the filtered
data. We set the three criteria for distance estimation to 0 mm, 0.4 mm, and 0.8 mm, and
MobileNet outputs one of these distances as the result.
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Figure 6. (a) Flow chart for training; (b) Flow chart for inference.

4. Experiment

Figure 7 illustrates the experimental environment. Xilinx’s FPGA development board
called Artix-7 was utilized for EISC processor and digital filter IP. We collected the PPG
dataset with the monitoring testbed. The total dataset comprised 144,000 sampling points,
and we collected 600 s twice from one person, and another 600 s from six people for
each criterion of the distance estimation. To reduce the similarity between the datasets,
1500 sampling points from 500 to 1999 out of 6000 sampling points were set as a training
dataset, and 3500 sampling points from 2000 to 5499 were set as an inference dataset.
Accordingly, the total number of sampling points of the training and inference datasets are
36,000 and 84,000, respectively.

In order to verify the WA filter for the PPG signal, we designed the Kalman filter,
short-time Fourier transform (STFT), modified average filter, bandpass filter (BPF)+single
moving average (SMA) filter for performance analysis. The Kalman filter is a recursive
algorithm that estimates unknown variables with previous and present data via noise
reduction [30]. When the motion and measurement models are linear in the Gaussian
distribution, this filter is available. The Kalman filter process comprises prediction and
update steps. In the prediction step, the prediction vector is calculated using the motion
model and the previous state vector. In the update step, the Kalman gain is updated by
the difference of the prediction and measurement vectors, and is utilized to determine the
state vector. Using this recursive process, the Kalman filter represents the state vector as
the denoised data.
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Figure 7. Experimental environment.

STFT is a filter for the audio signal process [31]. We expect the STFT to be appropriate
for the PPG signal because the distribution of frequency for time was computed. STFT
performs the Fourier transform while moving a window with a specific length in the signal.
In this case, the Fourier transform is calculated several times for a specific time, and the
frequency spectrum at that specific time is obtained by averaging the calculated timed. The
most influential variable is the window length. It is important to set the proper window
size because the resolution of the frequency domain decreases if the window length is short,
and the resolution of the time domain decreases if the window length is long. Hence, we
determined the window length to number 60 of the sampling points.

The modified average filter is a filter for noise reduction. Because amplitude fluc-
tuation, due to signal bouncing, is fatal in estimating the distance between the user and
sensor, we tried to correct bounced PPG signals based on the average. Accordingly, among
the sampling points of the PPG signal, values of 2 times more and less than 1/2 of the
average are regarded as incorrect data and replaced with averages. However, as this filter
discards the relationship between the data before and after, the performance analysis on
the accuracy demonstrates the importance of the relationship in the proposed algorithm.
The modified average filter is employed in verifying that the distance estimation is feasible
only with noise reduction.

The BPF+SMA filter is a hybrid filter for noise reduction. BPF discards noise by
passing only a specific frequency band. The SMA filter utilizes a mean of previous data.
Because the number of previous data increases, SMA becomes less sensitive to changes in
the data and more robust to noise. In contrast, SMA becomes more sensitive to changes and
less robust to noise when the number of previous data decreases. Therefore, the BPF+SMA
filter is more effective in denoising than the single filter.

By analyzing the raw PPG signal according to the distances, the amplitude becomes
smaller and the noise increases as the distance between the user and sensor increases. If
the noise is significant, the amplitude of the near-distance data becomes similar to the
amplitude of the far-distance data. Therefore, it is important to minimize this effect when
estimating the distance between the user and sensor. Figures 8b, 9b and 10b presents
results obtained by the Kalman filter. Because the Kalman filter is a recursive filter based
on the original data, no significant differences exist between the raw PPG signal and
filtered data. However, the values of raw- and Kalman-filtered data differ from each
other, and large noises are discarded certainly. STFT results demonstrate that Figure 10c,
the spectrogram for 0.8 mm, differs from Figure 8c, a spectrogram for 0 mm; however,
Figures 8c and 9c do not differ significantly. The modified average filter exerts more
influence when the average of amplitudes is low because the filter is based on the average.
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The noise disappears when comparing Figure 10a,d; however, it is not effective for large
amplitudes, as illustrated in Figure 8a. Figures 8e, 9e and 10e present the results of the
BPS+SMA filter. Because SMA filter was applied after noise reduction, the overall amplitude
was significantly decreased. In addition, the relationship between data before and after
disappeared. Figures 8f, 9f and 10f show the results of the proposed filter. Although the
waveform appears to converge to one value, it is filtered while maintaining the relationship
according to all distance criteria.

Figure 8. PPG signals for a distance 0 mm: (a) Raw data; (b) Kalman filter; (c) STFT; (d) Modified
average filter; (e) BPS+SMA filter; (f) WA filter.

To verify the suitability of MobileNet for the distance estimation, we employed In-
tellino, LeNet-5, and a calculation method using the difference between amplitudes without
AI. Intellino is an AI with a distance-calculation-based k-neighbor nearest algorithm, not
a layer architecture [32]. By reducing the multiplier with the Manhattan distance, the
suitability for the embedded system was verified. The accuracy of the audio signal and
image data of Intellino was measured at 0.91 and 0.94, respectively [31,33]. Intellino is
possible to experiment by freely reconfiguring the size of the input data and the number of
neuron cells using the simulator [34]. LeNet-5 is a representative AI for optical character
recognition, which has a seven-layer CNN architecture [28]. The convolution layers, sub-
sampling layers, and the fully-connected layer are included. Because the size of output
data decreases as the sub-sampling layers exist, the minimum size of input data is 32 × 32.
Accordingly, we only utilized 120 and 60 as signal lengths. We analyzed the accuracy of the
proposed algorithm via the combinations of various filters and four distance estimation
methods; the obtained results are presented in Tables 1–4. Intel-core i5-2500 CPU and 6GB
RAM were configured for performance analysis. For the four distance-estimation methods,
the tables demonstrate that the accuracy of the WA filter is higher than the accuracy of
other filters. Among all the combinations of the filters and distance estimation methods,
Intellino exhibits the highest accuracy. However, as presented in Table 5, the inference time
is large compared to MobileNet.
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Figure 9. PPG signals for a distance 0.4 mm: (a) Raw data; (b) Kalman filter; (c) STFT; (d) Modified
average filter; (e) BPS+SMA filter; (f) WA filter.

Table 1. Accuracy of Intellino for filtered PPG data.

Filter
Signal Length

120 60 30 20 15 10

Raw data 80.7% 87.6% 90.7% 90.4% 91.0% 90.3%
Kalman 80.1% 88.0% 90.4% 90.2% 90.9% 90.0%

STFT 37.6% 39.8% 40.8% 39.4% 38.8% 37.3%
Modified average 81.6% 89.0% 91.6% 92.0% 92.3% 92.2%

BPS+SMA 62.5% 71.3% 73.5% 73.6% 74.0% 71.1%
WA 81.1% 87.0% 90.7% 93.4% 93.9% 94.6%

Table 2. Accuracy of computing using the difference between amplitudes for filtered PPG data.

Filter
Signal Length

120 60 30 20 15 10

Raw data 83.6% 82.7% 83.1% 83.4% 83.2% 82.8%
Kalman 83.7% 82.6% 82.9% 83.2% 82.7% 82.7%

STFT 23.9% 25.5% 27.0% 28.2% 29.1% 30.0%
Modified average 86.3% 85.4% 84.9% 84.7% 84.5% 84.4%

BPS+SMA 83.7% 82.4% 80.4% 78.1% 75.9% 74.8%
WA 76.4% 76.0% 75.7% 76.5% 73.9% 75.9%
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Figure 10. PPG signals for a distance 0.8 mm: (a) Raw data; (b) Kalman filter; (c) STFT; (d) Modified
average filter; (e) BPS+SMA filter; (f) WA filter.

Table 3. Accuracy of LeNet-5 for filtered PPG data.

Filter
Signal Length

120 60

Raw data 67.8% 75.6%
Kalman 69.3% 76.5%

STFT 39.5% 41.0%
Modified average 70.4% 78.8%

BPS+SMA 47.2% 50.5%
WA 78.4% 71.5%

Table 4. Accuracy of MobileNet for filtered PPG data.

Filter
Signal Length

120 60 30 20 15 10

Raw data 88.4% 86.9% 89.4% 90.1% 87.3% 88.1%
Kalman 90.3% 83.6% 89.6% 86.5% 89.3% 87.4%

STFT 40.7% 37.7% 38.8% 37.6% 36.3% 36.2%
Modified average 90.9% 90.4% 90.8% 89.0% 89.7% 89.4%

BPS+SMA 74.8% 77.0% 77.4% 74.7% 73.3% 74.1%
WA 90.3% 90.8% 90.5% 91.2% 92.5% 92.2%
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Table 5. Inference time of Intellino and MobileNet with WA filter [ms].

Filter
Signal Length

120 60 30 20 15 10

Intellino 0.987 3.612 14.037 31.918 54.806 126.462
MobileNet 0.310 0.362 0.535 0.918 1.397 1.561

We analyzed other metrics such as precision, recall, and f1 score for MobileNet. Pre-
cision is the ratio of what is actually true to what the model classifies as true. Recall is
the ratio of what is actually true to what the model predicts as true. The F1 score is the
harmonic mean of precision and recall. The Precision, recall, and f1 score of MobileNet
for the WA filtering data are shown in Table 6. Similar to the results of accuracy, precision,
recall, and f1 score were the highest when the signal length was 15. In conclusion, the
combination of WA filter and MobileNet for distance estimation achieves high accuracy
and practical inference time.

Table 6. Other metrics of MobileNet for WA filtering result.

Metrics
Signal Length

120 60 30 20 15 10

Precision 89.7% 90.3% 90.9% 92.0% 92.6% 92.0%
Recall 90.0% 90.5% 91.3% 92.1% 92.8% 92.5%

F1 Score 0.899 0.904 0.911 0.921 0.927 0.922

In addition, we verified the proposed algorithm for PPG signals measured at wrists.
Dataset obtained from wrists comprised 54,000 sampling points. MobileNet was trained
with finger and wrist datasets and was inferenced with wrist dataset. The amplitudes
according to the distance of the PPG signal extracted from the wrists were not clearly
different from the PPG signal extracted from fingers. As a result, the accuracy, precision,
recall, and f1 score were 80.7%, 80.7%, 81.0%, and 80.8, respectively, when the signal length
was 20.

5. Conclusions

In this paper, we proposed a WA-filter-based distance-estimation algorithm between
the user and sensor for PPG signals of TWS. To implement the proposed algorithm, we
designed a PPG monitoring testbed, WA filter, and MobileNet. Among them, the WA filter
was applied to reduce the noise of raw data as the PPG signals are biological data with
several variables. To verify the proposed algorithm, we employed the Kalman filter, STFT,
the modified average filter, the BPS+SMA filter, and other AI such as Intellino and LeNet-5.
We set three criteria for distance estimation and analyzed the accuracy and inference time
according to the combination of various filters and AI. The combination of the WA filter and
Intellino exhibited the highest accuracy of 94.6% when the signal length was 10; however,
the inference time was 126.462 ms. In contrast, The proposed algorithm showed the highest
accuracy of 92.5% and the inference time was 1.561 ms. Furthermore, we assessed the
proposed algorithm for the PPG data obtained at wrists. The highest accuracy was 80.7%
when the signal length was 20.
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