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Abstract: Energy-field-assisted cutting exhibits excellent ability to reduce cutting force and improve
machining quality. In this study, a magnetic field was applied in an innovative way to aid in the
cutting process, and magnetic-field-assisted scratching experiments of single-crystal copper were
carried out. It was found that magnetic-field-assisted scratching increased the actual scratching force
due to the additional Lorentz force in the cutting process. However, the friction coefficient of the
magnetic-field-assisted scratching was reduced by 19.4% due to the tribological modification effect
on tool/chip contact. Meanwhile, magnetic-field-assisted scratching was conducive to decreasing the
degree of chip deformation, reducing microburrs on the machined surface, and obtaining a surface
roughness reduction of an average of 26.8%. The possible reason for this effect was that the presence
of a magnetic field in the cutting process promoted the dislocation slip of metal materials. The results
indicated that magnetic-field-assisted cutting improves the machinability in the metal cutting process.

Keywords: metal cutting process; single-crystal copper; magnetic field; friction coefficient

1. Introduction

Continuous improvements in machining accuracy and surface quality represent a
common focus in precision and ultra-precision cutting. Conventional cutting processes
display their strengths in terms of machining accuracy and surface quality [1–3]. To fur-
ther increase their ultimate machining ability, energy-field-assisted cutting methods, such
as laser and ultrasonic vibration energy fields, have been proposed by scholars [4–6].
In the laser-assisted cutting process, the laser beam is focused on the local surface position
to be machined to soften the workpiece material, and the cutting tool removes the softened
material after the hardness decreases and the plasticity increases. It has been validated
that this method can effectively reduce the cutting force, extend tool life, and improve the
surface quality, especially when cutting materials with high hardness [7,8]. You et al. [9,10]
proposed a laser-assisted turning method with in-process heating, in which the laser beam
is directly guided on the workpiece surface that is being cut using a transparent diamond
tool; this method has been successfully applied in the ultra-precision cutting of tungsten
carbide and silicon freeform surfaces with nanoscale surface roughness. Wu et al. [11]
proposed a laser oxidation-assisted cutting method to machine cemented carbide, and they
found it could significantly reduce the cutting force. In the ultrasonic-vibration-assisted cut-
ting process, the tool and workpiece periodically separate. The continuous cutting process
becomes an intermittent cutting process and helps to reduce both the cutting force and tool
wear [12,13]. The ultrasonic vibration equipment and ultrasonic-vibration-assisted cutting
mechanisms and equipment include one-dimensional vibrations and multidimensional
vibrations, and they have been widely studied by scholars worldwide. At present, the
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ultrasonic-vibration-assisted cutting method has been widely used in the turning, milling,
and drilling of various workpiece materials, such as metal, ceramics, and composite materi-
als [14–18]. In addition to the above energy fields, the flame, chemical, and ionic energy
fields have also been studied to aid in the cutting process of various materials.

A magnetic field improves interface tribological characteristics and reduces the friction
coefficient and adhesive wear [19,20]. A long time ago, Muju et al. [20] performed a friction
test both with and without a magnetic field action, and they found that the presence of
an external magnetic field could reduce the adhesive wear between mild steel and brass
materials. Since this study, many scholars have studied the changes in the interfacial friction
characteristics between various materials, such as carbon steel, nickel, and graphite, under
the presence of an external magnetic field and have found that the effect of a magnetic
field can effectively reduce interfacial wear. According to these studies, in addition to laser
and vibration energy fields, a magnetic field has been introduced into the cutting process
based on the magnetic antifriction effect [21,22]. Mansori et al. [23–25] first tried to install
conductive coils around a high-speed steel tool or ferrous metal workpiece to perform
magnetic-field-assisted turning, where the generated magnetic induction line was vertical
or parallel to the workpiece. They found that the chip deformation coefficient, shear angle,
and friction coefficient changed and a long tool life was obtained with the presence of a
magnetic field in the cutting process. Subsequently, Mkaddem et al. [26] performed further
studies on the magnetic-field-assisted cutting process and found that with an increase
in magnetic field intensity in the cutting process, the shear angle increased, the contact
length and friction coefficient between the tool/chip interface decreased, and the sawtooth
degree of chips was also reduced. They pointed out that the presence of a magnetic field
could promote dislocation slip and increase material plasticity during the cutting process,
making the cutting process smoother. Dehghani et al. [27] studied the related cutting
mechanisms and machinability in the magnetic-field-assisted cutting of ferromagnetic steel
materials with good magnetism. They designed an L-shaped fixture with an excitation coil
to generate a magnetic field perpendicular to the axis of the workpiece. The results showed
that the presence of the magnetic field during the cutting process could decrease the cutting
vibration and change the chip shape. Yip et al. [28–30] synthetically studied the magnetic-
field-assisted single-point diamond turning of titanium alloy material, which presented
weak magnetism. They pointed out that in the presence of a magnetic field, paramagnetic
particles were generated along the direction of the magnetic field and gathered at the
tool/chip interface, which improved the thermal conductivity of the titanium alloy and
reduced the tool wear. At the same time, when the titanium alloy workpiece moved
in an alternating magnetic field, the generated self-excited magnetic field suppressed
the cutting vibration and improved the cutting stability. These studies all reported that
magnetic-field-assisted cutting can improve machining quality to a certain degree, such
through machining vibration and tool wear reduction, as well as thermal conductivity
improvement. However, the workpiece objects in the above studies were all magnetic
materials, and thus the machinability of magnetic-field-assisted cutting on nonmagnetic
materials is still unknown.

In this study, to explore the machinability of magnetic-field-assisted cutting of single-
crystal copper, without magnetism, magnetic-field-assisted scratching experiments were
carried out. The effect of a magnetic field on the cutting process was studied. The scratch-
ing force, friction coefficient, chip morphology, and surface quality were analyzed and
compared to those of conventional cutting. The research results are helpful in terms of
exploring the application of the magnetic-field-assisted cutting process.

2. Experimental Procedures

The scratching process is approximate to the ultra-precision cutting process and often
applied to investigate the related cutting mechanisms. Single-crystal copper produced
by single-crystal continuous casting technology was utilized as workpiece material in the
scratching test, as exhibited in Figure 1a. The top surface of a single-crystal copper work-
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piece was the crystal face (111), which presented poor machinability in this single-crystal
material. The single-crystal copper workpiece was preprocessed into a cylindrical shape
with a diameter of 148 mm and a height of 24 mm. The top surface was preprocessed into a
surface roughness of less than 10 nm before the scratching experiments. The scratching test
was performed along the radial direction on the top surface. A polycrystalline diamond
(PCD) tool, which is widely used in the processing of nonferrous metal materials, was
employed as the scratching tool in this study, as exhibited in Figure 1b. In terms of tool
geometry parameters, the tip radius was about 1 mm, edge radius was about 5 µm, and
rake and clearance angles were, respectively, 0◦ and 5◦.
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The scratching tests were conducted with a self-developed magnetic-field-assisted
machine tool, as exhibited in Figure 2a. The magnetic-field-assisted machine tool was
composed of an ultra-precision cutting system and a magnetic-field system; the major
components included a machine body, linear motor, precision spindle, control system, and
magnetic field system. The ultra-precision cutting system could provide a highest rotating
speed of about 12,000 rpm and a repeat position precision of ±2 µm. After adjusting the
dynamic balance of the precision spindle, the system could provide an axial runout on the
spindle end face of less than 1 µm to enable high-precision scratching depth. On the basis of
the ultra-precision cutting system, the magnetic-field system, which was composed of two
permanent magnets made of neodymium iron N35H with different polarities, was clamped
on the worktable to perform magnetic-field-assisted machining, as shown in Figure 2b.
The used permanent magnets were 100 × 50 × 20 mm. To prevent detrimental effects on
the ultra-precision cutting system, the permanent magnets were magnetically insulated
in the surrounding direction except the direction toward the workpiece using a magnetic
isolation cover fixture made of 45 steel material, which could shield more than 96% of
the magnetic intensity. The remained magnetic induction line was perpendicular to the
scratching direction. The remanence and coercive force generated by the magnetic field
system on the workpiece zone were 1.18 T and 880 KA/m.

As exhibited in Figure 2b, the scratching tests were carried out along the radial
direction of the cylindrical workpiece when the turntable was locked. After finishing a
scratching test, the turntable was rotated by an angle of 16◦ to carry out the subsequent
scratching test. This ensured that the scratching tests were all completed on the same
workpiece and reduced the effect caused by the use of different material batches. The
single-factor experiment method was used in the scratching tests. In terms of scratching
parameters, the scratching depth was set to one four levels from 4 µm to 10 µm under a
constant scratching speed of 2 mm/s. The scratching speed was set to one of four levels
from 2 mm/s to 8 mm/s under a constant scratching depth of 6 µm, as exhibited in Table 1.
The scratching test was repeated twice in this study. In the scratching tests, the cutting
force signal was recorded with a 9119AA2 dynamometer (Kistler, Winterthur, Switzerland).
After the scratching test, the surface morphology was analyzed utilizing an optical surface
profiler, and the chip morphology was analyzed utilizing a scanning electron microscope.
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Figure 2. Magnetic-field-assisted scratching experiments.

Table 1. The scratching parameters.

Parameter Value

Scratching depth d (µm) 4, 6, 8, 10
Cutting speed v (mm/s) 2, 4, 6, 8

3. Magnetic-Field-Assisted Scratching Process
3.1. Magnetic Field Distribution Analysis

In this work, a magnetic field system was introduced into the scratching process of
single-crystal copper. The magnetic field distribution was analyzed using Ansys Maxwell
2020R1 software to investigate its effect on the scratching process. In the magnetic sim-
ulation, the iron core sizes were set according to the actual permanent magnets, and the
material properties of neodymium iron N35H were as listed in Table 2. Figure 3 depicts the
magnetic induction line distribution between the two permanent magnets. By comparison,
the magnetic induction line was evenly distributed from the N pole to the S pole in the
middle region between the two permanent magnets. And, the magnetic induction line did
not exhibit the obvious variation after placing the single-crystal copper workpiece between
two permanent magnets. This result was confirmed by the magnetic induction intensity
measured using a tesla meter. This implied that the workpiece dud not affect magnetic field
distribution between the two permanent magnets. The magnetic flux density distribution
from the simulation is exhibited in Figure 4, showing the magnetic field distribution in the
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workpiece zone, where the arrow represents the direction of magnetic flux density. From
the results, it was found that the generated magnetic field fully covered the workpiece and
could offer uniform magnetic action in the scratching process.

Table 2. Material properties of neodymium iron N35H.

Material Magnetoconductivity Remanence Coercive Force

N35H 1.05 H/m 1.18 T 880 KA/m
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3.2. Effect of Magnetic-Field-Assisted Scratching on Scratching Force

In the scratching test, the recorded scratching force signal was as exhibited in Figure 5.
It was found that the scratching force rapidly increased during the cut-in stage and rapidly
decreased during the cut-out stage. Because the scratching process is a continuous steady-
state cutting process, the scratching force is very stable during the regular scratching stage.
The main force components in the scratching process are the tangential force Ft and the
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normal force Fn, which exactly correspond to the recorded force components Fx and Fy. In
this work, the statistical mean of the scratching force components at the regular scratching
stage was applied for the scratching force results.
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Figure 6 exhibits the scratching forces of the conventional and magnetic-field-assisted
scratching processes. Based on the results, it can be seen that the scratching forces of both
conventional and magnetic-field-assisted scratching methods gradually increased with
increases in the scratching depth and the scratching speed. They exhibit almost the approx-
imate variation trend as that of the scratching parameters. It was found that the tangential
force was much bigger than the normal force during the scratching process. However,
the tangential force and the normal force exhibit different increase rates: the tangential
force exhibits a large increase with the scratching depth and the scratching speed; the
normal force exhibits only a slightly increase with the scratching depth and the scratching
speed. In comparison, both the tangential and normal forces in the magnetic-field-assisted
scratching were obvious larger than those with conventional scratching. The mean values
of the tangential force and the normal force in the conventional and magnetic-field-assisted
scratching processes were calculated and compared. Under different scratching depths,
the mean values of the tangential force and the normal force in the magnetic-field-assisted
scratching, respectively, increased 2.46 and 2.16 times of the force in the conventional
scratching process, as exhibited in Figure 6a. Under different scratching speeds, the mag-
netic field action caused the mean tangential force and the normal force to increase to
1.65 and 1.51 times of the scratching forces with conventional scratching, as exhibited
in Figure 6b.

The results show that magnetic-field assistance in the scratching process significantly
increased the scratching force. But, the detailed reason for this phenomenon was still
unexplored. During the scratching process, when the PCD tool scratches the workpiece in
the cutting direction, the workpiece material experiences plastic deformation in the primary
deformation zone. This plastic deformation is the plastic flow process of the workpiece
material along the shear plane. The material flow direction is exhibited in Figure 7. At the
same time, the magnetic induction line in the magnetic-field-assisted scratching process
is perpendicular to the cutting cross-section. It is well known that single-crystal copper
material is a good electric conductor, so is widely applied in various industries. Hence, the
magnetic-field-assisted scratching process can be seen as a process of the electric conductor
cutting magnetic induction line, as exhibited in Figure 7. When the electric conductor
cutting the magnetic induction line, Lorentz force occurs in the direction contrary to the
movement direction. Additional Lorentz force is superimposed on the scratching force.
This likely induces the relatively larger scratching force in the magnetic-field-assisted
scratching process.
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3.3. Effect of Magnetic-Field-Assisted Scratching on Friction Coefficient

There are two sources of cutting force in the metal cutting process: the elastic–plastic
deformation of the metal material in the primary deformation zone, and the friction force in
the second and third deformation zones. Among them, the friction behavior in the second
deformation zone on the rake face is the main source of friction force in the metal cutting
process. The friction coefficient between the chip and rake face significantly affect the
cutting force components, the chip morphology, and the surface quality. As exhibited in
Figure 8, the scratching process is an orthogonal cutting process; based on Merchant metal
cutting theory [31], the friction angle on the rake face can be expressed as:

tan (β − γ) =
Fy

Fz
(1)

In this formula, β is the friction angle on the tool’s rake face; γ is the tool rake angle;
Fz and Fy, respectively, are the normal force Fn and tangential force Ft during the cutting
process. Based on this expression, the friction coefficient tanβ between the chip and rake
face can be calculated from the cutting force results. The rake angle of the cutting tool used
in the scratching tests was 0◦, and then the friction coefficient could be directly calculated
using the formula µ = Fn/Ft.
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Based on the scratching force results, Figure 9 exhibits the friction coefficient obtained
from the conventional and magnetic-field-assisted scratching processes. The friction behav-
ior on the rake face can be divided into two types: adhesive friction and sliding friction.
The adhesive friction coefficient is much larger than the sliding friction and is the main
factor that determines the friction coefficient on the rake face. In the conventional scratch-
ing process without magnetic-field assistance, it was found that the friction coefficient
gradually reduced with a raise in the scratching parameters. It reduced from 0.7 to 0.4
when the scratching depth deepened from 4 µm to 10 µm. With a thicker cutting thickness,
the chip deformation degree reduced; the extruding and ploughing between the chip and
rake face reduced as well, thereby decreasing the adhesive friction and lowering the friction
coefficient on the rake face. The friction coefficient slightly reduced from 0.45 to 0.38 when
the scratching speed increased from 2 mm/s to 8 mm/s. The effect of the scratching speed
on the friction coefficient was weak, being weaker than the effect of scratching depth. It
was found that the friction coefficient of magnetic-field-assisted scratching was almost
unchanged and stable at 0.36 under various scratching parameters. In comparison, the
friction coefficients of magnetic-field-assisted scratching were all lower than those of con-
ventional scratching. This indicated that magnetic-field-assisted scratching exhibited good
friction reduction effect; the reduction in the friction coefficient averaged 19.4%. This is
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consistent with the findings in the literature reporting that magnetic-field-assisted cutting
can improve the tribological characteristics of tool/chip contact [26,27].
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3.4. Effect of Magnetic-Field-Assisted Scratching on Surface Morphology

Chip morphology is directly related to the material’s elastic–plastic deformation and
the machining quality during the cutting process. The typical morphology of the collected
chips is exhibited in Figure 10. It was found that the generated chips presented a flattened
shape with serrated morphology on both side edges. The spacing between serrations on the
side edge was about 30 µm. This indicated that the chip encountered severe extrusion action
and was seriously compressed during the cutting process. The internal surface morphology
of the collected chips was very smooth with some microscratches. The internal surface of
the chip experienced friction with the tool rake face; a smooth surface morphology formed
via serious friction and tension behaviors. However, the external surface morphology of the
chip was very rough with many protruded microsteps. These protruded microsteps formed
via the plastic shear slipping of the workpiece material along the slip plane in the crystal
in the primary deformation zone. A protruded microstep is a shear slip layer, and these
microsteps are stacked in layers of these shear slip layers. From the results, the thickness of
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these protruded microsteps was uneven, changing from 6.8 µm to 14.7 µm. This indicated
that the thickness of these shear slip layers changed during the cutting process.
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Figure 11 exhibits the external morphology of a chip in the conventional and magnetic-
field-assisted scratching processes under various scratching parameters. The protruded
steps on the external surface of the chip can reflect the chip deformation degree during the
cutting process. It was seen that these protruded steps on the chip surface in the magnetic-
field-assisted scratching were thicker but had a lower height than those of the conventional
scratching process. With the scratching depth was 6 µm and the scratching speed was
2 mm/s, the thicknesses of these protruded steps in the conventional and magnetic-field-
assisted scratching were about 4.1 µm and 5.5 µm, respectively. Simultaneously, it was
found that there were many extended extrusion sheets between different microsteps on
the chip surface with conventional scratching. This implied severe extrusion between
the different shear slip layers and reflected a larger degree of chip deformation during
the cutting process. These extended extrusion sheets were reduced on the chip surface
with magnetic-field-assisted scratching. This indicated that magnetic field scratching is
conducive to decreasing the degree of chip deformation during the metal cutting process,
which is consistent to the findings in the existing literatures that the presence of a magnetic
field during the cutting process can promote the dislocation slip of metal materials to affect
the cutting mechanisms [23,24].

Micromachines 2023, 14, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 11. Chip morphology produced with conventional and magnetic-field-assisted scratching. 

Figure 12 exhibits the bottom surface morphology of the scratched groove obtained 
with the conventional and magnetic-field-assisted scratching process for different scratch-
ing parameters. Scratch marks and microburrs were observed on the scratched groove 
surface, which were the main surface defects. The scratch marks were similarly distrib-
uted on both groove surfaces produced with the conventional and magnetic-field-assisted 
scratching. However, the groove surface morphology produced with magnetic-field-as-
sisted scratching exhibited fewer microburrs and better surface quality compared with 
those of conventional scratching. The probable reason is the lower friction coefficient and 
degree of chip deformation helped to reduce material plastic side flow during the cutting 
process, which is mainly responsible for microburrs on a machined surface [32]. 

Figure 11. Cont.



Micromachines 2023, 14, 2255 12 of 15

Micromachines 2023, 14, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 11. Chip morphology produced with conventional and magnetic-field-assisted scratching. 

Figure 12 exhibits the bottom surface morphology of the scratched groove obtained 
with the conventional and magnetic-field-assisted scratching process for different scratch-
ing parameters. Scratch marks and microburrs were observed on the scratched groove 
surface, which were the main surface defects. The scratch marks were similarly distrib-
uted on both groove surfaces produced with the conventional and magnetic-field-assisted 
scratching. However, the groove surface morphology produced with magnetic-field-as-
sisted scratching exhibited fewer microburrs and better surface quality compared with 
those of conventional scratching. The probable reason is the lower friction coefficient and 
degree of chip deformation helped to reduce material plastic side flow during the cutting 
process, which is mainly responsible for microburrs on a machined surface [32]. 

Figure 11. Chip morphology produced with conventional and magnetic-field-assisted scratching.

Figure 12 exhibits the bottom surface morphology of the scratched groove obtained
with the conventional and magnetic-field-assisted scratching process for different scratching
parameters. Scratch marks and microburrs were observed on the scratched groove surface,
which were the main surface defects. The scratch marks were similarly distributed on both
groove surfaces produced with the conventional and magnetic-field-assisted scratching.
However, the groove surface morphology produced with magnetic-field-assisted scratching
exhibited fewer microburrs and better surface quality compared with those of conventional
scratching. The probable reason is the lower friction coefficient and degree of chip deforma-
tion helped to reduce material plastic side flow during the cutting process, which is mainly
responsible for microburrs on a machined surface [32]. According to the roughness results,
the surface roughness increased with the increase in the scratching depth and decreased
with the increase in the scratching speed. In comparison, the surface roughness produced
with conventional scratching was larger than 0.2 µm, but it was smaller than 0.18 µm with
magnetic-field-assisted scratching. Magnetic-field-assisted scratching reduced the surface
roughness by an average of 26.8%. This indicates that magnetic-field-assisted scratching
can effective improve machining surface quality.
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4. Summary and Conclusions

In this study, the scratching experiments were carried out to study the magnetic-
field-assisted cutting of single-crystal copper. From the results, the following conclusions
were drawn:

1. A magnetic-field-assisted cutting system was developed via the integration of an ultra-
precision cutting system and magnetic field devices. The scratching force produced
with magnetic field scratching was more than 1.5 times larger than that produced with
conventional scratching. When the magnetic induction line was perpendicular to the
cutting direction, the cutting process was equivalent to the electric conductor cutting
the magnetic induction line, resulting in additional Lorentz force in the cutting process.
The superimposed Lorentz force increased the actual scratching force produced with
magnetic-field-assisted scratching.

2. The friction coefficient of conventional scratching gradually decreased with increas-
ing scratching depth and speed but stabilized at a low level with magnetic-field-
assisted scratching. Compared with conventional scratching, the friction coefficient
of magnetic-field-assisted scratching was lower by 19.4%, showing a tribological
modification effect at the tool/chip contact.

3. The chip morphology produced via the scratching of single-crystal copper exhib-
ited a serrated side shape, smooth internal side surface, and rough external surface,
with many protruding microsteps. Magnetic-field-assisted scratching helped reduce
the chip deformation degree, decrease microburrs on the scratched groove surface,
and reduce the surface roughness by an average of 26.8%. Based on these results,
the magnetic-field-assisted cutting method helps improve the surface quality pro-
duced via the precise and ultra-precise cutting of nonferromagnetic materials and has
potential applications in the fields of precision and ultra-precision cutting.
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