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Abstract: Water electrolysis using a proton exchange membrane (PEM) holds substantial promise
to produce green hydrogen with zero carbon discharge. Although various techniques are available
to produce hydrogen gas, the water electrolysis process tends to be more cost-effective with greater
advantages for energy storage devices. However, one of the challenges associated with PEM water
electrolysis is the accumulation of gas bubbles, which can impair cell performance and result in
lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis
is essential for optimal cell performance. This review paper discusses bubble behaviors, measuring
techniques, and other aspects of bubble dynamics in PEM water electrolysis. It also examines
bubble behavior under different operating conditions, as well as the system geometry. The current
review paper will further improve the understanding of bubble dynamics in PEM water electrolysis,
facilitating more competent, inexpensive, and feasible green hydrogen production.

Keywords: PEM water electrolysis; bubble dynamics; hydrogen evolution reaction; oxygen evolution
reaction; two-phase flow

1. Introduction

Over the years, global energy consumption has risen sharply, primarily because of
population growth and increased living standards. The need for substituting fossil fuels
with clean energy is urgent due to global warming and growing environmental issues.
It has been predicted that the amount of energy generated from renewable sources will
rise by 2.3% by 2040, accounting for 31% of all electricity produced globally [1]. The Paris
Agreement Act mandates that the increase in world temperature needs to drop below
2 degrees by 2050 by adopting the green hydrogen revolution for sustainable energy for
the decarbonization process to combat global warming [2]. Although different methods
are available to produce hydrogen, the one that is derived from renewable resources is
gaining momentum as a cleaner energy source that could substitute for conventional
fossil fuels [3]. Compared to other clean energy sources, hydrogen tends to be greener,
and it creates negative carbon as a byproduct [4]. Water electrolysis has been proven to
be more dependable than traditional methods of hydrogen production, offering a high
level of safety, more sustainability, and a purity of up to 99.99% [5]. Hydrogen is widely
used in conventional industries such as petroleum, petroleum derivatives, and chemical
fertilizers [6]. As a result of recent progress in research and development on electric vehicles
powered by fuel cells that discharge zero carbon emissions, the demand for hydrogen has
substantially increased [7]. With continued scale production, the price of green hydrogen
produced using water electrolysis has been forecasted by CSIRO to become competitive
with thermochemical processes by 2025 [8]. The supply of sustainable hydrogen has been
limited by the high cost of infrastructure setting [9]. However, with the aid of cutting-edge
technology, it can be much enhanced in design, which will undoubtedly make a beneficial
impact on the water electrolysis process to harvest more renewable energy [10].
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Water can be electrolyzed using different approaches, including alkaline water electrol-
ysis (AWE) [11], anion exchange membrane water electrolysis (AEM) [12], proton exchange
membrane water electrolysis (PEM) [13,14], and solid oxide electrolysis (SOE) [15]. PEM
water electrolysis has been shown to be more cost-effective than the other techniques. It
can also work at higher current densities, whereas others are more prone to rapid changes
in the current load. Furthermore, PEM can operate substantially faster than AWE and SOE,
which take longer time for operations [16]. In the PEM water electrolysis, water is separated
as oxygen and hydrogen through electrochemical processes. Water is supplied from the
anode side and then it moves between the catalyst layer and the liquid/gas diffusion layer,
thus reacting with the catalyst, resulting in the breaking of water into oxygen, proton, and
electron [17]. Protons then leave the membrane and fuse with the electrons from the applied
current density to create hydrogen on the cathode side, while gas bubbles simultaneously
enter the flow field on the anode side [18]. On the anode side, the solvated proton migrates
to the cathode side, and it is accompanied by a water molecule that flows from the anode
to the cathode side region. As a result, even in the absence of water from the anode during
the PEM electrolyzer operation, the PEM remains hydrated [19]. The various flow patterns
in the PEMWE channel are shown in Figure 1a,b [20].
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For flexible use, it is critical to address these challenges by increasing current densities
and system efficiency to reduce investment costs and broaden the range of uses for this
innovation [21]. The formation of gas bubbles at the catalyst layer in the anode region is
one of the key issues. It can interrupt effective contact between the catalyst and water,
decreasing the electrochemical reaction on the anode side [22]. Thus, it is extremely
important to select a highly efficient catalyst for faster removal of gas bubbles from the
system [23]. When gas produced by the catalyst exceeds the capacity of flow channels, a
bubble blockage may occur. This can be estimated based on the cross-sectional area and
water flow rate of channels [24]. Studying bubbles is crucial in proton exchange membrane
water electrolysis (PEMWE) because when bubbles develop at the catalyst layer, they can
obstruct tiny pores and restrict water flow, which can increase equipment costs and affect
performance efficiency [25,26]. Furthermore, when the bubble separates from the electrode
surface, the empty area formed by the prior bubbles gets filled, resulting in a swirling
motion [27]. The growth of bubbles inside tiny pores can induce a pressure drop, which can
cause considerable mechanical stress on the catalyst surface (CS), resulting in the gradual
deterioration of a catalyst structure [28]. Gas bubbles generated from the CS will pass
through the liquid/gas diffusion layer (LGDL) and eventually enter the flow channel,
thus creating two-phase flows such as bubbly, slug, and annular flows [29]. When the
applied current density is lower, bubble coalescence occurs at a low frequency, resulting
in smaller bubbles within the channel, and this flow is considered as bubbly flow [30].
As the current density increases, bubbles combine more frequently, forming a slug. As
gas density increases, the slug develops into an annular flow regime. The gas phase then
occupies almost the entire channel length, forcing water toward the channel wall [17].
The various flow patterns in the PEMWE channel are shown in Figure 1a, b. These flow
regimes depend on different factors such as mass flux and superficial velocity of liquid
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and gas phases [31]. The flow pattern has a significant impact on water management
and distribution because it controls how the reactant and product travel throughout the
electrolysis operation. In PEM water electrolysis, the channel wall must be kept wet to
prevent the degradation of the membrane in the cell. The transaction from annular to mist
flow can result in insufficient liquid wet on the channel walls and it can cause a high risk of
damage to the membrane [29]. Chien and Ibele [32] calculated this value as 1.199 × 106

to predict the transaction from annular to annular–mist flow in two-phase flow systems.
This criterion value was developed for the vertical flow in larger pipe diameters, but this
can also be used for predicting when the flow regime shifts from annular to mist flow
in PEM water electrolysis [29]. The efficiency of the electrolysis system depends on how
fast the gas bubbles are controlled and removed from the membrane surface and the flow
channels. Figure 2 shows how bubbles are formed in the catalyst layer based on hydrophilic
and hydrophobic surfaces. The formation of bubbles on the hydrophilic surface remains
spherical [33]. Jiang et al. [34] have studied how different combinations of contact angles
at the PTL and catalyst layer can impact cell performance at a constant voltage of 2 V.
For the dividing line between hydrophilic and hydrophobic surfaces, they used a contact
angle of 90◦. They found that the catalyst layer with a hydrophilic surface was 12.6 times
higher than that with a hydrophobic surface. The main reason for this finding is that in
a hydrophilic condition, the volume of gas concentration within the catalyst layer is low,
which can reduce the bubble effect and hence mass transfer losses. This has assisted in
understanding that the electrochemical reaction occurs not only on the catalyst layer (CL)
but also at the CL–LGDL contact [35]. Understanding the behavior of bubbles at CL–LGDL
will provide further details about how bubbles develop, grow, and detach from a cell. With
the aid of this knowledge, the distribution of a catalyst and the design of a cell may be
enhanced, which can increase the efficiency of the electrochemical process inside the cell.
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During the process of electrolysis, bubbles can generate motion in the surrounding
liquid, which can improve mixing and mass transfer rates [27,36]. Identifying how bubbles
behave will help a cell function better, allowing for the detection of any detrimental effects
on the system and the development of new, innovative electrochemical technologies that
will lead to more sustainable and effective energy [37]. The different operating conditions
such as current density, temperature, and water flow rate can also impact the stability of the
PEMWE system. Based on PEMWE modeling, it has been established that the performance
of a cell is dependent on the amount of water input and that both temperature and liquid
flow rate can affect current density [38,39]. As the liquid flow rate increases, larger bubbles
will disperse into smaller sizes, resulting in a reduction in slug flow. However, as current
density and temperature increase, larger bubbles and longer slugs will form inside the
cell. With an increase in current density, a substantial number of bubbles will amalgamate,
resulting in the production and wide distribution of gas bubbles. This causes bubbles to
migrate toward their larger neighbors, resulting in rapid growth [40]. When flow velocity
increases, bubbles begin to move faster, causing large slug gas to split up and move along
the flow velocity. Li et al. [41] and Ojong et al. [42] have shown that a higher liquid
velocity on the anode side can facilitate bubble separation, thus reducing mass transport
loss. Therefore, understanding bubble behavior is critical for improving the mobility of
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this process. This understanding will aid in the development of more effective and efficient
electrochemical systems for the PEM electrolysis process.

In this review paper, the core principles of PEM water electrolysis are outlined along
with a comparison with PEM fuel cells. It also highlights various materials utilized for
constructing PEM water electrolysis, especially the selection of appropriate materials, such
as current distributor plates, porous transport layers, and catalyst-coated membranes. The
most significant focus of this article is based on the role of the dynamics of gas bubbles in
PEM water electrolysis, concentrating on how bubbles nucleate, grow, and detach during
the process. This study also examines various losses caused by the instability of bubbles on
the electrode surface, such as activation, ohmic, and diffusion. An in-depth study of bubble
dynamics in flow channels, catalyst layers, and PTLs is conducted. Different techniques
available to capture bubble images are also presented. The outcomes of this research will
aid in improving bubble management in PEMWE and the effectiveness and scalability of
green hydrogen production by water electrolysis.

2. Basic Principle of PEM Water Electrolysis and PEM Fuel Cells

The working mechanism of PEM water electrolysis is the same as that of PEM fuel
cells as both use solid membranes to exchange protons between anode and cathode sides.
However, their purposes and directions of electrochemical processes differ. In PEM water
electrolysis, electric energy is used to split water into oxygen and hydrogen to produce
hydrogen gas toward the cathode. However, in a PEM fuel cell, electricity is generated by
introducing hydrogen and oxygen from both channels with water being the only byprod-
uct [43]. When hydrogen gas enters the anode catalyst layer, it splits into two parts. One
part generates a proton (H+), which travels to the cathode via the proton exchange mem-
brane. The other element is converted into an electron (e−), which travels via an external
circuit and offers an electric current [44]. In a PEM water electrolysis, the method involves
supplying electrical current within, which includes the end plate, bipolar plate, GDL, MEA,
and catalyst layer. Table 1 presents the advantages and disadvantages of PEM water elec-
trolysis and PEM fuel cells. When water is introduced into the anode region, it undergoes
oxidation and forms oxygen, hydrogen ions, and electrons, which is shown in Equation (1).
After splitting water molecules (H2O) into individual parts, ions with a positive charge
(H+) will react with water molecules to generate hydrated hydrogen ions (H+. xH2O) [45].
These hydrated hydrogen ions subsequently move through the proton exchange membrane
and enter the cathode (Equation (2)) to produce hydrogen. The overall reaction is presented
in Equation (3) [46].

Table 1. Advantages and disadvantages of PEM water electrolysis and PEM fuel cells [47–49].

Characteristic PEM Fuel Cell PEM Water Electrolysis

Advantage

Energy efficiency Production of power from hydrogen and
oxygen supply. Utilized renewable energy to produce hydrogen gas.

Low environment impact Only produces water as a byproduct. Oxygen as a byproduct.

Usage Used in various applications like
transportation and power sources. It can be used for large-scale hydrogen production.

Start-up process Ability to start and stop quickly, making it
viable for different power demands. Fast response and simple control.

Disadvantage

Higher cost Catalysts like Pt are expensive, which
increases production costs.

PEM membrane manufacturing requires expensive
components and infrastructure.

Catalyst shortage Catalysts require metals like Pt, resulting in
supply concerns.

Catalyst materials are constrained, which affects both
cost and efficiency.

Longevity and stability Catalyst’s lifespan decreases over time. Gradual degradation of the catalyst’s membrane
impacts its durability.
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Anode side : 2H2O → O2 + 4H++4e− (1)

Cathode side : 4H+ + 4e− → 2H2 (2)

Overall : H2O→ H2 +
1
2

O2 (3)

Contrary to the conventional approach, which requires an electrolyte solution, PEM
water electrolysis uses a simple proton exchange membrane. Figure 3 presents a schematic
illustration of the PEM of the water electrolysis and fuel cell. The thin membrane would
allow the positively charged particle to move freely, minimizing the restriction on mass
transfer. Additionally, the electrolyzer process uses clean water rather than the substantial
electrolyte solutions necessary for optimal electronic conductivity.
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Materials of Construction

In PEMWE systems, the proton exchange membrane (PEM) works as a unique poly-
mer conductor that allows protons to pass while blocking gases from a crossover. The
polymer material used exhibits a high ionic conductivity. With advances in the PEM water
electrolysis technology, some studies have been carried out at high current densities of
10 A cm−2 at 80 ◦C [50]. However, the biggest impediment to the commercialization of PEM
water electrolysis is the high cost of the construction materials used. Therefore, it becomes
critical to investigate innovative materials suitable for PEMWE. A schematic diagram of the
overall components of the PEM water electrolysis is presented in Figure 4a. PEM materials
include the current distributor plates, porous transport layer, catalyst-coated membrane,
and bipolar plates [51]. Typically, Ti material is used for making current collector/flow
field patterns as it offers strong resistance against corrosion. It is also well-suited for high
voltage above 2 V, especially towards the anode side where oxidation occurs [52]. The Ti
plates used are generally coated with precious metals like gold and platinum [53,54]. The
following shows percentages of the costs of the stack components: MEA, 36%; PTLs, 32%;
BPPs, assembly process, 8%; and stack miscellaneous, 13% [55]. The effects of different
components such as electrode and plate resistance, membrane resistance, and interfacial
resistance that contribute to the overall energy losses are shown in Figure 4b [56]. Cost
analysis of the current generation of PEM water electrolysis reveals that PTLs and BPPs
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account for a significant percentage of the cell costs. Figure 4c illustrates that cost reductions
can be anticipated for some components, especially BBP and catalyst loading costs, of the
next-generation stack system. However, some other components such as PTLs and end
plates are predicted to remain unchanged despite these reductions, which may raise their
cost share in future cells.

IrO2 catalyst is doped with 5% Ti-SnO2, which shows a larger area available for catalyst
reaction [57]. As shown in Figure 5a,b, IrO2 doped with Ti-SnO2 and Pt/C (20% wt. of Pt)
outperformed commercial IrO2. It also exhibited better durability and prolonged lifespan
in the water electrolysis process compared to normal IrO2 catalysts. Once water enters
the anode side, oxygen and protons are generated at the OER. The proton is eventually
moved, where it interacts with an electron to form hydrogen at the cathode side [58]. OER
refers to the process that produces oxygen on the anode, while HER refers to the process of
generating hydrogen on the cathode. The HER process is the primary essential reaction
required to produce hydrogen gas from electrolysis. Platinum metal groups (PGM) such as
Pt, Ru, Pd, and Ir are common catalysts used in HER due to their electrochemical resilience
in acidic conditions [58,59]. However, PGM have a low supply and high price, so there is
significant interest in researching alternate catalyst materials [60]. Apart from the PGM,
there are other alternative catalyst materials such as hybrid catalysts (i.e., Cl-MoSe2 and
Cl-metal oxide hydr(oxy)oxide) [61], Ru dopped on Ti3C2Tx and Co-N-C [62,63], transition
metals (Fe, Co, Zn, Cd) [64], high-entropy alloys (such as CoCrFeNiAl) [65], atomically
dispersed catalysts (Ni, Co, Fe, Mo) [66–68], and metal-free catalysts (e.g., single-walled
carbon nanotube, graphene, red phosphorous) [69–72]. Some studies have also reported
that IrP2-rGO and single-wall carbon nanotubes/exfoliated MoSe2 doped with CdCl2
exhibit good performance in HER as shown in Figure 5c,d [61,73]. Bipolar plates with flow
channels play a significant role in PEM water electrolysis. They are utilized for eliminating
gases, conveying heat and electric current, and maintaining the general stability of the
system [58]. Three different materials (Ti, stainless steel, and Au coated with Ti) are used
as BPPs for testing corrosion resistance as shown in Figure 6a. The results of testing the
corrosion resistance showed that the uncoated material stainless steel was more prone
to corrosion, while the coated Au-Ti significantly lowered the interfacial resistance [74].
Thus, Au-Ti exhibits a strong corrosion resistance which in turn can enhance the electrical
conductivity between the plates and other components in the cell. Another study has
incorporated TiN-C and compared it with a conventional Ti BP through a test conducted
at 80 ◦C for 300 h [75]. It showed that the corrosion resistance and long-term stability of
bipolar plates in PEMWE systems could be enhanced by coating with TiN-C 400, which
exhibited more positive conductivity and durability than the normal Ti BP, as shown in
Figure 6b. Rojas et al. [76] have used different coated materials for BPs, such as CrN-TiN,
bare stainless steel, TiN-Stainless steel 316L/Stainless steel 904L, Ti/TiN-Stainless steel
316L/Stainless steel 904L, TiN-Stainless steel 321, Ti/TiN and Ti monolayers on Stainless
steel 321, and TiN monolayers. The use of a parallel plate attached to the BBP results in
quicker bubble elimination [77]. Another study has used an all-in-one bipolar electrode
where different components are combined to make a single bipolar electrode with an ultra-
catalyst loading of 0.2 mg Pt/cm2, significantly lower than the 3.0 mg Pt/cm2 of normal
CCM [78]. They used a pin-type flow channel for the effective transport of bubbles inside
the channel. A BP without flow channels may significantly lower cell costs. However,
it may introduce other issues such as increased pressure drop, which could inhibit the
removal of bubbles within the mass transport area [42]. Another study has used the cathode
side with a bipolar plate made of Ti metal using 10 parallel flow channels to improve the
pathway for effective electron movement and heat management during the evolution of the
hydrogen bubble. This BP can perform heat dissipation during electrochemical reactions,
preventing an excessive rise in temperatures. The IrRuOx catalyst of 3.0 mg/cm2 was coated
on the anode side and 3.0 mg/cm2 of Pt black on the cathode side of the MEA [5]. Table 2
presents the different materials used for PEM water electrolysis owing to their tensile
strength, substantial expansion, adequate flexibility, and low cost. While titanium alloys
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have strong corrosion resistance and aluminum has equivalent qualities, stainless steel
achieves a satisfactory equilibrium in mechanical performance with easy manufacturing
and low product cost. It has the potential for potent bipolar plate fabrication. However,
when exposed to H2 gas, particularly at temperatures above 80◦, Ti BPP forms hydride
(TiH2), causing H2 embrittlement [79,80]. This may generate some fissures in the material,
which can influence the nucleation and growth of bubbles on electrode surfaces. Depending
on how unstable the gas evolution is, the bubbles that form on the electrode surfaces may
react significantly. Effective measurement of the pH value can be achieved by measuring
both the anode and cathode electrodes [79].
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Figure 5. Comparison of IrO2 catalyst doped with and without Ti-SnO2: (a) Anode side 40 wt.%.
IrO2-TSO and cathode side with 20 wt.% Pt/C. Copyright 2023, with permission from the American
Chemical Society [57]. (b) Durability test at constant current 10 mAcm−2. Copyright 2023, with
permission from the American Chemical Society [57]. (c) Cathode side HER with Pt/C and IrP2-rGO.
Copyright 2020, with permission from the American Chemical Society [73]. (d) Single-wall carbon
nanotubes/exfoliated MoSe2 doped with CdCl2. Copyright 2018, with permission from Wiley [61].
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Table 2. Different key components used in PEM water electrolysis.

Anode- and
Cathode-Side

Current Distributor

Anode-Side
Catalyst

Cathode-Side
Catalyst

Catalyst-Coated
Membrane

Cathode-Side
Diffusion Layer Cell Area Bipolar Plate Flow Pattern Authors

Ti 2.3 mg/cm2 IrO2
1.0 mg/cm2

carbon-supported Pt
Nafion-115 and

Nafion-117
Sigracet® 28BCE

carbon and Ti
25 cm2 Ti Parallel flow [82]

Ti 3.0 mg/cm2

Ir/RuOx
0.6 mg/cm2 Pt Nafion-115 Toray H-060

carbon paper 9 cm2 - Parallel flow [24]

Ti mesh and carbon
paper (type 34BA) 1.5 mg/cm2 IrO2

0.5 mg/cm2 Pt
(46 wt% Pt/C) Nafion® 117 - 64 cm2 -

Parallel flow,
serpentine flow,

cascade flow
[83]

Ti 1.0 mg/cm2 Pt 1.0 mg/cm2 Pt Nafion - 25 cm2 Standard graphite Parallel [80]

Pt-plated Ti (anode)
and carbon (cathode) IrOx Pt/C Nafion-115 Toray H-060

carbon paper - - - [84]

Gold-coated Ti
(anode) and Cu

(cathode)

2.0 mg/cm2

Ir/IrOx
1.0 mg/cm2 Pt black Nafion-117 Toray 090 carbon

paper 5 cm2 Graphite Parallel [30]

- 3.0 mg/cm2

Ir/RuO2
0.6 mg/cm2 Pt Nafion-115 Sintered Ti

powder 13.5 cm2 - Single flow [85]

Ti (anode) and carbon
(cathode) IrO2 Pt/C Nafion-117 Toray H 120

carbon paper 11.9 and 17.6 cm2 Graphite
Parallel and

meander shaped
single channel

[86]

Ti (cathode) 3.0 mg/cm2

IrRuOx
3.0 mg/cm2 Pt black Nafion-115 Toray 090 carbon

paper (anode side) 5 cm2 - Parallel flow [5]

Carbon paper, fine Ti
meshes and sintered

porous Ti

2.0 mg/cm2 Pt
and 2.0 mg/cm2 Ir 4.0 mg/cm2 Pt Nafion-110 - 50 cm2 Ti Mesh [87]
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Table 2. Cont.

Anode- and
Cathode-Side

Current Distributor

Anode-Side
Catalyst

Cathode-Side
Catalyst

Catalyst-Coated
Membrane

Cathode-Side
Diffusion Layer Cell Area Bipolar Plate Flow Pattern Authors

-
2.0, 0.3, 3.0,

1.0 mg/cm2IrO2/Ir/Ir
black

0.8, 0.5, 3.0, 0.9
mg/cm2

Pt and Pt/C
Nafion-115 - 120 cm2 - - [21]

- 3.0 mg/cm2 IrO2 1.0 mg/cm2 Pt Nafion-117 Sintered porous
Ti plate 25 cm2 Ti Parallel flow [88]

Ti and gold-plated 1.0 mg/cm2 Ir 0.3 mg/cm2 Pt Nafion-HP Sintered Ti
powder 0.8 cm2 Ti Parallel flow [89]

- 2.2 mg/cm2 Ir 0.8 mg/cm2 Pt Nafion-117 Toray H 120
carbon paper 1.5 cm2 - Parallel and

interdigitated flow [90]

Ti and gold-plated 1.0 mg/cm2 Ir 0.3 mg/cm2 Pt Nafion-1110 Toray H 060
carbon paper 0.8 cm2 - Parallel flow [91]
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3. Effects of Bubbles on Polarization Losses in PEM Water Electrolysis

The operating voltage at a certain current density can be used to investigate the
efficiency of PEM water electrolysis. The efficiency loss in the cell can be identified by
measuring the difference between the actual voltage and the equilibrium voltage for a
specific current density [92]. This loss can be obtained from activation overpotential, ohmic
overpotential, and mass transport losses. A polarization curve, which depicts the relation-
ship between them, is shown in Figure 7. As depicted in the figure, the mass transport
loss in PEM water electrolysis is found to be small while the activation overpotential is
greater because a large amount of energy is used during the electrochemical reaction. The
overpotential of a single PEM electrolyzer cell is influenced by different factors such as the
activation overpotential, ohmic loss overpotential, and diffusion overpotential, which is
expressed as follows [56]:

V = Vocv + Vact + Vohm + Vmass (4)

where Vocv is the open circuit voltage, Vact is the activation overpotential which is the
additional voltage desirable for activating an electrochemical reaction, Vohm is the ohmic
overpotential caused by the resistance offered due to the movement of charged particles,
and Vmass is the diffusion overpotential due to mass transfer. Bubbles occur at the electrodes
during the water-splitting process, which has a significant impact on the overall system
losses [37].
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It has been found that when the bubbles remain on the electrode surface, the reaction
kinetics are hampered and the current flow in water is decreased, resulting in activation
losses. Furthermore, if the catalyst coating on both the anode and cathode sides is exceeded
in ionomer material, it might impede proton ion transit, resulting in voltage losses [93]. To
comprehend these implications, HER in an acid medium can be considered where the H+

ion traveled from the anode to the cathode area. Charged particles (H+) can then change
into H2 gas at the cathode catalyst surface and migrate away from the electrode surface,
allowing the new gas bubble to form [94,95].

3.1. Impact of Bubbles on Activation Potential

The activation potential (Vact) measures the degree of kinetic loss during electrochemi-
cal reactions [16]. Activation loss takes place on the electrode surface. It is also influenced
by other factors including the number of surface-coverage bubbles [96]. With an increase
in the number of bubbles on the electrode, the activation overpotential also increases to
overcome the resistance offered by the bubbles. Based on the numerical study for the
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effect of bubble evaluation performed, low temperatures (30 ◦C and 60 ◦C) require higher
activation overpotential, whereas high temperatures (90 ◦C) require less additional voltage
energy when there is sufficient bubble coverage [97]. In many industrial processes, an
excessive number of bubbles on the electrode surface might impede the proper reaction of
the reactants and the product sides [98]. Bubble coverage on the electrode is also influenced
by different factors such as current density and the nature of an electrode surface. Bubble
coverages on electrodes need to be managed not only for activation losses but also for other
losses such as ohmic losses and mass transport losses [37,99]. As a result, it is critical to
determine how much of the active electrode area is covered by the surrounding bubbles,
which is expressed as follows [100]:

iact =
I

(1−Θ)Aproj
=

i
1−Θ

(5)

where I is the applied current, Aproj is the projected electrode area, and Θ is the portion of
the electrode surface covered by bubbles. Therefore, the activation overpotential (Vact) for
both the anode and the cathodic side is expressed as follows [101–103]:

Vact =
RT

αZF
ln
(

i
θi0(T)

)
(6)

where R is the gas constant, Z is the stoichiometric number that denotes the number of elec-
trons transferred over a specific electrochemical reaction, α is the charge transfer coefficient
(CCC) of the anode and cathode side and θ is the anodic and cathodic activation fraction.

3.2. Impact of Bubbles on Ohmic Overpotential

The additional energy required by the system to overcome the impedance produced
by protons as they move over the membrane electrode is known as the ohmic overpotential.
Ohmic losses can result from both electronic losses and ionic losses. Electronic losses occur
when the electric current faces resistance in components such as bipolar plates, electrodes,
and current collector plates [104]. Conversely, the ionic losses are linked to the resistance
faced by the proton as it transfers through the membrane. The nature of the material
used for fabrication and the method employed during the process are key factors that
determine how much overpotential energy is required [105]. Ohm’s law is the function of
total resistance to that of current density, which is expressed as [106]

Vohm = IRtotal = I(Re + Ri) (7)

where I is the current density and Re and Ri are the resistance contributed by electronic
and ionic.

Increased gas evolution can significantly increase the number of bubbles coverage
on the electrode surface, which may contribute to ohmic losses [107]. The formation of
bubble layers on the electrode surface may hinder direct contact between the electrode and
electrolysis by blocking a portion of the active electrode surface area for gas evolution, re-
sulting in a decrease in electrode efficiency [24]. Proper bubble management can effectively
control gas evolution and enhance electrolysis. Increased gas evolution can significantly
increase the number of bubbles on the electrode surface, which can lead to increased ohmic
losses [107]. In PEM water electrolysis, the ability of the ionomer to conduct the proton is
influenced by the presence of water. A low proton conductivity can result in decreased ion
transfer across the membrane, which can increase ohmic losses within the cell [92].

3.3. Impact of Bubbles on Mass Transport Overpotential

This is also referred to as mass transport overpotential, which corresponds to the
additional voltage energy desired to overcome the restrictions produced by the transfer of
reactants and end products between electrodes in a PEM water electrolysis. The diffusion
overpotential can be calculated using the Nernst equation as follows [108]:
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Vdi f f =
RT
nF

ln
C

Cr f
(8)

where R is the universal gas constant, T is the temperature, C indicates the amount of
oxygen gas concentration at the electrode surface, Crf is the reference concentration, and F
is the Faraday constant.

Water flow can impact mass transport losses either by removing bubbles in the cell or
by other factors unrelated to bubble removal [41]. The impact of mass transport has been
investigated in a 2D system for predicting the polarization curve. However, that study
was solely bound to the theoretical Nernstian approach. It emphasized primarily how
substances moved inside via diffusion [108]. Mass transfer losses occur solely in the anode
region due to its complex two-phase flow dynamics. They are more pronounced when the
applied current density exceeds 1 Acm−2 [109]. When operating PEM water electrolysis at
a low current density, the main contributors to overpotential losses are sources other than
mass transport overpotential. Mass transfer overpotential performance influence is often
insignificant under these conditions [110].

4. Bubble Formation in PEMWE

The formation of gas bubbles at the anode and cathode surfaces can affect the produc-
tion of hydrogen gas in PEM water electrolysis. The growth of oxygen gas bubbles can be
controlled by changing several parameters such as current densities and temperatures [17].
When two distinct surfaces, i.e., hydrophilic and hydrophobic surfaces, were employed for
a bubble detachment study, the results demonstrated that the influence of the wettability
surface was less important at lower current densities [111]. It is vital to understand how
different components influence voltage in a water electrolysis system and the movement of
bubbles. How bubbles develop and migrate and how they disturb different parts of the cell
are still not well understood. Previous reports have suggested that excess bubble formation
can delay the detachment of bubbles and lead to insufficient bubble growth in the cell. As a
result, considerable mass transfer loss, reduced catalyst utilization, and unpredictable cell
performance can occur [92]. Therefore, there is a substantial need for developing practical
and well-considered methods for handling and controlling bubbles. For instance, Yaun
et al. [92] have developed a novel electrode to improve bubble management by utilizing
an anode catalyst that is 24 times more effective than the standard design. This PEMWE
is more adaptable than the standard technique in terms of energy efficiency, oxidation,
lightweight design, and output rate [35]. Nonetheless, practical manufacturing of hydro-
gen/oxygen gas has encountered some significant challenges, including high component
costs, GDL lifespan, and its pricey coated catalyst layer [112]. Enhancing bubble evolution
and transport are two primary aspects of bubble management in water electrolysis [113].
In the first procedure, bubbles that emerge from the catalyst layer (CL) must be removed as
quickly as possible [92]. Several studies have shown that a porous transport layer (PTL)
plays a crucial role in removing bubbles. By altering its structure, it can enable bubbles to
flow more freely and decrease the efficiency loss induced by bubbles [49]. For example,
drilling holes in the PTL can save up to 76.7% of the efficiency loss [114]. Another study has
developed a novel catalyst design that allows bubbles to move more quickly and effectively
by coating the layer at the edge of Ti foil [115]. For enhancing bubble transport, the process
can be carried out by generating more nucleation sites where smaller bubbles can develop
when they detach. By allowing bubbles to detach more, the oxygen in water will be reduced,
which will improve the system [92,99]. Studying characteristics such as the nucleation,
growth, and detachment of bubbles under different operating conditions is necessary to
comprehend the dynamics of bubbles in the flow channel and LGDL [35]. Figure 8 illus-
trates the evolution of the bubble stages in electrodes. In PEM water electrolysis, hydrogen
bubbles produced are smaller than oxygen bubbles due to their difference in stoichiometry.
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Ultrasound has a notable impact on the optimization of bubble evolution in water
electrolysis. Ultrasound enhances nucleation, and it also influences bubble growth and
allows bubble detachment from electrode surfaces via cavitation. Under the influence of
an ultrasonic wave, the bubbles tend to merge into larger bubbles, along with an increase
in bubble velocity on the electrode surface [116]. They have also noticed a decrease in
critical bubble diameter and residence time under sonication. When the ultrasonic wave is
applied, cavitation bubbles form because of rapid changes in pressure within the liquid.
When ultrasound cavitation is applied in the pure water splitting process, the production of
hydrogen and oxygen doubles. This improvement is due to the rapid release of the oxygen
bubble induced by the ultrasonic effect. As a result, it minimizes the chance of dissolved
oxygen and hydrogen merging, resulting in a more effective catalytic process [117]. During
cavitation, rapid pressure changes induce bubbles in a liquid to grow and collapse quickly,
especially when the negative pressure falls below the saturated vapor pressure [118].
During this stage, the bubbles promptly nucleate and grow. When bubbles enter a positive
pressure zone, they collapse abruptly and explosively due to the pressure exerted by
the surrounding liquid. This sudden increase in pressure has a variety of repercussions,
including mechanical stress, increased turbulence, and alterations in the electrochemical
environment, especially when it collides with nearby electrode surfaces. The cavitation of
bubbles is influenced by the frequency of the ultrasound waves, and higher frequencies
usually result in a stronger cavitation impact. The sound waves cause pressure to fluctuate.
When these bubbles collapse, it creates a strong localized force and sound waves and
this leads to intense mixing, which produces a faster reaction rate and higher efficiency.
Ultrasonic waves offer an advantage in photocatalytic water splitting via piezoelectric
action due to their high transmission frequency and deep penetration in water [117]. While
this discussion on ultrasound’s impact on bubbles was based on general water electrolysis,
it is important to highlight that the same concept may apply to PEM water electrolysis.

4.1. Nucleation of Bubbles

Nucleation is the process in which the first gas bubbles appear on the electrode surface.
It happens when there is a dissolved gas buildup at the electrode surface [119]. If the
dissolved gas concentration exceeds its saturation concentration during electrolysis, the gas
will subsequently cause bubbles. How bubbles form, grow, and separate from the electrode
surfaces affects the volume of gas released from the surrounding surface, which is crucial
for determining the rate of bubble formation [120]. In PEM water electrolysis, the driving
force for bubble nucleation depends on the degree of supersaturation of dissolved oxygen
at the anode and hydrogen at the cathode [121,122]. Hydrogen and oxygen molecules are
generated by electrochemical processes on the electrode surface and supersaturated to
produce bubbles [123]. Bubbles become detached from the surface once they reach a critical
size diameter. The critical bubble size for oversaturation within pores can be calculated
using the classical nucleation theory as follows [25].
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Rc =
2γ

Pg − Pl
(9)

Pg = S · Pl (10)

where Rc is the minimal size at which the bubble nucleates, S is the supersaturation of
dissolved oxygen in the PTL pore, γ is the water surface tension, Pg is the pressure inside
the bubble, and Pl is the surrounding water pressure.

Two processes are involved in the nucleation of bubbles: a homogeneous nucleation
process, in which bubbles nucleate within the liquid without any solid surfaces, and a
heterogeneous nucleation process, in which the formation of bubbles is facilitated by the
presence of a solid surface [124,125]. Bubble nucleation is significantly influenced by
non-wettable surfaces [37]. In the water electrolysis process, the generation of bubbles
occurs at the interface between the catalyst layer (CL) and the porous liquid gas diffusion
layer (LGDL) [18]. Bubbles then combine with their neighbors to form a cluster structure,
thereby increasing their volume and surface energy [25]. Once these cluster bubbles reach
a critical size, they disengage from the nucleation sites, resulting in the formation of new
bubbles [126]. Another study has found that increasing porosities and decreasing pore size
can lead to higher bubble nucleation at the triple-phase boundary [127]. The addition of a
hydrophobic layer between the electrocatalyst and the PTL anode-side LGDL increases the
contact angle, resulting in more bubbles on the surface, particularly at low current densi-
ties [128]. Efficient management of pressure is essential for controlling the bubble behavior
inside the system. The bubble behavior is influenced by current density, temperature, and
the liquid flow rate. In contrast, current density and temperature have considerable impacts
on bubble nucleation sites, growth, and the overall number of bubbles [40]. Increasing
current density accelerates the initiation of bubbles (bubble nucleation), resulting in quicker
bubble formation on the anode catalyst layer [35].

Bubble nucleation takes place within a frequency range of 10 to 50 Hz. Nucleated
bubbles will detach from the CL while the shape of bubble growth resembles a semispherical
cap inside the PTL pore [25]. Previous studies have found that ideal areas for bubble
nucleation can result in a heterogeneous crack on the catalyst surface as they are less prone
to water movement or external forces [127,129,130]. The size of the catalyst crack surface
can influence how the initial bubble forms and grows. In PEM water electrolysis, bubble
density nucleation is analogous to a nucleation site in a boiling pool, where vapor bubbles
develop on a heated surface in contact with water [25]. Different techniques are available
for isolating the nucleation of bubbles and examining their impact on the electrode that
evolves gas. Nucleation of bubbles usually emerges when there is an active OER. However,
it is crucial to note that bubbles may not always appear at the precise location where the
reaction occurs [92]. Figure 8 illustrates how the nucleation of bubbles results in water
electrolysis. Nucleation is due to a constant increase in dissolved gas beneath the catalyst
surface (Cgas). The water electrolyzer action introduces gas molecules into the water phase,
increasing Cgas above its saturation concentration, Csat. The equilibrium concentration of
saturation gas is proportional to the partial pressure of the gas (Henry’s Law) as shown
below [37,92].

Csat = PKH(T) (11)

Henry’s solubility constant KH decreases with temperature for each pair of liquid–gas
molecules [131,132]. The supersaturation of gas (ζ) results when the dissolved gas is large
enough, which is expressed as follows:

ζ =
Cgas − Csat

Csat
(12)

A novel ring-shaped electrode has been used to study the formation of bubbles.
However, it was discovered that the catalyst-free center of the ring was where the bubbles
formed, which is shown in Figure 9 [133].
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The bubble nucleation starts after a few seconds of the reaction. This occurs because the
dissolved gas congregates in a hydrophobic microgravity area. The liquid is supersaturated
when ζ > 0 (Cgas > Csat) and unsaturated if ζ < 0 (Cgas < Csat) [134]. To avoid bubble
formation near the catalyst surface, the bubble generation and gas evolution reactions must
be separated. This can help prevent the overpotential effect of gas evolution in the bubble
formation method [135,136].

4.2. Growth of Bubbles

After the nucleation stage, the subsequent phase involves bubble growth which de-
pends on various properties such as surface tension, viscosity, inertia, and turbulence [120].
In electrolysis, the growth of bubbles involves three phases, each of which is governed by
a distinct force. The initial growth phase is regulated by the liquid inertia that surrounds
the bubble. At this point, the radius of the bubble increases quickly with time [137]. The
second stage happens when the dissolved gas surrounding bubbles in the liquid becomes
supersaturated. Based on how quickly the gas can permeate from the bulk liquid, the
bubble growth rate is constrained. The bubble radius increases with the square root of
time [134]. In the third stage, the electrode produces more gas than it can dissipate into a
bubble. Bubble growth frequency decreases because of the electrochemical process [36,138].
In PEM water electrolysis, bubble growth is governed by the difference in concentration
between the dissolved gas molecules and the solubility of a gas in water [92]. The gas
solubility in water increases with temperature. As a result, bubble growth accelerates
significantly with a high temperature. The bubble growth rate is dependent on different
factors including geometrical design, pressure, temperature, current densities, and surfac-
tants [17,139]. Bubble growth in water electrolysis is shown in Figure 8. Some bubbles
grow continuously even after bubbles have detached from the surface, indicating that as
long as the surrounding liquid remains supersaturated, the bubble size will continue to
increase [40,140]. However, the inability to observe inside the microstructure of opaque
cells has resulted in a relatively limited understanding of bubble growth [141]. Numerous
studies have postulated a two-phase bubble transport in a porous transport layer (PTL). A
conventional PTL degrades faster than a modified PTL which exhibits higher durability
and contact mass transport [142,143]. A PTL with a patterned structure and perforated
pores can significantly improve bubble management in an electrolyzer [144,145]. A study
has compared the growth of bubbles and detachment of bubbles with a through-pore
PTL and a normal pore structure PTL and found that the through-pore PTL has higher
gas flow [144]. It has also been found that the through-pore-type PTL has better water
movement by enhancing the mass transport which is critical for system efficiency. However,
some pores are inactive in a through-pore PTL, which results in an ineffective in-plane water
movement [146]. Bubble growth took only 0.3 s with a through-pore PTL, whereas it took
2.88 s with the regular-pore PTL. This suggests that the through-pore PTL is more effective
for higher gas removal, as shown in Figure 10. Furthermore, bubbles emerging from the
through-pore PTL can continue their growth until they come together with surrounding
bubbles, as seen in the through-pore PTL at t = 0.75 s.
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4.3. Detachment of Bubbles

Bubble detachment occurs when the upward force of buoyancy dominates the down-
ward force of surface tension. Two main forces that can affect bubble departure in a pool
of liquid are the force of buoyancy and the force of surface tension [147]. Bubble detach-
ment diameter (Dd) can be calculated by correlating the surface tension force (γ) with the
buoyancy force, which is expressed as [125,148].

Ddπγ sin2 θ = ∆ρg f (θ)D3
d (13)

where ρ is the liquid density, θ the contact angle between a bubble and the surface, ∆ρ is the
density difference between water and gas bubble, and g is the acceleration due to gravity
experienced by the bubble. The frequency f based on the different bubble detachment
diameters has been presented previously [149]. Although research on active catalysts has
been significantly advanced over the years, very few studies have been conducted on
electrocatalyst activities to effectively design suitable bubble detachment from the electrode
surface [150]. For quick removal of bubbles from the surface, it is essential to lower the
adhesion between the surface and bubbles [151]. In the water electrolysis process, there
are various methods to detach the bubble from the electrode surface by using magnets,
sound waves, mechanical frequency, and a supergravity field. The study also suggested
that effective bubble detachment requires changing the liquid composition and system
design. These techniques can facilitate the movement of forces in a liquid, which can
accelerate the movement of bubbles on the surface [150]. Generally, more homogeneous
and smaller bubbles can be removed from the cell faster, allowing more water to pass
through [30]. They studied the bubble transport mechanism using a PTL as titanium felt
with PTL and thin titanium with LGDL and compared three different indexes (i.e., bubble
average detachment diameter (ADD), standard deviation diameter (SDD), and detachment
frequency (DF)). Figure 11a shows the average bubble and detachment frequency for



Micromachines 2023, 14, 2234 18 of 41

both PTLs. The ADD was 161 µm for Ti-felt and 24 µm for TT in the LGDL. The bubble
formed by TT in the presence of the LGDL was found to be more uniform and smaller.
Furthermore, the DF for TT in the LGDL was higher than that for Ti-felt. The growth of
bubbles and stability on flat electrodes and the PTL flow channel interface can be changed
with advanced imaging technologies [25]. Bubble detachment occurs due to two primary
factors: (1) bubble nucleation near the anode catalyst layer caused by increased localized
oxygen supersaturation in that region, resulting in the formation of fresh bubbles; and (2)
balancing forces such as pressure and buoyancy. When these forces reach their critical point,
the bubble detaches from its origin [25]. Figure 11b shows the effects of liquid velocity
on bubble overpotential and bubble detachment. Liquid velocity plays a significant role
in bubble management. When the flow velocity is low, the bubble tends to merge and
form a large slug, which requires more time to detach. Similarly, when the flow velocity
is increased, it is more difficult for smaller bubbles to clutch together due to the higher
pressure difference and shear stress at the bubble surface. The detachment of hydrogen
bubbles on the cathode side is always lower than the detachment of oxygen bubbles on the
anode side [40].
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Once the bubble detaches from the cell, the concentration of dissolved gas starts to
increase in water, and when it reaches a particular level, the nucleation process starts,
which initiates the bubble evolution cycle [36,152]. Bubble detachment of H2 and O2
at constant current density and flow velocity with time is depicted in Figure 11c. The
bubble detachment study has been conducted using neutron and X-ray imaging methods.
It has shown that initially, the bubble detaches very rapidly, and it slows down until
it reaches a critical size [86]. Figure 11d presents the different stages of bubble growth
on microelectrodes. Here, bubbles are generated and detached more consistently and
progressively instead of detaching all the bubbles at once [135]. Garcia-Navarro et al. [153]
used MATLAB code and studied O2 bubble detachment and explained that the bubble
detachment remains constant regardless of the change in water flow rate. However, some
other researchers have reported that an increase in water flow velocity leads to quicker
detachment of smaller bubbles [154,155]. At constant operating potential, the size of bubbles
decreases with an increase in the water flow rate. This phenomenon can be explained
when water flow increases when water flow increases it creates less space (void fraction)
available for gas bubbles. As the bubble rises, it displaces the water, causing transverse
motion. Larger bubbles at a certain range of size contributed to water displacement and
thus swept away other bubbles on the electrode surface. In the present review study, the
intricate discussions on bubble nucleation, growth, detachment, and the effects of catalysts
are presented mostly in the context of general water electrolysis. However, the underlying
concepts of bubble dynamics and its applications may also be applied similarly in the
context of PEM water electrolysis. This broad fundamental study of bubbles can result
more specialized area of PEM water electrolysis specialized area of PEM water electrolysis.

5. Bubble Dynamics in Different Components of PEM Water Electrolysis

When a voltage is supplied during the water electrolysis process, then O2 and H2
bubbles are produced on the anode and cathode sides, respectively. The movement of
bubbles is influenced by factors including buoyancy, surface tension, and drag force. The
O2 bubbles are formed on the catalyst surface and start to grow until they reach the critical
size and get detached away in the flow channel through the PTL. In most studies, water is
supplied toward the anode. However, in some cases, water is also passed via the cathode-
side channel to prevent the degradation of the membrane [29,156,157]. The following
section discusses bubble dynamics in PEMWE with different components.

5.1. Bubble Dynamics in Flow Channels

The flow channel is an important structure used for designing the PEM water electrol-
ysis. In PEM water electrolysis, various flow channels have been used for study, including
serpentine, parallel, pin-type, interdigitated, mesh-type, and cascade channels [14,22,38,83].
In comparison with serpentine flow, the parallel field performs better at low pressure
drop with constant flow velocity and lesser turbulence, which can increase corrosion resis-
tance [158]. Polarization curves for various channels, including single and dual serpentine
flow (SF) and parallel flow (PF) fields, have shown that more parallel channels can lead to
more effective system performance [29,159]. A dual serpentine flow field is advantageous
with respect to pressure drop, temperature, and current density distribution because it
allows more reactants to penetrate porous layers and increase system reaction [160]. It
has been found that a serpentine channel with a longer flow field produces elongated gas
bubbles that can block the flow channel [38]. That research showed that, when SF and PF
were compared at the same water flow, PF performed better than SF, especially at higher
current densities. In the case of the SF, an annular regime was observed at high current
densities. This caused the gas bubble to occupy the entire channel length, resulting in
water obstruction across the LGDL and minimizing cell performance. O2 deposition in the
channel may increase pressure drop and impede the system’s nonuniform temperature
and current flow [38]. They also mentioned that while designing the flow field, significant
attention must be considered for pressure drop management. The circuit board was printed,
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and the bubble flow was observed to investigate the current density along the system [154].
Those studies showed that the removal of gas bubbles from the electrode surface and the
movement of water flow were significantly influenced by the presence of larger bubbles.
This operation from smaller bubbles to larger bubbles enhanced mass transport results
due to an increase in uniform current distribution across the channel. To maintain the
two-phase flow as a bubbly flow, an ideal flow rate is required to enhance mass transfer
and minimize overvoltage concentration [29]. Ojong et al. [42] stated that when only a BPP
is used without a flow channel, pressure drop increases and the bubble formed tends to
deposit throughout the PTL surface. This bubble accumulation had an adverse effect on
mass transfer within the cell. Bubble motion inside the parallel channel gets restricted at a
high current density, as shown in Figure 12a. Stagnant bubbles covered almost the whole
channel length and made it more difficult to remove the gas [24]. Deposition of O2 gas
bubble in a serpentine channel is more severe than in a parallel channel due to the forma-
tion of a long slug, as shown in Figure 12b [38]. The long slug flow caused a significant
amount of gas bubbles to build along the channel, which considerably slowed down the
movement of water and degraded system performance [40]. Similarly, Figure 12c depicts a
mesh channel with two distinct types of bubbles involved: small bubbles and large bubbles.
Small bubbles with a size of 30 mm detached quickly from the surface. However, a larger
bubble remained attached to the adjoining bubble and eventually obstructed the PTL.

One study indicated that cascaded flow channels used on the anode side performed
better than serpentine and parallel channels due to the low deposition of bubbles across the
field [83]. Figure 12d depicts a zigzag flow pattern of bubbles on the expanded metal mesh.
Lafmejani et al. [161] studied both single-phase and two-phase flow by injecting blue ink
along the water flow and observing how it behaves in the mesh channel. The presence of
the bubble along a vertical path was shown to be favorable for liquid flow. An interdigital
field channel analysis of single- and two-phase flow models was performed to understand
the influence of gas bubbles on the geometry structure of the anode [163,164]. It showed
that unequal flow and temperature distribution in the cell was due to the equal land width
of the flow field and the presence of a gas bubble at the exit phase. Maier et al. [85] used a
non-invasive technique termed acoustic emission for tracking the movement of bubbles in
the flow channel and this allowed them to record system changes such as the shifting of
tiny bubbles to larger bubbles and changes in bubble shape in the cell. A square-shaped
pin-type channel showed a consistent distribution of temperature and current, resulting in
effective elimination of gas bubbles [165].

Zhang et al. [162] found that the impact of H2 bubbles on stainless steel (SS) mesh is
influenced by the current density, mesh diameter, and pore size. They also found that the
SS mesh performed better than the expanded mesh as a catalyst for hydrogen evolution,
which is shown in Figure 12e.
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5.2. Bubble Dynamics in a Catalyst Layer

Metals such as Pt are commonly coated on the cathode side of the catalyst for exam-
ining the hydrogen evolution reaction (HER), whereas IrOx is loaded on the anode-side
region of the catalyst for studying the oxygen evolution reaction (OER) for coating on the
membrane (CCM) [84]. However, these metals are not cost-friendly when they are used
for upscaling. In addition, the use of Pt metal can be poisonous when chemicals such as
sulfide (commonly found in wastewater) are used [166,167]. Nonmetal catalysts such as
metal sulfide, metal carbides, and metal phosphides have been used as HER catalysts in
acidic conditions [168–171]. However, these nonmetals have numerous downsides, such as
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consuming higher voltage energy and exhibiting weaker stability when they are subjected
to higher current densities [172–176]. Contrary to conventional Pt and other nonmetal
catalysts, a Fe-N-C catalyst has been designed for HER, showing high onset [177]. Hybrid
catalysts such as CoMnP/Ni2P/NF showed significant activity for HER with low overpo-
tentials in both acidic and alkaline environments [178]. As indicated in Figure 13a, this
CoMnP/Ni2P/NF exhibits superaerophobic behavior when it is studied underwater with
a high contact angle of 158◦ and a negligible adhesive force between the bubble and the
electrode surface. During the operation of electrolysis, some cathode and anode surfaces
are covered by hydrogen and oxygen gas bubbles. The diameter of these bubbles can
be measured by taking two elements into account: liquid surface tension and pressure
difference at the meniscus. Relationships between liquid properties, pressure difference,
and bubble size can be presented as follows [179]:

rb =
4T

Pi − P0
(14)

where Pi is the pressure inside the gas bubble, and P0 is the external pressure which is
influenced by the height and the density of a liquid.

The performance and durability of the anode-side catalyst and anode plate are im-
portant to consider especially when it operates at a higher voltage to produce O2 on the
anode [180]. Simply focusing on the OER may not be sufficient to prevent the catalyst
from corrosion resistance [181]. They also suggested having a thorough knowledge based
on different surfaces against catalyst erosion. This further understanding is essential for
developing the catalyst, which not only can exhibit its life expectancy but also may resist
corrosion, preventing the catalyst from leaching over time. The bubble interaction at high
voltage can result in the leaching of coated catalyst material. Catalyst leaching studies were
carried out for different catalyst loading, and particularly on the anode side with lower
catalyst loading lower catalyst loading (0.34 mg cm−2) led to higher degradation rates
compared to higher loading (1.27 mg cm−2) [182]. They stated that catalyst loading has a
substantial influence on the degradation rate. If the catalyst loading is insufficient, it may
fail to resist the elevated heat and ultimately it could break the catalyst material causing
catalyst leaching. Compared to an MEA with low catalyst loading, an optimal loading
lifespan is three times higher, which can decrease catalyst leaching and increase catalyst
efficiency [183]. This nonlinear mechanical stress results specifically due to fluctuating
energy supply, which in turn can cause nonuniform bubbles in electrodes that may affect
the electrochemical reaction in the system [184].

Bubbles formed in the CL must exit the system via the porous transport layer (PTL)
and the flow field channel [185]. Controlling the ideal catalyst loading thickness is es-
sential for ensuring free water flow within the layer [92]. The cracks in the CL during
the reaction process may lead to a negative impact on bubble management. These cracks
may cause irregular and uncontrolled bubble nucleation, disrupting efficient gas transfer
and system performance [186,187]. In CL, another type of surface structure known as
superaerophobic surface structure serves to control gas bubbles on the OER and HER sides.
This superaerophobic structure resembles an array and inhibits the bubble from adhering
to the CL for an extended period [178]. For quick removal of H2 gas bubbles from the
electrode surface, hybrid catalysts called FG-WS2 and VGNHs-WS2 have been employed
and researchers measured their bubble size distributions (BDS), which are presented in
Figure 13b,c [188]. The VGNHs-WS2 hybrid catalyst produced smaller and more uniform
bubbles than the FG-WS2 hybrid catalyst, which was attributed to the nanorough surface
of the VGNHs. As a result, the H2 gas bubble in the electrode can escape from the HER
area faster. The Pt nanoarray shape that resembled pine showed a higher contact angle.
As a result, the H2 bubble detached quickly from the electrode surface [189]. When two
hybrid coated catalysts were used, namely, MoS2 flat film and MoS2 nanoplatelets array,
the flat film showed higher adhesive force, resulting in higher bubble attachment [190]. The
MoS2 nanoplatelets array exhibited significant bubble management with a higher bubble
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contact angle and thus detached bubbles faster on the surface. Han et al. [191] employed
a hybrid catalyst to analyze the HER reaction side by using an N-WC nanoarray and flat
N-WC. When the bubble contact angle increased from 148◦ (flat) to 163◦ (N-WC nanoarray),
the N-WC nanoarray demonstrated improved bubble management with respect to the
flat N-WC and detached bubble size decreased from 15 µm to 5 µm. Figure 13d exhibits
the BSDs of two distinct topologies, nanoarray and non-array electrodes. The nanoarray
structure produced a smaller bubble, a larger contact angle, and a lower adhesive force.
The researchers examined two distinct catalysts, and in the first set, they coated Ir-C on the
anode and nitrogen-tungsten carbide (N-WC) at 1.5 V. In the other set, they coated single
non-noble metal catalyst N-WC on both the anode side and the cathode side at 1.4 V, as
shown in Figure 14a,b. They found that using N-WC non-noble metal as a bifunctional
catalyst on both the anode and cathode sides could increase the yield of the water-splitting
process at a low voltage. Thus, maintaining efficient electrolysis relies significantly on
managing bubbles on the HER and OER reaction sides of the CL.
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On the anode, two different cost-effective catalyst coatings were performed using
honeycomb Ir and dense Ir. Their comparison showed that honeycomb Ir has better bubble
management due to the interconnected structures which enabled fast bubble discharge
and effective water diffusion [192]. Figure 14c,d depict the bubble dynamics using a dense
Ir-catalyst-coated liquid gas diffusion layer (CCLGDL) and the honeycomb (HC)-coated
membrane surface. At a current density of 200 mA/cm2, the honeycomb catalyst layer
outperformed the dense layer in terms of bubble nucleation and detachment times. The
formation of gas bubbles in the CL alone was insufficient to optimize cell performance.
However, how these bubbles are circulated within the cell plays a significant role in
determining the overall voltage loss in the cell. This voltage is lost due to an accumulation
of O2 bubbles on the anode side [193]. The O2 bubble generated on the CL takes more
time to travel through the PTL when the applied current density is high, and the bubble
transport is low. As a result, gas removal becomes very slow, and more bubbles build on
the anode region [126,194]. Furthermore, the presence of the ionomer in the CL determined
cell performance. The higher the ionomer in the CL, the more mass transfer losses, resulting
in inefficient O2 bubble transfer [195]. This obstruction impedes efficient bubble reduction
and degrades cell efficiency [93].
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5.3. Bubble Dynamics in Porous Transport Layers

A porous transport layer (PTL), also known as a liquid gas diffusion layer (LGDL), can
be utilized on the anode side with a gas diffusion layer (GDL) on the cathode side. It aids
in the stability of several components such as membrane, collecting current, and counter
flow of gas and water [196]. The PTL with a porosity between 30% and 50% performs
well for gas bubbles to navigate faster and regular flow of intake water [197,198]. If larger
pores are present in the PTL interface, they can cause insufficient contact between catalyst
nanoparticles and the PTL material [199]. Recently, a novel sponge-like material with small
holes known as through-pores has been developed to easily move water and gas bubbles
by avoiding the longer route in the PTL, as presented in Figure 15a [144]. After examining
the behavior of gas bubbles in the PTL flow field using an X-ray imaging approach, it
was found that bubble growth and detachment using the through-pores occurred more
quickly than those through conventional pores. Although gas bubbles developed along the
boundary between the CL and the PTL, they ended up migrating through pores toward the
PTL surface [200]. Figure 15b depicts the movement of gas bubbles in the PTL and bubbles
produced at the interface between the CL and the PTL.

When these bubbles merges with neighboring bubbles, its volume and surface energy
are increased, and when it reaches the critical size, it breaks from the nucleation zone [141].
For an efficient gas bubble transfer, it is critical to minimize gas accumulation on the CL.
This can be accomplished by employing a suitable PTL, which provides a conduit for gas
bubbles to migrate away from the anode CL [204]. At a higher current supply, O2 gas
bubbles generated in the PTL can block the flow of water toward the anode CL, resulting
in water supply deficiency [25,205]. To effectively deliver water to the anode side, the
PTL’s pores need to be larger, followed by a thicker catalyst coating [206]. The pore size
and the thickness of the CL can significantly influence the PTL in a cell. As shown in
Figure 15c, resistance increases with a decrease in the thickness of the CL because a thinner
CL causes more restriction of electrons [201]. Additionally, Miličić et al. [202] reported
that by increasing the liquid flow rate, the PTL liquid saturation is enhanced because of
the efficient removal of gas bubbles from the PTL, which can reduce gas deposition in
both the PTL and the anode CL, as presented in Figure 15d. The most common materials
used for fabrication of the PTL on the anode side include Ti mesh, sintered powder, felt,
multilayered, perforated plates, and others [127,144,207]. These materials have excellent
chemical and mechanical stability [208]. Understanding the behavior of the bubble in the
porous transport layer (PTL) becomes crucial to minimize voltage loss, increase efficiency,
and improve the performance of the cell’s durability. Figure 15e depicts the growth and
detachment of a single gas bubble in a channel at different times. A real-time study for gas
bubbles showed that at time t = 0 ms, the bubble size diameter was 70 µm. By increasing the
time t to 900 ms, the bubble size increased to 130 µm [203]. Understanding how gas bubbles
travel in the PTL in real time can assist in determining factors that impact mass transport
and optimize the PTL structure to improve system efficiency. Furthermore, analysis of how
voltage fluctuates over time at a high current density has revealed that the commercial
PTL experiences a quick increase in voltage due to inadequate removal of gas bubbles at
reaction sites [144].
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Figure 15. (a) Bubble transport patterned through-pores in PTL. Copyright 2020, with permission
from the American Chemical Society [144]. (b) Movement of gas bubble through PTL. Copyright
2023, with permission from Elsevier [141]. (c) Variation in pore size on constriction resistance based
on the different CL thickness. Copyright 2020, with permission from Elsevier [201]. (d) Influence of
inlet water on PTL liquid saturation and thickness. Copyright 2022, with permission from MDPI [202].
(e) Formation and detachment of O2 bubble at different times. Copyright 2018, with permission from
Elsevier [203].
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6. Measurement Techniques for Bubble Dynamics

There are various techniques available to measure the bubble size in a PEM water
electrolysis system, including photography, neutron imaging, X-ray imaging, and acoustic
emission. These methods are discussed as follows.

6.1. Photography Technique

This technique is one of the simplest and most intuitive tools for measuring bubbles in
a PEM water electrolysis system. Over the years, various studies have used both intrusive
and nonintrusive methods to measure bubble size. In this methodology, the bubble sizes
are measured using a photographic method followed by image analysis. Conventional
microscopes or cameras cannot capture gas bubble dynamics at the microscale with ultra-
high speeds. A high-speed camera is used to capture the different bubbles inside the
PEM water electrolysis system since the bubbles generated in this type of instrument
exhibit microbubble dynamics [111]. While using the high-speed camera, an LED light
source is used for capturing the bubble images [38]. The light source is used to make
moving bubbles more visible, preventing blurred motion and enabling accurate bubble
behavior analysis. The image analysis process involves several processes, such as image
segmentation, visibility adjustments, and contrast enhancement. Image analysis tools
such as MATLAB, ImageJ, Adobe Reader, and Digimizer can be used to measure bubble
size images. A captured bubble image from the PEM water electrolysis system using a
high-speed camera is presented in Figure 16. The following expression can be used to
measure the Sauter mean bubble diameter [209,210]:

d32 =

n
∑
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nid3

d

n
∑

i=1
nid2

d

(15)

where ni denotes the number of bubbles with size diameter dd. For bubbles with an
ellipsoidal shape, the bubble diameter can be measured using the following equation:

deq = 3
√

l2
majlmin (16)

where lmaj and lmin are the major and minimum measured bubble lengths, respectively.

6.2. Neutron Imaging Technique

In this method, images are recorded and the amount of water and gas in the porous
layer is measured. Although the neutron imaging approach cannot provide clarity or
detailed image quality like X-ray images, it has a significant advantage. Figure 17a shows
neutron beam radiography images used for capturing bubble size while performing the
experiment. It can penetrate through certain metals such as titanium, which is often used
in electrolysis as a porous layer [211]. In neutron imaging, the PEM water electrolysis is
initially placed at the neutron beam, and images are captured at a rate of 1 Hz. While
experimenting, the neutron imaging failed to differentiate between gas bubbles and the
titanium mesh used for the flow field. Therefore, combining both neutron and optical
imaging techniques could help distinguish gas bubble evolution from the Ti mesh lay-
ers [130]. The intensity of the neutron is altered based on the presence of water inside
the cell. Lee et al. [212] initially captured the reference image without applying a current
under a fully saturated liquid in the anode when nitrogen gas is purged in the cathode
side to remove the presence of water during the reference image capture. Finally, the
image was captured by supplying the current in the electrolysis. An integrated bubble
image is shown in Figure 17b. For image processing, three steps were used to measure
the images [213]. While capturing images, random spots might be captured owing to
changes in camera illumination. To eliminate these spots, the median value from multiple
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images is taken, yielding a sharper and cleaner image. The second step involves taking
the median at every frame of three by three pixels to reduce electronic system noise [212].
Lastly, a procedure known as image restriction is adopted to avoid image alignment being
disturbed during image capture due to changes in camera equipment alignment. These
integrated approaches can improve our understanding of water behavior. They can be used
to optimize PEM electrolysis performance. Another study used the same neutron imaging
exposure duration of 5 s with two distinct types of images taken before the experiment. One
is known as a dark field image (without using a neutron beam) and the other is described
as a dry image (before circulating water inside the cell) [196]. Captured images were edited
with ImageJ software and 30 images from each batch were merged using a process known
as median averaging to further enhance the image quality. Real-time images from PEMWE
were captured with a neutron beam and analyzed to determine water thickness using the
Beer–Lambert law. The area known as land location was taken into consideration. The
water within the land and in pore structures was then examined.
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Figure 17. PEMWE neutron radiography. (a) Schematic image of neutron radiography. Copyright
2018, with permission from Elsevier [90]. (b) Integrated neutron-captured bubble image. The dotted
circles represent stationary gas bubbles, whereas the solid circles depict increasing bubbles moving
between holes. Copyright 2013, with permission from Elsevier [130].

Using the Lambert–Beer Law, the thickness of water (t) in the region surrounding the
bubble can be measured to comprehend and quantify its impact on the movement of water,
which is expressed as [90,130]:

t =
−1
nw

ln
(

Ic

Id

)
(17)

where nw, Ic, and Id denote the number of neutrons absorbed or scattered by water during
the process, the actual neutron image captured during the cell operation, and the neutron
image recorded when the cell is completely dry.

6.3. X-ray Imaging Technique

This non-invasive method produces high-resolution 3D images. It has been used
for measuring bubbles inside a PEM water electrolysis system. For studying the in-situ
measurement of gas bubbles, different types of imaging such as optical, neutron, and
X-ray imaging have been used [212,214]. This method is used as an ex-situ technique
for assessing the physical structure and characteristics of materials such as the PTL in a
water electrolysis system [215]. X-ray imaging and X-ray radiography have been employed
to measure the presence of oxygen bubbles inside a PEM water electrolysis system, as
shown in Figure 18a [203]. The setup was rotated 180◦, and the tomography was allowed
to scan from different angles by carefully selecting the beam energy for penetrating the
system. Hoeh et al. [86] studied the evolution of gas in the PTL using the X-ray technique
and analyzed a comprehensive review through plane and in-plane orientation. They
used a concentrated beam of X-ray energy and allowed it to pass through the PEM water
electrolysis system. Bubble images were captured using a CCD camera after every 5 s.
They adopted a method called in-plane synchrotron radiography and determined gas
bubbles between the PTL and flow channels. Figure 18b depicts how hydrogen bubbles
change over time, indicating that higher current densities result in faster hydrogen bubble
production and discharge, whereas lower current densities result in slower bubble growth.
De Angelis et al. [216] have used the tomography method and studied how oxygen bubbles
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formed and interacted with or without the PTL structure. They observed bubble growth
and detachment at the PTL, as well as the bubble rise velocity and change in behavior.
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6.4. Acoustic Technique

Acoustic emission can be measured by using a cylindrical piezoelectric sensor at the an-
ode side as shown in Figure 19a. In the HER process, a new design called surface-reflected
bulk wave, which is a specific type of acoustic wave, was developed to prevent the accu-
mulation of gas bubbles on the electrode, particularly at high current densities [218]. For
operating the system, a constant current (galvanostatic) is applied, and the data collected
every 1 min. Unlike other sensors, this acoustic emission (AE) can detect signals from all
sides of the PEMWE cell. Further, collected data can be processed with AEwin software
for enhancing the acoustic signal and for removing unwanted noise. During the operation,
the system experiences mechanical perturbation due to the movement of bubbles, pressure
fluctuation, and flow disturbance. These sensors can continuously generate voltage/time
signals when perturbation waves are generated from the cell. With an increase in the
physical vibration around the anode side, a sensor produces a high voltage in response.
When the resulting voltage/time signal is higher than the desired noise threshold (set at
37 dB) for the purpose of detecting these AEs, it is referred to as an acoustic hit. While
gathering data, each acoustic signal generates a distinctive sound. Four separate signals are
generated, including frequency (hit rate), maximum sound wave volume (hit amplitude),
time (hit duration), and energy (hit energy) produced with each impact. This can be used
to understand whether the system has abnormal sound events or if there are any regions
that need to be fixed while constructing the system. Thus, using this special sensor can
monitor bubble behavior in the system. The impulse pressure generated by oscillating
bubbles in the cell produces a certain sound frequency [219,220]. These oscillatory forces
generated by vibration can trigger the shifting of the bubbles [221]. A captured bubble us-
ing the AE sensor is shown in Figure 19b. Larger bubbles have lower frequency oscillations,
whereas smaller ones have higher frequencies. As a result, the velocity at which a bubble
moves is influenced by its size. The relationship between bubble size and the frequency
of the fluctuation has value for understanding bubble behavior in liquids. It potentially
has several research applications [85]. For free oscillation of the bubble in the liquid, the
relationship between the initial bubble size (R0) and the oscillating frequency (f ) can be
expressed as [222]:
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f =
1

2π

√
3kp∞

ρR2
0
− 2σ

ρR3
0

(18)

where p∞ is the liquid pressure at a point distance from the oscillating bubble, ρ is the
liquid density, σ is the liquid surface tension, and k denotes the polytropic coefficient. The
relationship between the pressure (P) and the volume (V) during the growth or reduction
of the gas bubbles is as follows [223]:

PVk = constant (19)
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Similarly, the frequency oscillation of the bubble is expressed as [222,224]:

f =
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√
3kp∞
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This shows that the bubble frequency is inversely proportional to the bubble radius.
Although bubbles in an electrolyzer flow channel may not be able to freely oscillate,
bubble collisions may induce similar interactions between bubble size and frequency.
Such relationships may provide knowledge regarding bubble dynamics in a flow channel,
resulting in an impact on the operation of the whole system and bubble management.

7. Current Challenges and Outlook

PEM water electrolysis holds significant promise for producing the optimal green
hydrogen. However, an in-depth understanding of the role of bubble dynamics in system
performance is essential for solving the existing challenges before industrial-scale setups.
In the literature, there are different studies carried out for the development of novel on
the development of novel catalysts, bipolar plates, flow channels, and PTL materials. All
these investigations have significantly enhanced the system performance, but challenges
remain, particularly the controlling of bubbles across the electrode surface and from the
flow channel. Different studies have been carried out in the context of catalyst coatings
for the enhancement of the OER and HER through nanostructures, which have improved
the bubble evolution [190,225]. However, it is still not identified how these nanostructures
impact the bubble evolution. One such persistent problem is the effective removal of
bubbles from electrode surfaces, which necessitates higher current densities, lowering
system efficiency significantly. When these bubbles build up on the electrode surface,
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they can obstruct the pores, which in turn causes activation losses and mass transport
losses [23,226,227]. Another key step is to identify hotspots for bubble generation on
electrode surfaces. Bubble evolution may vary for electrode surfaces with different pore
diameters. Thus, identifying these hotspots is critical for the timely removal of oxygen gas
bubbles. Therefore, future research should emphasize the detailed investigation of how
these bubbles cover the electrode surfaces to improve gas bubble removal and minimize
system damage. Flow channel rib pressure may destabilize the PTL layer, preventing proper
gas flow in the region. It is still unclear how the flow channel’s rib affects the PTL layer.
Future studies ought to focus on the complex relation between flow channels, ribs, and PTL
layers to optimize gas distribution and enable effective electrolysis. More experimental and
modeling research is needed to comprehend the role of bubble evolution in overcoming
present challenges in industrial-scale setups. This will bridge the gap between laboratory
findings and real-world applications. The present review paper lays the foundation for
future research initiatives aimed at overcoming current barriers and advancing PEM water
electrolysis.

8. Conclusions

Hydrogen gas is regarded as one of the greenest and most sustainable energy sources.
It has the potential to replace traditional fossil fuels in various applications such as auto-
mobile fuel, energy generation, heating, industrial operations, and so on. Using electrical
energy, PEM water electrolysis can produce green hydrogen gas by simply splitting water
molecules into oxygen and hydrogen. Despite significant advances in hydrogen gas produc-
tion via water electrolysis, there are still numerous obstacles in predicting and managing
bubbles inside a cell. Although innovative electrode design can provide efficient bubble
control in the cell, there is a main issue associated with the cost of various components. This
article presented a comprehensive review based on how the bubbles stick on the electrode
surface and its substantial impact on cell performance, resulting in various losses in the
system. It also addressed the effectiveness of PEM water electrolysis which can be greatly
impacted by interactions between activation overpotential, ohmic overpotential, and diffu-
sion overpotential due to mass transport losses. Overpotential losses can be minimized
by lowering bubble buildup on the electrode surface, which in turn can improve ion flow
and mass transfer efficiency. Both bubble evolution and transport must be enhanced to
control bubbles by improving the porous transport layer and catalyst coatings. Efficient
bubble dynamics and the different stages of a bubble from nucleation to detachment were
discussed. Increased bubble nucleation can generate a swarm of small bubbles on the CL,
which can enhance mass transport, promote gas evolution, and decrease the formation
of large bubbles. This paper also focused on the complex bubble dynamics inside a flow
channel, a catalyst layer, and a porous transport layer. It highlighted the crucial function
of low pressure drop, restricted bubble accumulation, and precise ionomer control in the
CL, underlining their ability to prevent bubble buildup. Furthermore, it demonstrated
that bubbles can be swiftly removed when PTL structures are designed with appropriate
pore size and thickness. In addition, measurement techniques for various methods of
measuring bubble size in a PEMWE cell were explained. The incorporation of accurate
measuring techniques enhances a thorough understanding of bubble behavior, enabling
the development of more efficient and optimal PEMWE systems.
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