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Abstract: In the present study, a comprehensive parametric analysis was carried out using the
electrical discharge machining of Ti6Al4V, using pulse-on time, current, and pulse-off time as input
factors with output measures of surface roughness and material removal rate. The present study
also used two different nanopowders, namely alumina and nano-graphene, to analyze their effect on
output measures and surface defects. All the experimental runs were performed using Taguchi’s array
at three levels. Analysis of variance was employed to study the statistical significance. Empirical
relations were generated through Minitab. The regression model term was observed to be significant
for both the output responses, which suggested that the generated regressions were adequate. Among
the input factors, pulse-off time and current were found to have a vital role in the change in material
removal rate, while pulse-on time was observed as a vital input parameter. For surface quality, pulse-
on time and pulse-off time were recognized to be influential parameters, while current was observed
to be an insignificant factor. Teaching–learning-based optimization was used for the optimization
of output responses. The influence of alumina and nano-graphene powder was investigated at
optimal process parameters. The machining performance was significantly improved by using both
powder-mixed electrical discharge machining as compared to the conventional method. Due to
the higher conductivity of nano-graphene powder, it showed a larger improvement as compared
to alumina powder. Lastly, scanning electron microscopy was operated to investigate the impact
of alumina and graphene powder on surface morphology. The machined surface obtained for the
conventional process depicted more surface defects than the powder-mixed process, which is key in
aeronautical applications.

Keywords: EDM; Ti6Al4V; TLBO algorithm; aluminum oxide (Al2O3) nanopowder; nano-graphene

1. Introduction

Owing to excellent properties like higher resistance to corrosion, light weight, and bio-
compatibility, Ti6Al4V is one of the most used titanium alloys in various sectors [1,2]. Thus,
Ti6Al4V is largely used in various automotive parts, aerospace components, biomedical
devices, and several other sectors, such as the oil and gas, marine, energy, and infrastruc-
ture sectors [3–5]. Along with the numerous advantages of Ti6Al4V, their higher strength
and poor thermal conductivity impose lots of challenges through conventional machin-
ing techniques such as excessive tool wear, unsuitable chip breakage, and poor surface
finish [6,7]. To overcome these limitations, nonconventional machining techniques can
be effectively used for machining hard materials [8–10]. Ti6Al4V was used in various
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advanced manufacturing techniques like 3D printing, including laser powder bed fusion,
electron beam melting, directed energy deposition, and nonconventional machining pro-
cesses [11–13]. Electrical discharge machining (EDM) is a type of nontraditional machining
technique that can be effectively used to produce complex shape parts with better surface
finish and accuracy [14–16]. EDM erodes the workpiece particles by forming regulated
electric sparks among the work and tool material in the presence of suitable dielectric
fluid [17,18]. The tool and work material need to be electrically conductive for machin-
ing through EDM [19,20]. The EDM process consists of several input factors that require
balance to attain the desired outcome [21,22]. This requires a systematic experimental
approach. Taguchi’s design provides a systematic experimental design for various input
variables, with numerous features, like decreasing the number of trials, thereby saving
cost and time, and an empirical relationship between the machining variables and output
measures [23,24]. During the machining, higher productivity along with a better surface
finish is always desirable [25]. Thus, the current work aims to maximize the material
removal rate (MRR) and reduction in surface roughness (SR).

Several studies were conducted to optimize the output responses of the EDM process
for titanium alloys. Dikshit et al. [26] preferred the EDM method to study the surface
characteristics of Ti6Al4V alloy by considering the process pulse-on time (Ton), current
(I), and pulse-off time (Toff) as EDM variables. The obtained results have shown that I
was detected as the largest influencing factor for both SR and MRR. Pinargote et al. [27]
used a wire-EDM process of spark plasma sintered SiC-TiB2-TiC ceramic composite to
minimize recast layer thickness and SR. They utilized the combined approach of Taguchi
and grey relational analysis to determine optimal variables. Another study conducted
by Devarasiddappa et al. [28] preferred the EDM process to optimize the SR response of
Ti6Al4V. They employed Taguchi’s method to design experiments by considering Ton, wire
speed, I, and Toff as machining parameters. Their employed method of teaching–learning-
based optimization (TLBO) has shown improvement in SR by 2.65%. Ton and I were
observed to have a vital impact on SR response, with contributions of 44.06%, and 28.69%,
respectively, followed by Toff with 15.8% and wire speed of 7.47%. Lower values of Ton,
and I revealed a defect-free surface obtained through scanning electron microscopy (SEM).
In a study performed by Vora et al. [29], Taguchi’s design was used during the wire-EDM
process of Ti6Al4V alloy. Their finding revealed that Ton and I had the most influencing
factors for MRR and SR, respectively. A parametric study conducted by Guo et al. [30]
analyzed the effect of EDM factors on SR and surface integrity of Ti6Al4V alloy using
Taguchi’s L16 array. Pareto points were derived from the nondominated sorting genetic
algorithm to predict the solutions. In another study carried out by Verma and Sajeevan [31],
a die-sinking EDM process was preferred to optimize the performance of Ti6Al4V. They
revealed that the EDM process provides poor surface integrity while machining Ti alloys.
They analyzed the machined surfaces through SEM and observed the larger presence of
recast layer formation and the development of microcracks. Thus, based on the recent work,
Ton, Toff, and current were observed to have a larger significance on output characteristics
of the EDM process.

It is essential to reduce surface defects with simultaneous improvement in machin-
ing rate [32,33]. In addition to optimizing the process variables, a new approach needs
to be implemented which should enhance MRR and reduce SR along with the improve-
ment in surface characteristics. The inclusion of nanopowders in dielectric fluid with the
proper amount can significantly enhance the machining features [34–36]. The addition of
nanopowders enlarges the thermal conductivity, increases the discharge gap, decreases the
breakdown strength, and enhances the spark difference [37–39]. In past studies, several
nanopowder concentrations were used by the researchers to enhance the machining out-
comes [40]. A comprehensive study shown by Taherkhani et al. [41] used microalumina
(µ-Al2O3) powder to improve the EDM machining performance of Ti6Al4V alloy. The
surface defects were largely eliminated due to the presence of alumina powder. The addi-
tion of alumina powder lowered the surface crack density and formed a uniform surface.
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Chaudhari et al. [42] analyzed the impact of alumina powder amount on MRR, tool wear
rate (TWR), and SR through the die-sinking EMD process of Nitinol. The amounts of
alumina powder, Toff, and Ton were detected as vital input factors to have a significant
impact on all output measures. Alumina powder was the highest contributing factor for the
enhancement in MRR. SR and TWR were also decreased with the addition of alumina pow-
der. SEM analysis has revealed substantial improvement in surface morphology owing to
the suspended nanoparticles. Chaudhari et al. [43] studied the influence of nano-graphene
powder on the WEDM process. The suspended nano-graphene powder formed uniform
sparking and debris flushing, which reduced SR and improved MRR owing to their high
erosion. SR and MRR were found to be increased by 9.35% and 24.01%, respectively, with
PMEDM at 1 g/L. SEM analysis revealed the improvement in surface morphology with
reduced microcracks and other defects. Vora et al. [44] investigated the effect of nano-
graphene powder at various concentrations on the die-sinking EDM of shape memory alloy.
Along with nano-graphene PC, Ton, I, and Toff were elected as input factors. Taguchi’s
L9 was preferred to perform trials. The finding observed that the use of nano-graphene
particles showed substantial improvement in MRR by 75.18%. Additionally, the inclusion
of nano-graphene powder also reduced SR and dimensional deviation. Surface defects
were largely reduced due to the addition of nano-graphene powder. Ishfaq et al. [45] used
Taguchi’s L18 design to investigate the impact of nano-graphene on the EDM-machined
surface of Ti6Al4V. The experimental finding showed an improvement in surface quality
for graphene-mixed dielectric fluid.

Limited work has been reported on the EDM of Ti6Al4V using a nanopowder-mixed
dielectric. Surface damage is a clear limitation in blade and aero-engine component ma-
chining, including deep holes and narrow slots. The present study used two different
nanopowders, namely alumina and nano-graphene, to analyze the effect on SR, MRR, and
surface morphology. In the current work, Ton, I, and Toff were considered as input factors
with output measures of SR and MRR of Ti6Al4V alloy. Empirical relations were generated
through Minitab and optimized through the teaching–learning-based optimization (TLBO)
algorithm. ANOVA was employed to study the statistical significance. Lastly, SEM was op-
erated to investigate the impact of alumina and graphene powder on surface morphology.

2. Materials and Methods
2.1. Synthesis of Nanopowders
2.1.1. Aluminum Oxide (Al2O3) Nanopowder

We utilized a hydrothermal synthesis approach to generate aluminum oxide (Al2O3)
nanopowder without the preliminary purification of chemical reagents [42] A hydrothermal
synthesis approach was employed without the prior purification of chemical reagents to
produce aluminum oxide (Al2O3) nanopowder. The key reagents utilized in this process
encompassed citric acid, aluminum nitrate nanohydrate, triethanolamine, and ethylene
glycol. Throughout the experimental procedures, we maintained a commitment to the
use of ultrapure water with an impressive resistivity of 18.2 MΩ-cm to ensure the highest
level of precision and accuracy. In a prototypical synthesis procedure, the process was
initiated by dissolving aluminum nitrate nanohydrate in deionized water. Employing a
medium-speed stirrer, we diligently mixed the components to attain a homogeneous blend.
The subsequent step involved the gradual addition of triethanolamine into the mixture,
carefully introduced drop by drop. After a period of 40 min, during which the mixture
was subjected to stirring at a controlled temperature of 75 ◦C, citric acid was introduced
to the solution. The incorporation of citric acid elicited a noticeable transformation in
the coloration of the sols. Continuing with the synthesis process, the sols were heated
for a duration of 90 min, maintaining the temperature at 150 ◦C. This controlled thermal
treatment resulted in the sols transforming into highly viscous gels. To further progress
towards the desired Al2O3 nanopowder, the solution was subjected to a final thermal
treatment at a temperature of 1200 ◦C. This heat treatment was sustained for a duration of
three hours, effectively facilitating the complete drying process. The culmination of this
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meticulous procedure yielded the desired Al2O3 nanopowder, which could subsequently
be utilized for a myriad of applications. The average size of the alumina nanopowder
was observed to be ~110 nm, which was near to our previously reported work [42]. X-ray
diffraction spectroscopy (XRD) was used to confirm the structural formation of alumina.
The pattern (Figure 1a) showed peaks at different 2θ values corresponding to the hexagonal
structure of α-Al2O3 (JCPDS No 46-1212), confirming its formation [46].
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2.1.2. Nano-Graphene Nanopowder

To produce nano-graphene sheets, an ultrasonication method was used, where 5 g of
natural graphite was mixed with 1,2-dichlorobenzene (DCB) within a 500 mL flask. This
mixture was then portioned into 10 mL containers and subjected to ultrasonication for a
duration of 10 h. To ensure the prevention of water overheating and evaporation during
this process, we diligently maintained and altered the water bath as needed. Following the
ultrasonication phase, the resultant sample was left undisturbed for 48 h, during which a
noticeable grey dispersion emerged. To separate the graphene sheets from any unreacted
graphite and achieve a more refined product, the colloidal dispersion was centrifuged at
5000 revolutions per minute (rpm) for a duration of 15 min. As a result, the heavy lumps of
unreacted graphite settled at the bottom, leaving behind the desired graphene sheets in the
supernatant. To further enhance the quality and uniformity of the graphene dispersion,
it was carefully transferred to a separate vial and dispersed in an ethanol solution. This
critical step was repeated 3 to 4 times to optimize the dispersion’s homogeneity. In the
final stages of the process, we subjected the centrifuged graphene sample to filtration
and drying within a vacuum furnace. This step was crucial for removing any excess
ethanol and DCB, ensuring the purity of the graphene sheets. One remarkable aspect of
this method was its ability to maintain the dispersion of sonicated graphene sheets for an
extended period, even after several months. Raman spectroscopy confirmed the presence of
graphene nanopowder (Figure 1b). Its characteristic 2D band exhibited a red shift compared
to natural graphite, indicating the successful production of few-layered graphene sheets.
Minor defects identified by the D band likely originated from the exfoliation process [47].

2.2. Experimental Conditions

The present investigation used Sparkonix-made die-sinking EDM (Sparkonix, Pune,
India) to perform the experimental runs. Figure 2 depicts the schematic and basic principle
of the die-sinking EDM process. In the present study, EDM oil was used as a dielectric
fluid. Ti6Al4V alloy was utilized as work material, and brass as the tool electrode with
10 mm diameter. The key elements of the work material consisted of 6% of Al, 4% of V, and
Ti as balance. Ton, I, and Toff were considered as input factors with output measures of
SR and MRR. Later, aluminum oxide (Al2O3) nanopowder, and nano-graphene powder
were used at 1 g/L amount. During the experimentations, 2 mm of cutting depth with a
constant spark gap of 0.01 mm was kept. The experimental runs were performed as per
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Taguchi’s design at 3 levels with nine experimental trials. Table 1 depicts the input factors
at various levels and other experimental conditions. Empirical relations were generated
through Minitab v17 software. ANOVA was employed to study the statistical significance
of machining factors.
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Table 1. Experimental conditions.

Machining Factors Levels/Values

Pulse-on duration (µs) 1, 3, 5
Pulse-off time (µs) 6, 16, 26
Current (A) 20, 60, 100
Cutting depth 2 mm
Spark gap 0.01 mm
Nanopowder Al2O3, and nano-graphene

Material removal was calculated by using the Equation (1). The weight of the Ti6Al4V
was measured before and after the machining of samples.

MRR =
∆W × 1000

ρ × t
(1)

where ∆W, ρ, and t depicted the difference in weight after machining in grams, work
density of Ti6Al4V in g/cm3, and machining time in seconds.

SR was examined with the use of an SJ-410 tester made by Mitutoyo (Mitutoyo Ltd.,
New-Dehi, India). Three different readings were taken for the average SR value, and its
average was taken for analysis.

SEM was preferred to reveal the machined surface topography.
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2.3. Optimization

The teaching–learning-based optimization (TLBO) method has been used in the
present work. Rao and Patel [49] established the TLBO algorithm to solve multiobjec-
tive problems in various processes. TLBO operates on a teaching–learning methodology
employed between a teacher and students. Students are considered as the population.
The teacher teaches different subjects as constraints. The student with the highest marks
in the class is regarded as the best learner. By adjusting the mean of a student’s marks
during implementation, a teacher attempts to bring the results of the remaining students
as closely as possible to the student who received the highest grades. The teacher phase
of the TLBO algorithm includes teaching from the teacher, and the learner phase includes
student interaction. In the teaching phase, the solution is updated to reflect the change in
the present and the new mean DMj [50].

DMj = rj (Mnew − TF Mj)

Xnew,j = Xold,j + DMj

TF = Round (1 + rand(0, 1))

TF is the teaching factor that decides the value of the mean to be changed. The value
of TF can be either 1 or 2. The value of TF is decided randomly with equal probability. The
value of TF is not given as an input to the algorithm and its value is randomly decided
by the algorithm. The RI is a random number between 0 and 1, Mj is the average score at
iteration j, and Mnew is the new mean that the teacher obtained at iteration j. The second
stage of the TLBO algorithm is the student phase. In the student phase, the solutions are
improved by random interaction between the other solutions. To improve the current
answer from Xold,j to Xnew,j, any two random solutions from the population, such as Xj and
Xk, are first compared. The process is then carried out once more for the full population
as follows:

If f (Xj) < f (Xk),

Xnew,j = Xold,j + rj (Xj − Xk)

Otherwise

Xnew,j = Xold,j + rj (Xk − Xj)

3. Results and Discussion

This section contains a comprehensive analysis of EDM parameters and their influence
on MRR and SR measures. Firstly, the obtained results were analyzed through the statistical
technique. The effect of individual factors was then studied on output measures. The TLBO
algorithm was then used for the optimization of MRR and SR. Lastly, the effect of aluminum
oxide (Al2O3) nanopowder and nano-graphene powder was studied on output measures.

Table 2 represents the experimental matrix created through Taguchi’s design and the
obtained results of responses. All the experimental trials were repeated three times and
their average value was considered during the analysis. Thus, the MRR and SR values
represent the average values of three trials. It shows the maximum MRR of 10.6713 mm3/s
for trial run 7, and the least SR of 4.35 µm for trial run 3.

The Minitab v17 software was utilized to generate the empirical regressions for output
factors in terms of EDM parameters. The generated regressions play a key role in predicting
the response values within the design matrix for any value of input factors. Regressions for
MRR and SR were depicted in Equations (2) and (3), respectively.

MRR = 8.218 + 0.0727·Ton − 0.7506·Toff + 0.1435·Current (2)

SR = 6.336 + 0.3500·Ton − 0.2506·Toff − 0.0123·Current (3)
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Table 2. Evaluation of MRR, and SR versus EDM factors.

Run
Order

Ton
(µs)

Toff
(µs)

Current
(A)

MRR
Trial 1

MRR
Trial 2

MRR
Trial 3

Avg. MRR
(mm3/s)

SR
Trial 1

SR
Trial 2

SR
Trial 3

Avg. SR
(µm)

1 2 3 10 7.4297 7.5738 7.2601 7.4212 6.63 6.12 6.34 6.36
2 2 6 20 6.5181 6.5752 6.5501 6.5478 5.09 5.24 5.31 5.21
3 2 9 30 5.7386 5.8801 5.8105 5.8097 4.28 4.29 4.47 4.35
4 4 3 20 9.8459 9.7601 9.5341 9.7134 6.26 6.43 6.27 6.32
5 4 6 30 8.1933 8.2927 8.0167 8.1677 6.16 5.89 6.13 6.06
6 4 9 10 3.6601 3.4211 3.6021 3.5611 5.38 5.48 5.49 5.45
7 6 3 30 10.9398 10.1099 10.9642 10.6713 7.33 7.67 7.41 7.47
8 6 6 10 5.0007 5.0607 5.1073 5.0562 6.73 6.75 6.94 6.81
9 6 9 20 4.8894 4.9702 4.9106 4.9234 5.96 5.6 5.97 5.84

3.1. Analysis of MRR

Figure 3a–c depicted the impact of EDM variables on the output response measure
of MRR by using contour plots. In the contour plot, the third input process parameter
was kept constant at the level 2 value. The plot of MRR vs. Ton and Toff, as represented
in Figure 3a, depicted that maximum MRR can be achieved at higher values of Ton and
lower values of Toff, while the lowest value can be observed at higher levels of Toff. The
main reason behind this is that an increase in Ton value enhances the spark duration, which
in turn increases the rate of erosion owing to faster melting and vaporization of the work
material [51]. Also, at higher levels of Toff, the sparking frequency gets reduced owing to the
wider duration between the sparks. Thus, the thermal energy and discharge energy drop at
lower values by reducing the rate of erosion [52]. Due to this reason, MRR was observed
to be higher at the lower value of Toff and higher value of Ton. Similar findings can be
observed for the levels of Ton and Toff in Figure 3b,c. MRR was found to be maximum at
the highest level of Ton in Figure 3b and the lowest level of Toff in Figure 3c. Figure 3b of
MRR vs. Ton and current, and Figure 3c of MRR vs. Toff and current depict enhancement in
MRR response at higher levels of current. This was due to the increased discharge energy.
It further increases the thermal energy and enhances the sparking distribution, which melts
and vaporizes more particles from the work material at a greater rate [53,54].

The results obtained in Table 2 as per Taguchi’s array were further analyzed using a
statistical technique, called analysis of variance (ANOVA). During the regression study,
95% of CI has been considered. Under this, the p-value of the input variable should not be
more than 0.05 to show the significant impact on the elected output response [55].

ANOVA results for MRR are represented in Table 3. The regression model term was
observed to be significant, which shows that the generated regression is adequate. Among
the input factors, Toff and current were found to have a vital role in the change of MRR
response, while Ton was observed to be an insignificant factor. A higher F-value of 175.26
for Toff suggested that it has the largest significant effect, with a contribution of 69.51%
trailed by the current with a 28.22% contribution. R-square values of the model suggest the
adequacy and accuracy of the generated model if their value is near unity [56]. R-square
values from Table 3 have demonstrated the suitability of the developed regression model.

Table 3. Statistical analysis for MRR.

Source Adj. SS F p % Contribution

Regression 42.9104 82.39 0.000 Significant
Ton 0.1268 0.73 0.432 Insignificant
Toff 30.4277 175.26 0.000 Significant
Current 12.3559 71.17 0.000 Significant
Error 0.8681
Total 43.7784

R2 = 98.02%, R2 adj. = 96.83%, R2 pred. = 94.57%.
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Toff and current.

3.2. Analysis of SR

The impact of EDM variables on SR is represented in Figure 4a–c through contour
plots. In the contour plot, the third input process parameter was kept constant at the level
2 value. Figure 4a depicts the plot of MRR vs. Ton and Toff. An increase in levels of Ton
showed a negative effect on SR as the SR value was found to be higher, while the increased
value of Toff has a reduced SR response. The lowest SR value (<4.5 µm) was observed at
the highest levels of Toff, while maximum SR (>7 µm) was found at the highest levels of
Ton. An increase in Ton value enhances the sparking frequency, thereby enhancing the rate
of erosion. This created larger and deeper craters on the machined surfaces [57]. Thus, the
SR value increases with the Ton value. With an increment in Toff, due to less active sparks
between the tool and workpiece, SR was observed to follow a downward path due to less
thermal energy at the tool–work interface [54]. Similar findings can be observed for the
levels of Ton and Toff in Figure 4b,c. SR was found to be maximum at the highest level of
Ton in Figure 4b and at the lowest level of Toff in Figure 4c. Figure 4b of SR vs. Ton and
current, and Figure 4c of MRR vs. Toff and current depict enhancement in SR response at
higher levels of current. This was due to the increased discharge energy. It further increases
the thermal energy and enhances the sparking distribution, which melts and vaporizes
more particles from work material at a greater rate [58]. This in turn creates deeper and
larger craters and thus enhances SR value [59].
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Table 4 depicts the statistical outcomes of ANOVA for SR response. The regression
model term was observed to be significant which shows that the ANOVA findings are
suitable for the selected levels. Ton and Toff were detected as significant variables, while
current was observed to be an insignificant factor. An f-value of 55.73 for Toff suggested
that it has the largest significant impact, with a contribution of 50.41%, trailed by Ton with
43.71%. R-square values of the model suggest the adequacy and accuracy of the generated
model if their value is near unity. R-square values from Table 4 demonstrate the fitness of
the developed model.

Table 4. Statistical analysis for SR.

Source Adj. SS F p Significance

Regression 6.4212 35.19 0.001 Significant
Ton 2.9400 48.33 0.001 Significant
Toff 3.3900 55.73 0.001 Significant
Current 0.0912 1.50 0.275 Insignificant
Error 0.3041
Total 6.7254

R2 = 95.48%, R2 adj. = 92.76%, R2 pred. = 86.25%.

3.3. Optimization

The conflicting conditions of input factors are evident from the statistical analysis of
ANOVA and main effect plots for MRR and SR. This raises a need for an optimization
strategy to be implemented. The TLBO algorithm was employed to obtain the best solutions
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for multiple output performance variables. TLBO method was used for multi- and single-
objective optimization of MRR and SR. For the current investigation, the response of MRR
was taken as the maximum criterion for increased machining efficiency and SR was marked
as the minimum criterion for better surface quality. During the implementation of TLBO,
upper and lower bounds of machine variables Ton, Toff, and current were selected between
2 µs to 6 µs, 3 µs to 9 µs, and 10 A to 30 A, respectively.

Individual output factors were optimized. The results are depicted in Table 5. A
contradictory condition was observed between the response measure values in correspon-
dence with the input factors. For the largest MRR condition, SR was also increased, which
is undesirable. Similarly, the lowest SR values can be achieved, but subsequently, this
also reduces the MRR value. So, the combination of parameters was conflicting, and this
shows that a single-objective optimization can be used to maximize and minimize either
parameter. This can be solved by employing a multiobjective optimization method.

Table 5. Single-objective optimization.

Condition
EDM Variables Output Response

Toff
(µs)

Toff
(µs)

Current
(A)

MRR
(mm3/s)

SR
(µm)

Maximum MRR 6 3 30 10.7074 7.32

Minimum SR 2 9 30 5.9130 4.41

The multiobjective TLBO process was adopted for the simultaneous optimum values
of MRR, and SR response measures. MOTLBO generates nondominant solutions for input
variables, and can manage two or more output responses. Table 6 displays the results of
Pareto points, consisting of values of response measures and the input factors of the EDM
process. Each Pareto point shows the unique optimal outcome. As per the specific need of
response values, the user can select the appropriate input conditions to fulfill the required
condition. All these results were validated through experimental trials. A minimal error of
less than 5% was observed between experimental and predicted results, concluding the
acceptability of regression models with the TLBO technique. Thus, it demonstrates the
viability of the created regressions and the TLBO method for the EDM process.

Table 6. Pareto optimal points.

Sr. No. Ton
(µs)

Toff
(µs)

Current
(A)

MRR
(mm3/s)

SR
(µm)

1 6 3 30 10.7074 7.32
2 5 3 30 10.6347 6.97
3 4 3 30 10.5620 6.62
4 3 3 30 10.4893 6.27
5 2 3 30 10.4166 5.92
6 2 4 30 9.6660 5.66
7 2 5 30 8.9154 5.41
8 2 6 30 8.1648 5.16
9 2 7 30 7.4142 4.91
10 2 8 30 6.6636 4.66
11 2 9 30 5.9130 4.41

3.4. Investigating the Effect of Alumina and Nano-Graphene Powders on MRR and SR

The influence of aluminum oxide (Al2O3) nanopowder and nano-graphene particles
were investigated on SR, MRR, and surface morphology. Nanopowders were used at
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1 g/L amount in the dielectric fluid. For the analysis, an objective function with an equal
weightage of 0.5 was assigned to output measures.

Obj (v1) = w1·(MRR) + w2·(SR) (4)

This simultaneous optimization yielded an MRR of 8.9154 mm3/s and an SR of
5.14 µm for conventional EDM. The objective function shown in Equation (4) has input
factors at Ton of 2 µs, Toff of 5 µs, and current of 30 A. To validate the results, an experi-
mental trial was conducted at input factor levels. The validation trial showed an MRR of
8.9811 mm3/min and an SR of 5.05 µm. Thus, an error of less than 5% was observed
between experimental and predicted results, concluding the acceptability of regression
models with the TLBO technique. Another trial was conducted by using alumina and
graphene powders at 1 g/L to compare the results with the conventional EDM process.
Table 7 depicts the obtained results. It can be observed that MRR and SR values were
improved by using both nanopowders. This was because the addition of nanopowders
enlarged the thermal conductivity of the dielectric, increased the discharge gap, decreased
the breakdown strength, and enhanced the spark difference [60–62]. It also facilitated the
proper flushing of eroded particles [63]. Thus, the machining performance was significantly
improved by using powder-mixed EDM as compared to conventional EDM. For alumina
powder, the performance of MRR and SR was improved by 35.19%, and 18.27%, respec-
tively. In the case of nano-graphene powder, MRR and SR showed a larger improvement
of 45.81%, and 37.22%, respectively. The reason behind the larger improvement with the
use of nano-graphene powder was the higher thermal conductivity as compared to the
alumina powder [64,65]. Increased thermal conductivity lowers the breakdown strength of
the dielectric fluid and intensifies the discharge gap [66,67].

Table 7. Effect of alumina and graphene powders on MRR and SR.

Experimental Condition Input Factors Output Responses

Conventional EDM
Ton = 2 µs
Toff = 5 µs

Current = 30 A

MRR = 8.9811 mm3/s
SR = 5.05 µm

Aluminum oxide (Al2O3)
nanopowder

Ton = 2 µs
Toff = 5 µs

Current = 30 A
Alumina nanopowder = 1 g/L

MRR = 13.8568 mm3/s
SR = 4.27 µm

Nano-graphene powder

Ton = 2 µs
Toff = 5 µs

Current = 30 A
Nano-graphene powder = 1 g/L

MRR = 16.5732 mm3/s
SR = 3.68 µm

3.5. Investigating the Effect of Alumina and Nano-Graphene Powders on Machined Surfaces

The influence of aluminum oxide (Al2O3) nanopowder and nano-graphene powder
was investigated on the surface morphology of machined surfaces. The EDM process
has a set of parameters that must be controlled carefully to obtain a machined surface
free of defects like microcracks, pores, and globules. The results shown in Table 7 for
PMEDM processes show the higher significance of the PMEDM process in comparison with
conventional EDM. However, it also becomes essential to evaluate the surface defects on the
machined components. Thus, Figures 5–7 depict the SEM images of the machined surface
for conventional EDM, PMEDM with alumina powder, and PMEDM with nano-graphene
powder, respectively. The machined surface obtained for conventional EDM depicted
more surface defects than the PMEDM process. The surface morphology of PMEDM using
nano-graphene showed the fewest surface defects in terms of microcracks, pores, and
globule size. The higher conductivity of nanopowder stabilized the machining process and
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widened the machining gap with improved flushing of debris [68–70]. Due to this reason,
it showed improved machined surfaces.
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4. Conclusions

The present study investigated the effect of two different nanopowders, namely
alumina and nano-graphene, to analyze their effect on MRR, SR, and surface morphology.
The experimental runs were performed by using Taguchi’s design with Ton, I, and Toff as
input factors. The following conclusions were drawn from the obtained results:

➢ Empirical relations were generated through Minitab. ANOVA was employed to study
the statistical significance. The regression model term was observed to be significant
for both SR and MRR responses.

➢ Among the input factors, Toff and current were found to have a vital role in the change
of MRR response. A higher F-value of 175.26 for Toff suggested that it has the largest
significant effect, with a contribution of 69.51%, trailed by current with a 28.22%
contribution. For SR response, Ton and Toff were identified as significant factors. A
higher F-value of 55.73 for Toff suggested that it has the largest significant impact,
with a contribution of 50.41%, trailed by Ton with 43.71%.

➢ Single-objective optimization has shown a maximum MRR of 10.7071 mm3/s and a
least SR of 4.41 µm. The objective function of simultaneous optimization has given an
optimum MRR of 8.9154 mm3/s and an SR of 5.14 µm at input factors of Ton at 2 µs,
Toff at 5 µs, and I at 30 A.

➢ The influence of alumina and nano-graphene powder was investigated on MRR, SR,
and surface morphology at optimized parametric settings. The machining perfor-
mance was significantly improved by using both powder-mixed EDM as compared
to conventional EDM. For alumina powder, the performance of MRR and SR was
improved by 35.19% and 18.27%, respectively. In the case of nano-graphene powder,
MRR and SR showed a larger improvement of 45.81% and 37.22%, respectively. Due
to the higher conductivity of nano-graphene powder, it showed a larger improvement
as compared to alumina powder.

➢ Lastly, SEM was utilized to investigate the impact of alumina and graphene powder on
surface morphology. The machined surface obtained for conventional EDM depicted
more surface defects than the PMEDM process. The surface morphology of PMEDM
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using nano-graphene showed the fewest surface defects in terms of microcracks, pores,
and globule size.

➢ The last thing to say is that workers who deal with nanoparticles in dielectrics must
wear gloves and masks to avoid the risk of skin exposure. Exposure can occur during
pouring or mixing operations; the use in EDM will need further research.
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