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Abstract: This paper studies the radial alternating material phononic crystal (RAM-PnC). By sim-
ulating the band gap structure of the phononic crystal, a complete acoustic band gap was verified
at the resonant frequency of 175.14 MHz, which can prevent the propagation of elastic waves in a
specific direction. The proposed alternately arranged radial phononic crystal structure is applied to
the thin-film piezoelectric-on-silicon (TPOS) MEMS resonator. The finite element simulation method
increases the anchor quality factor (Qanchor) from 60,596 to 659,536,011 at the operating frequency of
175.14 MHz, which is about 10,000 times higher. The motion resistance of the RAM-PnC resonator is
reduced from 156.25 Ω to 48.31 Ω compared with the traditional resonator. At the same time, the
insertion loss of the RAM-PnC resonator is reduced by 1.1 dB compared with the traditional resonator.

Keywords: RAM-PnC; resonator; anchor loss

1. Introduction

The radiofrequency microelectromechanical system (RF-MEMS) is an essential branch
of MEMS technology. The advantages of RF-MEMS devices, such as low power con-
sumption, miniaturization, and integration with CMOS (Complementary Metal Oxide
Semiconductor) circuits, are urgently needed in future RF communication systems. With
the advent of the 5G era, a mobile phone needs to meet all the communication bands of 3G,
4G, and 5G at the same time, as well as Bluetooth, Wi-Fi, and GPS, so the number of filters
in the mobile phone terminal is greatly increased to about 100. Therefore, various RF fron-
tends have an urgent need for filters with small sizes, low power consumption, and high
performance [1]. As the core of the filter, the size, power consumption, and performance of
the resonator have an essential influence on the index of the filter. Many researchers have
conducted a lot of work to improve its performance and quality factor [2–4].

In 2011, Harrington and Abdolvand [5] introduced an acoustic mirror structure that
could reflect the elastic waves propagating from the resonator, and the Q enhancement
was as high as 560%. In 2016, Tu and Lee [6] changed the displacement distribution on
the resonant body by optimizing the structure of the resonant body itself to minimize the
vibration at the support beam, thereby reducing the acoustic wave dissipated outward
through the support beam. In 2017, Tu and Lee [7] proposed a stress-release hole structure,
and this hole redistributed the strain energy in the resonant cavity. The redistribution of
strain energy significantly inhibits the axial deformation of the support beam anchor cable
and destroys the anchorage zone. Reducing the anchor cable’s energy and the anchorage
area can reduce anchorage loss and improve Q.

In 2017, Zou et al. [8] proposed a butterfly aluminum nitride (AlN) plate with an anchor
plate angle of less than 90◦. By eliminating the anchor point loss and improving the quality
factor (Q) of the LWR resonator, the circular butterfly plate had a better suppression effect on
the anchor loss than the inclined butterfly plate. In addition, the emerging phononic crystal
theory and technology in recent years have greatly improved the performance of MEMS
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resonators. In previous studies, many types of phononic crystals have been proposed, such
as hole circles, air holes [9], rings [10], solid disks [11], cross-shape [12], spider web-like
shapes [13], and so on [14–27]. However, it is relatively rare to use radial phononic crystals
to improve the quality factor of resonators. Therefore, this paper discusses the effect of
radial phononic crystals on the performance of MEMS resonators.

The theoretical analysis of phononic crystals (PnC) uses a novel class of periodic
synthetic materials to manipulate the propagation of elastic waves and acoustic waves [28].
Based on traditional phononic crystals, some researchers have proposed radial phononic
crystal structures, which are arranged periodically in the radial direction and have a huge
advantage under certain circumstances. Torrent et al. [29–31] studied the propagation char-
acteristics of bulk waves in radial phononic crystal and found that the propagation of radial
bulk waves in a specific frequency band was prohibited. Li et al. [32] and Ma et al. [33] con-
structed two types of radial phononic crystals and studied the propagation characteristics
of Lamb waves in them. In 2015, Shu et al. [34] proposed a generalized one-dimensional
cylindrical shell (CS GPCs) phononic crystal. In this structure, two homogeneous materials
were periodically arranged along the radial direction. The CS GPCs possess radial, torsional
shear, and axial shear wave band gaps in the high-frequency region, which comply with
the Bragg scattering effect. In 2016, Shi et al. [35] proposed that two alternate homogeneous
materials could be periodically introduced along the radial direction to form a circular
plate of radial phononic crystals (CPRPC). Though radially periodic, there are significant
transverse and longitudinal wave band gaps. In 2018, Li et al. [32] proposed a compos-
ite radial plate-type elastic metamaterial composed of periodic double-sided composite
branches on a one-dimensional binary radial phononic crystal plate. In 2018, An et al. [36]
proposed a two-dimensional cylindrical shell structure with radial and circumferential
periods. Through the calculation and discussion of wave transmission characteristics, it
was found that the radial wave in the design showed apparent attenuation in a particular
frequency region, that is, the wave band gap.

Based on the work and research of the above researchers, this paper first proposes
the RAM-PnC structure. Combining Si and metal W into a multi-material design has
a wide band gap range and avoids the strength damage of the etched substrate to the
resonator anchor point. Then, the proposed structure’s dispersion and transmission curves
are calculated, and the effects of different materials and structural parameters on the band
gap are discussed. Finally, it is applied to the TPOS MEMS resonator designed in this paper,
significantly improving its performance.

2. Phononic Crystal and the Theory of Wave Propagation
2.1. Phononic Crystal Structure and Band Gap Calculation

As shown in Figure 1, we constructed a three-dimensional schematic diagram of a
one-dimensional radial phononic crystal composed of two alternating materials (green
represents W, gray represents Si). In Figure 1, the radial phononic crystal cylindrical shell
is a one-dimensional cylindrical semi-infinite periodic structure formed by two kinds of
solid dielectric materials, W and Si, with different elastic constants and densities in the r
direction. The width a1 of the W layer is 6 µm, the width a2 of the Si layer is 10 µm, and the
height of the W layer and the Si layer is H = 10 µm. A radial periodic unit is alternately
formed by W and Si, and its length is a = 16 µm. Silicon is an anisotropic material, and its
crystal orientation and elastic coefficient influence the simulation results. In this paper, the
parameters of Si are the crystal orientation, and the elastic coefficients are shown in Table 1.
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where u, v, and w are displacements, ρ is the mass density, t is time, λ and µ are Lame
constants, and r, θ and z represent coordinate variables in cylindrical coordinates, respec-
tively. In addition, the volume strain and the rotational component are defined through the
following formulas.
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COMSOL multiphysics solved the intrinsic Equations (1)–(4). In the stress–strain
application model, the displacement v and the stress and strain components in the direction
are assumed to be 0. In this model, the displacements of uor and z are defined. The
dependent variable uor ≡ u/r is introduced to avoid dividing r, leading to axis problems.
In Equations (4)–(7), r = 0, w is the displacement in the z direction. Periodic boundary
conditions are imposed on the element in the r direction as follows:

µ(r + a, z) = µ(r, z)eikra (8)

where r is the radial position, a is the lattice constant, and the parameter kr is defined as a
one-dimensional block wave vector along the radial direction. The free boundary is applied
to the plate surface along the z direction. By scanning the wave vector kr along the boundary
of the first Brillouin zone, the dispersion curve ω = ω (k) and the eigen-displacement field
can be obtained. The structure used in this section is one-dimensional in the radial direction,
so the Brillouin zone boundary ranges from Γ (0,0) to R (1,0), which is different from the
two-dimensional or three-dimensional phononic crystal structure.

Table 1. The specific parameters of silicon set by the simulation in this paper.

Parameter Name (Abbreviated) Value

Young’s modulus (E) Ex = Ey = 169 GPa, Ez = 130 GPa
Poisson’s ratio (σ)
Shear modulus (G)

Density (ρ)

σxy = 0.064, σyz = 0.36, σzx = 0.28
Gz = 50.9 GPa, Gx = Gy = 79.6 GPa

2330 kg/m3
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2.2. Band Gap Optimization of Phononic Crystals

Different materials affect the band gap of the structure. Mass density and Young’s
modulus are two main factors in adjusting the band gap for solid–solid phononic crystals.
The damping materials can include the following six common metals: W, Al, Ag, Pt, Cu,
and Au. Detailed material parameters are shown in Table 2. By comparing the acoustic
parameters in the table, we found that the acoustic impedance of metal W is the largest.
Furthermore, we simulated the dispersion curves of different materials in the frequency
range of 0–280 MHz. Figure 2a shows the wide band gap of 122–225 MHz. Figure 2b is Al
metal, and its band gap range is 198–218 MHz. Figure 2c represents the Ag metal, and its
band gap ranges are 165–171 MHz, 231–237 MHz, and 238–242 MHz. Figure 2d represents
the Pt metal, and its band gap ranges are 110–141.5 MHz, 156–170 MHz, 172–183 MHz,
228.5–238.5 MHz, and 247–263 MHz. Figure 2e represents the Cu metal with a band gap
range of 158–177 MHz. Figure 2f represents the Au metal, and its band gap range is
120–136.5 MHz, 168–175 MHz, 192–208 MHz, 227–234 MHz, 250–255 MHz, 262–272 MHz,
273.5–277.5 MHz. By comparing the band gap range generated by the combination of the
above six metals and Si, the combination of W and Si was shown to produce the best effect,
with a wider band gap width and, thus, an excellent acoustic isolation effect.

Table 2. Characteristic parameter table of different metals.

Materials W Al Ag Pt Cu Au

Density (g/cm2) 18.7 2.7 10.5 21.4 8.94 19.32
Longitudinal velocity (cm/s) × 102 5.23 6.32 3.6 3.96 4.65 3.24

Acoustic impedance (g/cm2 s) 97.86 17.1 37.8 84.74 41.55 62.6
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Figure 2. Dispersion curves formed by different metal materials combined with Si.

The band gap range is further analyzed when other parameters are kept unchanged,
and only the metal width w is changed. The calculation results are shown in Figure 3. It
can be seen from the figure that when the metal width w gradually increases from 2 µm to
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30 µm, the initial band gap and the final band gap of the first band gap decrease, and the
band gap becomes wider and narrower. When the metal width w = 6 µm, the widest band
gap of 122–225 MHz is obtained.
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2.3. Transmission Characteristic

By calculating the elastic wave transmission curve, the existence and ability of the
proposed RAM-PnC acoustic band gap can be evaluated. Different from the infinite
scattering array used for the dispersion relation, the model used for transmission spectrum
analysis is a finite scattering array. As shown in Figure 4, there are five periodic units
arranged alternately in the radius direction. A is the excitation port, B is the receiving port,
and the outermost layer is the PML layer with a length of 5a. The transmission loss is
defined by the following equation:

S21 = 10log10

(
Pout

Pin

)
= 10log10

(
d2

out
d2

in

)
(9)

The harmonic excitation of the radial displacement in the direction of r is applied to
the inner ring of RAM-PnC and represented by din to excite the radial wave propagating
from the inner ring to the outer ring, as shown in the figure. In order to eliminate the
reflection effect of the outer boundary, the outer circle is surrounded by a perfectly matched
layer (PML). It is assumed that there are good bonding conditions at the interface between
the materials.
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The transmission characteristics of the phononic crystal array obtained using the
delay line model and the reference line (all materials are Si) are calculated in the frequency
range of 0–300 MHz, as shown in Figure 5. The band gap is formed in the range of
122–225 MHz, and the propagation of the acoustic wave is adequately suppressed. As
shown in Figure 5a, under the condition of two-dimensional simulation, the ability of
acoustic waves to suppress reduces the acoustic wave transmission coefficient by 60 dB at a
frequency of 175.14 MHz. As shown in Figure 5b, under the condition of three-dimensional
simulation, the acoustic wave’s suppression ability reduces the acoustic wave transmission
coefficient by 45 dB at a frequency of 175.14 MHz.
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conditions of 2D (a) and 3D (b), respectively.

3. The Design of TPOS Resonator

Figure 6 shows the three-dimensional structure diagram of the resonator designed in
this paper. The resonator structure is composed of three layers of materials. From the top
to the bottom, the aluminum metal with a thickness of 0.5 m as the upper electrode, the
AlN piezoelectric film with a thickness of 0.1 µm and the bottom Si structure layer with
a thickness of 10 µm is used as the lower electrode of the resonator. Applying a voltage
to the metal upper electrode generates a vertical electric field between the metal upper
electrode and the silicon Si structure layer, as the lower electrode is on the piezoelectric
film. Due to the inverse piezoelectric effect of the piezoelectric material, and according
to the d31 piezoelectric coefficient of the AlN material, the electric field causes the plane
expansion deformation of the piezoelectric film, thereby exciting the resonator to cause
lateral expansion mode resonance.

The top view of the resonator designed in this paper is shown in Figure 7, which clearly
shows the characteristics of the designed resonator with phononic crystals composed of
radial alternating materials. A reflective structure is added to the support beam to constrain
more energy in the resonator. The structure is divided into a multi-layer periodic structure
with alternating high and low equivalent acoustic impedance. When the acoustic wave
transmitted from the resonator passes through the reflection block, the acoustic wave
is reflected at the interface between the periodic structural layers. Part of the energy
transmitted to the reflection block is reflected by the resonator, which suppresses the energy
loss of the resonator to a certain extent, thereby improving the Q value of the device.
Figure 6b shows the schematic diagram of the reflective structure with alternating materials.
The structural parameters of the designed resonator are marked in Figure 7. The detailed
parameters are listed in Table 3.
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Figure 7. The total displacement distribution of the 9th-order width-extended resonant mode of (a) 
the ordinary resonator and (b) array plate resonator with RAM-PnC is shown in the figure; the Z-
direction displacement distribution of the 9th-order width-extended resonant mode of the (c) ordi-
nary resonator and (d) array plate resonator with RAM-PnC is shown in the figure. 
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Figure 7. The total displacement distribution of the 9th-order width-extended resonant mode of
(a) the ordinary resonator and (b) array plate resonator with RAM-PnC is shown in the figure;
the Z-direction displacement distribution of the 9th-order width-extended resonant mode of the
(c) ordinary resonator and (d) array plate resonator with RAM-PnC is shown in the figure.

The simulation model is shown in Figure 6. Since the overall structure of the resonator
is symmetrical, only a quarter of the model can be established in order to reduce the
amount of calculation during the simulation. The simulation of the complete model can
be equivalent by assigning ‘symmetrical‘ boundary conditions to the symmetrical surface.
In addition, a perfect matching layer needs to be set on the periphery of the resonator
to absorb the elastic waves propagating outward to avoid the influence of elastic wave
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reflection on the simulation results. The width of the perfect matching layer is generally set
to three times the wavelength so that it can fully absorb the elastic waves propagating out.

Table 3. The specific size parameters of the resonators.

Parameters Values (Unit)

Simulated resonant frequency (f 0) 175 (MHz)
Wavelength (λ) 47.9 (µm)

Inter digitated transducer (IDT) finger (n) 9
Tethers width (Wt) 15 (µm)
Tethers length (Lt) 47.9 (µm)
Electrode gap (Ge) 4 (µm)

Resonator width (Wr) 215.55 (µm)
Resonator length (Lr) 646.65 (µm)
Thickness of Al (TAl) 0.5 (µm)

Thickness of AlN (TAlN) 0.1 (µm)
Height of Si substrate (HS) 10 (µm)

The above two resonators were modeled and simulated using the finite element
simulation software COMSOL Multiphysics 5.4 to study the properties of their nine-order
lateral expansion modes, as shown in Figure 6. The order of the resonator is set to nine.
Therefore, the width of the resonator is 215.55, and the length is 3 times the width of
646.65. In the design of the device, the wavelength (i.e., λ) corresponding to the acoustic
wave at the operating frequency of the resonator is designed to be twice the width of
the adjacent interdigital electrode. Based on this, the following formula calculates the
mechanical resonance frequency of the device:

f0 =
vp

λ
=

n
2L

√
E
ρ

(10)

where vp is the phase velocity associated with the lateral spreading mode, E and ρ denote
Young’s modulus and the density of the Si layer, respectively, n. This provides the order of
the resonant mode.

The mode of the resonator obtained via a simulation is shown in Figure 7. Figure 7a
shows the total displacement distribution of the nine-order broadened resonance mode
of the traditional resonator. Figure 7b shows the total displacement distribution of the
ninth-order-stretched resonant mode of the RAM-PnC resonator. Figure 7c shows the
Z-direction displacement distribution of the ninth-order-stretched resonant mode of the
ordinary resonator. Figure 7d shows the Z-direction displacement distribution of the ninth-
order-stretched resonant mode of the RAM-PnC resonator. The simulation results show
that integrating the RAM-PnC array on the resonator can increase the resonator’s quality
factor from 60,596 to 659,536,011.

In addition, by comparing the maximum vibration amplitude of the two resonators,
it is shown that the integration of the RAM-PnC array on the resonator can concentrate
more acoustic waves in the resonator, so the amplitude on the resonator is more significant,
and the performance of the resonator is better. To quantitatively analyze the anchor loss of
the substrate, the total displacement and Z-direction displacement at the A-A′ and B-B′

intercepts on the substrate are extracted, as shown in Figure 8. From Figure 8a–d, it can
be seen that the integration of the RAM-PnC array on the resonator is more effective in
suppressing the anchor loss. The maximum total displacement at the A-A′ cross-section is
increased from 0.194 µm to 0.248 µm, and the maximum Z-direction displacement at the
A-A′ cross-section is increased from 0.06 µm to 0.075 µm. The maximum total displacement
at the B-B′ intercept is increased from 0.169 µm to 0.208 µm, and the maximum Z-direction
displacement at the B-B′ intercept is increased from 0.017 µm to 0.0215 µm.
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Figure 8. The (a) total displacement field (µm) diagram and (b) Z-direction displacement field (µm)
diagram of the traditional resonator and the RAM-PnC resonator in the 9th-order width extension
mode on the A-A′ cross-section, and the (c) total displacement field (µm) diagram and (d) Z-direction
displacement field (µm) diagram of the traditional resonator and the RAM-PnC resonator in the
9th-order width extension mode on the B-B′ cross-section.

4. Discussion

To further obtain the equivalent circuit parameters of the resonator, the frequency
domain simulation of the resonator based on 50-ohm impedance matching is carried out
using the finite element method, and the Y11 curve and S21 curve are obtained, respectively.
The simulation results are shown in Figures 9 and 10. From Equations (11)–(14), the various
parameter values of the piezoelectric MEMS resonator are solved. Since there is no load in
the simulation process, the no-load quality factor (Qu) can be obtained by calculating the
3dB bandwidth.

Ql =
fs

∆ f−3dB
(11)

Qu =
Ql

1 − 10−
IL
20

(12)

Rm =
1

max{Re(Y11)} (13)

K2
e f f =

f 2
p − f 2

s

f 2
p

(14)

where ∆f−3dB is the −3 dB bandwidth, IL is insertion loss, max {Re(Y11)} is the maximum
real part of admittance, fp is the frequency at which the impedance amplitude is at the
maximum, and fs is the frequency when the impedance amplitude is the minimum.



Micromachines 2023, 14, 2241 10 of 12

Micromachines 2023, 14, x FOR PEER REVIEW 10 of 13 
 

 

4. Discussion 

To further obtain the equivalent circuit parameters of the resonator, the frequency 

domain simulation of the resonator based on 50-ohm impedance matching is carried out 

using the finite element method, and the Y11 curve and S21 curve are obtained, respec-

tively. The simulation results are shown in Figures 9 and 10. From Equations (11)–(14), the 

various parameter values of the piezoelectric MEMS resonator are solved. Since there is 

no load in the simulation process, the no-load quality factor (Qu) can be obtained by cal-

culating the 3dB bandwidth. 

𝑄𝑙 =
𝑓𝑠

∆𝑓−3𝑑𝐵
 (11) 

𝑄𝑢 =
𝑄𝑙

1 − 10−
𝐼𝐿
20

 (12) 

𝑅𝑚 =
1

max{𝑅𝑒(𝑌11)}
 (13) 

𝐾𝑒𝑓𝑓
2 =

𝑓𝑝
2 − 𝑓𝑠

2

𝑓𝑝
2

 (14) 

where △f−3dB is the −3 dB bandwidth, IL is insertion loss, max {Re(Y11)} is the maximum 

real part of admittance, fp is the frequency at which the impedance amplitude is at the 

maximum, and fs is the frequency when the impedance amplitude is the minimum. 

 

Figure 9. (a) Schematic diagram of admittance (Y11) and susceptance (G) curves of traditional TPOS 

MEMS resonators; (b) RAM-PnC MEMS resonator admittance (Y11) and susceptance (G) curve di-

agram. 

The Figure of merit (FoM) values between resonators can be compared to measure 

the performance of MEMS resonators. The definition of the piezoelectric resonator figure 

of FoM is proportional to Q and the coupling factor. The calculation formula is as follows: 

𝐹𝑜𝑀 = 𝑘𝑒𝑓𝑓
2 × 𝑄 (15) 

The above analysis and calculation compare the specific performance parameters of 

the traditional resonator and the RAM-PnC resonator at 175.14 MHz. The particular per-

formance parameters obtained by the simulation in this paper are summarized in Table 4. 

Figure 9. (a) Schematic diagram of admittance (Y11) and susceptance (G) curves of traditional
TPOS MEMS resonators; (b) RAM-PnC MEMS resonator admittance (Y11) and susceptance (G)
curve diagram.

The Figure of merit (FoM) values between resonators can be compared to measure the
performance of MEMS resonators. The definition of the piezoelectric resonator figure of
FoM is proportional to Q and the coupling factor. The calculation formula is as follows:

FoM = k2
e f f × Q (15)

The above analysis and calculation compare the specific performance parameters
of the traditional resonator and the RAM-PnC resonator at 175.14 MHz. The particular
performance parameters obtained by the simulation in this paper are summarized in Table 4.
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Figure 10. (a) Insertion loss (S21) curve of the traditional TPOS MEMS resonator; (b) Insertion loss
(S21) curve of the RAM-PnC TPOS MEMS resonator.

Table 4. Summary of the simulated result.

Parameters Traditional RAM-PnC

Resonant frequency (fr), MHz 175.14 175.14
Insertion loss (IL), dB 6.2 5.1

Motional resistance (Rm), Ω 6.45 0.08
Coupling coefficient (K2

eff ), % 0.0228 0.0228
Qanchor 60,596 659,536,011

Loaded quality factor (Ql) 8146 9467
Unloaded quality factor (Qu) 15,966 21,317

FOM 8.3 11.1
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5. Conclusions

In this paper, a RAM-PnC structure is proposed. The finite element simulation method
is used to calculate the dispersion curve and frequency response curve. The results show
that RAM-PnC has a complete band gap width between 122 and 225 MHz, which can
adequately isolate elastic waves. Then, the influence of different metal materials on the
band gap is studied. By combining six kinds of metal materials (W, Al, Ag, Pt, Cu, Au)
commonly used in MEMS with Si, it was found that the multi-material radial phononic
crystal plate containing metal W produces the widest band gap. Generally, the wide band
gap has better performance when preventing wave propagation, so the metal W is selected.
Then, the optimal band gap structure is obtained by adjusting the width of the metal
material W. Finally, RAM-PnC is implanted into the piezoelectric MEMS resonator, and the
anchor quality factor is increased from 60,596 to 659,536,011. The dynamic impedance is
reduced from 6.45 Ω to 0.08 Ω. The merit value (FoM) increases from 8.3 to 11.1.
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C.Z.; validation, C.Z., M.S. and J.-F.B.; formal analysis, C.Z.; investigation, C.Z., P.T., C.Y. and
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the manuscript.
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